
Preventing URL-Based Data Exfiltration in
Language-Model Agents

Adrian Spânu Thomas Shadwell

2025-01-20

Abstract
Large language models, through autonomous agents, have increasingly been
performing actions on behalf of users, including navigating web pages and
carrying out multi-step tasks. One mechanism through which data can be
exfiltrated in an attack can occur when agents access URLs crafted (frequently
as a result of prompt injection) to leak user-specific data. In this paper, we
formalize the threat model of these attacks and present mitigations developed
for ChatGPT Agents. We demonstrate that naive domain-based allow-listing
is inadequate due to open redirects and other evasions. Instead, we propose
a dynamic policy allowing only URLs previously visited by an independent
search index. Our evaluation assesses whether the approach provides the desired
security guarantees, replacing heuristic precision/recall trade-offs with URL-level
enforcement governed by explicit safety assumptions. We already maintain
continuous monitoring and adaptation of this policy, ensuring it evolves as more
sophisticated adversarial techniques emerge over time.

Problem Space
Large language models, integrated into agent frameworks and used directly in
chat, have become capable of browsing the web and performing multi-step tasks
on behalf of users. These models can return links or render resources such as
images. Query parameters in the URLs are frequently necessary to define the
specific resource in question. If instead, sensitive user data is added inside of
query parameters, data exfiltration can occur. An example of this is the following
URL: https://www.badwebsite.com/?data=YourAddressHere - where ChatGPT
has remembered your address or has otherwise been given access to it in your
email. These types of URLs can be crafted by attackers using prompt injections
that attempt to leak very specific, and potentially high value user data that
the model has in its context. The threat manifests when the model is induced
to click a link, navigate to a page, or load an image - actions relying solely on
retrieving resources, and which can frequently be invisible to the end user.

1



Threat Model and Assumptions
The attacker is assumed to have the ability to influence model behavior indirectly,
for example by shaping prompts or page content via prompt injection techniques.
However, the attacker is assumed to be unable to control request headers, request
bodies, or other transport-level details; interactions are limited to resource
retrieval via standard GET requests. This represents the threat model of
standard usage of ChatGPT and ChatGPT Agent without additional attacker
controlled systems. This includes typical users on secure devices: the vast
majority of OpenAI’s user base.

The agent is capable of autonomously retrieving and rendering external resources,
including following hyperlinks, loading images, and navigating web pages. Its
network interactions are restricted to these built-in retrieval behaviors; it does
not issue arbitrary POST requests or perform custom fetches outside of normal
browsing actions. Examples of these navigations include loading a web page or
rendering a web-hosted image.

The defender is assumed to have visibility into when such retrieval actions are
about to occur and can intervene at decision time. In addition, the defender
operates an independent search crawler or other index of the web, constructed
without any user-specific context which can be used as an external reference
point for validating proposed URLs.

Notable Examples of URL-Based Exfiltration
Several known attack patterns illustrate the ease and severity of URL-based
exfiltration. These attacks share a common mechanism: the adversary encodes
sensitive user data into URLs and leverages the agent’s retrieval of these resources
to exfiltrate information. The general attack methodology can be seen in Figure
1.

2



Figure 1: Sample attack

Given the simplicity and effectiveness of these techniques, it is critical to im-
plement robust safeguards, especially as there have been multiple attacks docu-
mented externally.

• Covert Data Exfiltration via LLMs1: Demonstrated in January 2024,
this attack showed that URLs queried by the model could leak conversation
data directly in the query string.

• WebPilot Cross-Plugin Attack2: Rehberger and collaborators demon-
strated that a benign-looking page accessed via the WebPilot plugin could
trigger another plugin, such as Zapier, to retrieve and exfiltrate user emails.

• Writer.com Indirect Prompt Injection3: Adversaries caused the
assistant to load hidden images, with the source URL encoding private
documents.

Each of these examples underscores the need for mitigations to prevent URL-
based data exfiltration, and that not responding to this threat is not acceptable.
As these attacks are both simple and effective, strong protections are essential
to prevent them.

1https://mikensec.medium.com/covert-data-exfiltration-via-llms-uncovering-the-hidden-
risks-c50c106c87c8

2https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-
injection/

3https://promptarmor.substack.com/p/data-exfiltration-from-writercom

3

https://mikensec.medium.com/covert-data-exfiltration-via-llms-uncovering-the-hidden-risks-c50c106c87c8
https://mikensec.medium.com/covert-data-exfiltration-via-llms-uncovering-the-hidden-risks-c50c106c87c8
https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-injection/
https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-injection/
https://promptarmor.substack.com/p/data-exfiltration-from-writercom


Mitigation Strategies
The goal of our mitigation is to find a mechanism to categorize which resource
accesses are ‘safe’ and which may not be. In this case, ‘safe’ can be defined as a
guarantee that accessing a particular resource will not leak user data. Finding
‘safe’ resources means that they can be loaded automatically without user input
- by far the preferred user experience. The goal is thus finding mechanisms that
can guarantee ‘safety’ for arbitrary resources.

