OpenAl

Al-native
team

Sh ST]
e 4 X~ C
~CO® 0T ® O

- -xc -T | O
N - oo —ai=e
DIl 2 A SH +—~% S
-~ X e X~ Il O®

X XN O QY4 ——~ ~CHC
TO Il OF¥X—~00 +
X0 +—~mao
NGRS | O -
X0O— 0 -0 0 c oo
5 &S o x -xno-oN
RS o N7 W x0— ool O
N X C= - E ©
D X 00~ O X ~HT-HP
eSO 0D cNO—— o+
- LH®— -E | =
iy
-
o

Building an
engineering

How coding agents accelerate the software

development lifecycle

Introduction

Al models are rapidly expanding the range of tasks they can perform, with significant implications
for engineering. Frontier systems now sustain multi-hour reasoning: as of August 2025, METR
found that leading models could complete 2 hours and 17 minutes of continuous work with roughly

50% confidence of producing a correct answer.

This capability is improving quickly, with task length doubling about every seven months. Only a
few years ago, models could manage about 30 seconds of reasoning — enough for small code
suggestions. Today, as models sustain longer chains of reasoning, the entire software development
lifecycle is potentially in scope for Al assistance, enabling coding agents to contribute effectively to

planning, design, development, testing, code reviews, and deployment.

The time-horizon of software engineering tasks different LLMs can complete 50% of the time

Exploit a buffer-overflow
in libiec61850

2 hours

Scrape records from a website
with anti-bot protection

1h 30m+

Fix bugs in small python libraries
1 hour+

Train classifier

Task duration (for humans)
where logistic regression of our data

30 min

predicts the Al has a 50% chance of succeeding

Find fact on web
GPT-2 GPT-3 GPT-35 GPT-4 @

0o--e (] []

@ GPT-5.1-Codex-Max

GPT-5@

Grok 4 @

03 @

o4-mini

Claude Sonnet 4

Claude 3.7 Sonnet @

ol@
(]

T 1 T T T
2020 2021 2022 2023 2024

T
2025

In this guide, we’ll share real examples that outline how Al agents are contributing to the software
development lifecycle with practical guidance on what engineering leaders can do today to start

building Al-native teams and processes.

Building an Al-native engineering team

https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/

Introduction

Al coding: from autocomplete to agents

Al coding tools have progressed far beyond their origins as autocomplete assistants. Early tools
handled quick tasks such as suggesting the next line of code or filling in function templates. As
models gained stronger reasoning abilities, developers began interacting with agents through chat
interfaces in IDEs for pair programming and code exploration.

Today’s coding agents can generate entire files, scaffold new projects, and translate designs into
code. They can reason through multi-step problems such as debugging or refactoring, with agent
execution also now shifting from an individual developer’s machine to cloud-based, multi-agent
environments. This is changing how developers work, allowing them to spend less time generating
code with the agent inside the IDE and more time delegating entire workflows.

Advancement

What it enables

Unified context
across systems

A single model can read code, configuration, and telemetry, providing
consistent reasoning across layers that previously required separate tooling.

Structured tool
execution

Models can now call compilers, test runners, and scanners directly,
producing verifiable results rather than static suggestions.

Persistent project
memory

Long context windows and techniques like compaction allow models to
follow a feature from proposal to deployment, remembering previous design
choices and constraints.

Evaluation loops

Model outputs can be tested automatically against benchmarks—unit tests,
latency targets, or style guides—so improvements are grounded in
measurable quality.

Building an Al-native engineering team

Introduction

At OpenAl, we have witnessed this firsthand. Development cycles have accelerated, with work that
once required weeks now being delivered in days. Teams move more easily across domains,
onboard faster to unfamiliar projects, and operate with greater agility and autonomy across the
organization. Many routine and time-consuming tasks, from documenting new code and surfacing
relevant tests, maintaining dependencies and cleaning up feature flags are now delegated to
Codex entirely.

However, some aspects of engineering remain unchanged. True ownership of code—especially for
new or ambiguous problems—still rests with engineers, and certain challenges exceed the
capabilities of current models. But with coding agents like Codex, engineers can now spend more
time on complex and novel challenges, focusing on design, architecture, and system-level
reasoning rather than debugging or rote implementation.

In the following sections, we break down how each phase of the SDLC changes with coding agents
— and outline the concrete steps your team can take to start operating as an Al-native engineering
org.

4 Building an Al-native engineering team

Plan

Teams across an organization often depend on engineers to determine whether a feature is
feasible, how long it will take to build, and which systems or teams will be involved. While anyone
can draft a specification, forming an accurate plan typically requires deep codebase awareness
and multiple rounds of iteration with engineering to uncover requirements, clarify edge cases, and
align on what is technically realistic.