Initial implementation - the domain allowlist
Data exfiltration attacks of this type are most damaging for adversarially con-
trolled sites - such as ‘evil.com’ in the example above. The attacker must
somehow have access to the server logs or own the endpoint loaded in such a
way that they are able to access the information passed to the query parameters.
It can be assumed that webmasters of popular sites, such as google.com or
facebook.com do not have the time or inclination to profit from data exfiltrated
to them, making attacks that exfiltrate data to these domains largely useless.

As a result, an initial implementation of the mitigation to this problem involved
marking resources as ‘safe’ based on a domain allowlist. Illustrated in Figure
2, this involved taking a small set of top sites users go to as ‘trusted’, and only
allowing automated requests that are on this domain allowlist. This list was
necessarily hand-curated as judgement was necessary to determine which sites
have a good enough reputation.

Figure 2: Domain allowlist based mitigation

While straightforward to implement, this approach suffers from a few critical
limitations. First, in practice, the allow-list covers only approximately ten
percent of URLs that our users were actually visiting. As these types of attacks
are extremely rare, this meant that most traffic was being seen as potentially
leaking user data, even when they were highly unlikely to be. There is a trade-off
between increasing the size of the allowlist (which potentially includes domains
that attackers could gain access to) and increasing the number of resources

4



deemed ‘safe’. This was further exacerbated by the second, and more serious
issue: open-redirects. An open redirect involves a site that allows any link to be
redirected to after an initial pass to an original site. Often seen as a security
problem, there are a number of sites that explicitly allow this type of redirection.
An example of this is shown in Figure 3, where the use of open redirects on
google.com allow the original link to be nominally to the google.com domain but
to eventually end up at evil.com. Although the open redirects on google.com are
known and can be addressed, it meant that any new open redirects (created by
mistake or as part of intended functionality) on any of the allow-listed domains
could serve as a mechanism to bypass our mitigation.

Figure 3: Open-redirect based mitigation avoidance

As a way to reduce false ‘unsafe’ determinations, we introduced mechanisms
where URLs explicitly provided by the user or returned in search results were
marked as ‘safe’ for the purposes of these systems. Figure 4 highlights how false
‘unsafe’ determinations actually end up causing user fatigue. In this case, since
latimes.com so happens is not on our domain allow-list, the user would get a
pop-up, or a warning, letting them know that there might be an issue or they
need to check the URL to continue. An example of a dialog like this is shown in
Figure 5. These changes assisted with the user experience, but did not address
the core issue of finding a strong mechanism to categorize ‘safe’ resources.

5



Figure 4: How false not-’safe’ determinations are made

Figure 5: Example dialog for when a link is not deemed as ‘safe’

Current implementation: dynamic allow-list
To better provide accurate results for user queries, OpenAI runs a search crawler.
This service, similar to that of Google or Bing, searches the internet for websites
and attempts to understand their content. Importantly, the search crawler
is run in an environment that has absolutely no access to user data. As a
result, it is a guarantee that any URL that has been visited by the search
crawler does not leak exact user information. In the example above, http:
//evil.com/whales?unlock=123+Main+Street would never have been visited by
the search crawler as it does not have access to any user’s home address.

To overcome the shortcomings of a static domain allow-list, we have transitioned
to a dynamic allow-list based on the URLs visited by the search crawler service.
The mechanism for determining ‘safety’ of a resource is through comparing

6

http://evil.com/whales?unlock=123+Main+Street
http://evil.com/whales?unlock=123+Main+Street


it exactly to a previously visited URL. If the comparison succeeds, then this
resource can be deemed ‘safe’.

To ensure that the comparison is apt, some canonicalization is necessary for a
URL to always appear identical. The URL https://samplesite.com/path?qu
ery2=123&query1=456 can be expressed in a number of different ways. For
example, https://samplesite.com/path?query1=456&query2=123 refers to
exactly the same resource, but since the order of the query parameters is reversed,
it may not appear to be the same URL. A number of differences like this are
canonicalized away so we can be certain that various URLs absolutely refer to
the same resource.

Figure 6 illustrates how even if portions of an attacker controlled site are indexed
(which hopefully they will be, if they appear on the internet for some amount
of time), this mechanism will continue to prevent data exfiltration by blocking
URLs that haven’t been seen before. Similarly, when articles appear on news
sites, Figure 7 showcases how they will be marked as ‘safe’ and allow ChatGPT
and agents to access their content automatically. Open redirects are no longer
an issue, since even though open redirects can be crawled, they will similarly
not contain any user specific data.

Based on internal analyses, we believe that over 80% of URLs actively being
visited by users can eventually be covered by our search index. Specifically,
these are URLs that aren’t logged in, do not contain session information inside
of them, or do not have any tracking information. Although not perfect, this
would represent a major milestone above the roughly 10% of URLs that could
be considered ‘safe’ based on the original domain allow-list approach described
above.

Figure 6: Final index-based mitigation in an example attack site

7

https://samplesite.com/path?query2=123&query1=456
https://samplesite.com/path?query2=123&query1=456
https://samplesite.com/path?query1=456&query2=123


Figure 7: Index-based mitigation for an article that has previously been crawled
for our search index

Limitations and Open Problems
The first clear limitation is that there will always be some URLs (e.g. those
containing session information) that will not be available on the search index.
There has been some work on finding mechanisms for extending this system
based on additional safety monitors, although this is an area of active research
and development.

Otherwise, although the attack surface is greatly reduced, it is not a fully
comprehensive solution. One attack that we have noted theoretically is
what we’ve called the keyboard attack. This attack type involves the
creation and seeding of a vast number of unique URLs. For example, we
can imagine a website that is a list of all known addresses in the United
States: evil.com/address/1+Main+Street, evil.com/address/2+Main+Street,
evil.com/address/3+Main+Street, . . . evil.com/address/123+Main+Street . . .

By creating something like this and finding ways for it to be crawled by the
search crawler, attackers could launder this list and find a way to get personal
data marked as ‘safe’. The keyboard attack would then use these pre-laundered
URLs to exfiltrate the specific home address of the user.

Practically, this would be a very challenging attack to pull off. There is an
inverse relationship between the number of URLs that would need to be crawled
and the amount of information that could be contained in each URL. Another
case could be where an attacker registers only the letters and numbers - requiring
only 36 separate URLs. For example, they could create evil.com/keyboard/a,
evil.com/keyboard/b, evil.com/keyboard/c, . . . evil.com/keyboard/9, and
evil.com/keyboard/0. Although this may eventually be added to our url index,
this makes the attack more complex, since for the address ‘123 Main Street’,

8

http://evil.com/address/1+Main+Street
http://evil.com/address/2+Main+Street
http://evil.com/address/3+Main+Street
http://evil.com/address/123+Main+Street
http://evil.com/keyboard/a
http://evil.com/keyboard/b
http://evil.com/keyboard/c
http://evil.com/keyboard/9
http://evil.com/keyboard/0


a comparatively short address as these things go, the attacker would require
the model to make 13 separate sequential accesses, which greatly increases the
complexity of the attack and similarly reduces its viability. This is an inher-
ent limitation however, and new strategies could find ways to circumvent our
mechanism for determining that a site is ‘safe’.

Discussion and Future Work
It is very important to be precise about the guarantee provided by this mitigation.
There is no guarantee that the content of a specific resource is ‘safe’ (for example,
that it doesn’t contain prompt injections, or objectionable content). The specific
guarantee provided by this mechanism, which it is quite effective at providing, is
that the loading of a resource will not allow for exfiltration of user data. The
resource itself could still be problematic in some way.

While effective today, this cannot be seen as a fully solved problem. As LLMs
grow more capable, new forms of exfiltration and manipulation may emerge,
necessitating continuous advancement of safeguards. New advancements in
LLMs can introduce heretofore unknown or impossible side-channels, or other
mechanisms through which data can be exfiltrated. Vigilance is necessary to
continue to ascertain the effectiveness of this mitigation. Moreover, we view
these mitigations as compensating controls while model-intrinsic robustness to
web-based prompt injection is still evolving. Just as humans have learned, albeit
imperfectly, to identify phishing and other social engineering tactics, we aim for
LLMs to develop a form of web literacy over time. Until that level of resilience
is achieved, our current policies and mitigations fill the gap, helping models
navigate the web safely. This progression from external safeguards to intrinsic
model understanding is a key area for future research and development. In
addition, educating users about potential risks and providing them with clear,
transparent control over interactions complements these technical mitigations,
reinforcing a safer environment while LLMs continue to mature.

9


	Abstract
	Problem Space

	Threat Model and Assumptions
	Notable Examples of URL-Based Exfiltration
	Mitigation Strategies
	Initial implementation - the domain allowlist
	Current implementation: dynamic allow-list

	Limitations and Open Problems
	Discussion and Future Work