How coding agents help

Al coding agents give teams immediate, code-aware insights during planning and scoping. For
example, teams may build workflows that connect coding agents to their issue-tracking systems to
read a feature specification, cross-reference it against the codebase, and then flag ambiguities,
break the work into subcomponents, or estimate difficulty.

Coding agents can also instantly trace code paths to show which services are involved in a feature
— work that previously required hours or days of manual digging through a large codebase.

What engineers do instead

Teams spend more time on core feature work because agents surface the context that previously
required meetings for product alignment and scoping. Key implementation details, dependencies,
and edge cases are identified up front, enabling faster decisions with fewer meetings.

Delegate Al agents can take the first pass at feasibility and architectural analysis. They read a
specification, map it to the codebase, identify dependencies, and surface ambiguities
or edge cases that need clarification.

Review Teams review the agent’s findings to validate accuracy, assess completeness, and
ensure estimates reflect real technical constraints. Story point assignment, effort
sizing, and identifying non-obvious risks still require human judgment.

Own Strategic decisions — such as prioritization, long-term direction, sequencing, and
tradeoffs — remain human-led. Teams may ask the agent for options or next steps, but
final responsibility for planning and product direction stays with the organization.

5 Building an Al-native engineering team

Plan

Ge‘t‘t| ng sta rted () Identify common processes that require alignment

X between features and source code. Common areas
CheC kl |St include feature scoping and ticket creation.

Q Begin by implementing basic workflows, for example
tagging and deduplicating issues or feature requests.

O Consider more advanced workflows, like adding sub-
tasks to a ticket based on an initial feature description.
Or kick off an agent run when a ticket reaches a
specific stage to supplement the description with
more details.

6 Building an Al-native engineering team

Design

The design phase is often slowed by foundational setup work. Teams spend significant time wiring
up boilerplate, integrating design systems, and refining Ul components or flows. Misalignment
between mockups and implementation can create rework and long feedback cycles, and limited
bandwidth to explore alternatives or adapt to changing requirements delays design validation.

How coding agents help

Al coding tools dramatically accelerate prototyping by scaffolding boilerplate code, building
project structures, and instantly implementing design tokens or style guides. Engineers can
describe desired features or Ul layouts in natural language and receive prototype code or
component stubs that match the team’s conventions.

They can convert designs directly into code, suggest accessibility improvements, and even analyze
the codebase for user flows or edge cases. This makes it possible to iterate on multiple prototypes
in hours instead of days, and to prototype in high fidelity early, giving teams a clearer basis for
decision-making and enabling customer testing far sooner in the process.

What engineers do instead

With routine setup and translation tasks handled by agents, teams can redirect their attention to
higher-leverage work. Engineers focus on refining core logic, establishing scalable architectural
patterns, and ensuring components meet quality and reliability standards. Designers can spend
more time evaluating user flows and exploring alternative concepts. The collaborative effort shifts
from implementation overhead to improving the underlying product experience.

7 Building an Al-native engineering team

Design

Delegate Agents handle the initial implementation work by scaffolding projects, generating
boilerplate code, translating mockups into components, and applying design tokens or
style guides.

Review The team reviews the agent’s output to ensure components follow design conventions,

meet quality and accessibility standards, and integrate correctly with existing systems.

Own The team owns the overarching design system, UX patterns, architectural decisions,
and the final direction of the user experience.

Getting started
checklist

Use a multi-modal coding agent that accepts
both text and image input

Integrate design tools via MCP with coding
agents

Programmatically expose component
libraries with MCP, and integrate them with
your coding model

Build workflows that map
designs = components =
implementation of components

Utilize typed languages (e.g. Typescript) to
define valid props and subcomponents for
the agent

Building an Al-native engineering team

Build

The build phase is where teams feel the most friction, and where coding agents have the clearest
impact. Engineers spend substantial time translating specs into code structures, wiring services
together, duplicating patterns across the codebase, and filling in boilerplate, with even small
features requiring hours of busy-work.

As systems grow, this friction compounds. Large monorepos accumulate patterns, conventions,
and historical quirks that slow contributors down. Engineers can spend as much time rediscovering
the “right way” to do something as implementing the feature itself. Constant context switching
between specs, code search, build errors, test failures, and dependency management adds
cognitive load — and interruptions during long-running tasks break flow and delay delivery further.

How coding agents help

Coding agents running in the IDE and CLI accelerate the build phase by handling larger, multi-step
implementation tasks. Rather than producing just the next function or file, they can produce full
features end-to-end — data models, APIs, Ul components, tests, and documentation — in a single
coordinated run. With sustained reasoning across the entire codebase, they handle decisions that
once required engineers to manually trace code paths.

With long-running tasks, agents can:

- Draft entire feature implementations + Fix build errors as they appear rather than
based on a written spec. pausing for human intervention.

- Search and modify code across dozens of + Write tests alongside implementation as
files while maintaining consistency. part of a single workflow.

- Generate boilerplate that matches + Produce diff-ready changesets that follow
conventions: error handling, telemetry, internal guidelines and include PR
security wrappers, or style patterns. messages.

In practice, this shifts much of the mechanical “build work” from engineers to agents. The agent
becomes the first-pass implementer; the engineer becomes the reviewer, editor, and source of
direction.

9 Building an Al-native engineering team

Build

What engineers do instead

When agents can reliably execute multi-step build tasks, engineers shift their attention to higher-
order work:

+ Clarifying product behavior, edge cases, - Designing patterns, guardrails, and
and specs before implementation. conventions that guide agent-generated
code.
+ Reviewing architectural implications of Al-
generated code instead of performing rote - Collaborating with PMs and design to
wiring. iterate on feature intent, not boilerplate.

+ Refining business logic and performance-
critical paths that require deep domain
reasoning.

Instead of “translating” a feature spec into code, engineers concentrate on correctness, coherence,
maintainability, and long-term quality, areas where human context still matters most.

Delegate Agents draft the first implementation pass for well-specified features — scaffolding,
CRUD logic, wiring, refactors, and tests. As long-running reasoning improves, this
increasingly covers full end-to-end builds rather than isolated snippets.

Review Engineers assess design choices, performance, security, migration risk, and domain
alignment while correcting subtle issues the agent may miss. They shape and refine Al-
generated code rather than performing the mechanical work.

Own Engineers retain ownership of work requiring deep system intuition: new abstractions,
cross-cutting architectural changes, ambiguous product requirements, and long-term
maintainability trade-offs. As agents take on longer tasks, engineering shifts from line-
by-line implementation to

10 Building an Al-native engineering team

Build

Example

Getting started

checklist

Engineers, PMs, designers, and operators at Cloudwalk use Codex daily to turn
specs into working code whether they need a script, a new fraud rule, or a full
microservice delivered in minutes. It removes the busy work from the build
phase and gives every employee the power to implement ideas at remarkable

speed.

O

O

Start with well specified tasks

Have the agent use a planning tool via MCP,
or by writing a PLAN.md file that is
committed to the codebase

Check that the commands the agent
attempts to execute are succeeding

Iterate on an AGENTS.md file that unlocks
agentic loops like running tests and linters to
receive feedback

Building an Al-native engineering team

Test

Developers often struggle to ensure adequate test coverage because writing and maintaining
comprehensive tests takes time, requires context switching, and deep understanding of edge
cases. Teams frequently face trade-offs between moving fast and writing thorough tests. When
deadlines loom, test coverage is often the first thing to suffer.

Even when tests are written, keeping them updated as code evolves introduces ongoing friction.
Tests can become brittle, fail for unclear reasons, and can require their own major refactors as the
underlying product changes. High quality tests let teams ship faster with more confidence.

How coding agents help

Al coding tools can help developers author better tests in several powerful ways. First, they can
suggest test cases based on reading a requirements document and the logic of the feature code.
Models can be surprisingly good at suggesting edge cases and failure modes that may be easy for
a developer to overlook, especially when they have been deeply focused on the feature and need a
second opinion.

In addition, models can help tests up to date as code evolves, reducing the friction of refactoring
and avoiding stale tests that become flaky. By handling the basic implementation details of test
writing and surfacing edge cases, coding agents accelerate the process of developing tests.

What engineers do instead

Writing tests with Al tools doesn’t remove the need for developers to think about testing. In fact, as
agents remove barriers to generating code, tests serve a more and more important function as a
source of truth for application functionality. Since agents can run the test suite and iterate based
on the output, defining high quality tests is often the first step to allowing an agent to build a
feature.

Instead, developers focus more on seeing the high level patterns in test coverage, building on and
challenging the model’s identification of test cases. Making test writing faster allows developers to
ship features more quickly and also take on more ambitious features.

12 Building an Al-native engineering team

Test

Delegate

Engineers will delegate the initial pass at generating test cases based on feature
specifications. They’ll also use the model to take a first pass at generating tests. It can
be helpful to have the model generate tests in a separate session from the feature
implementation.

Review

Engineers must still thoroughly review model-generated tests to ensure that the model
did not take shortcuts or implement stubbed tests. Engineers also ensure that tests
are runnable by their agents; that the agent has the appropriate permissions to run,
and that the agent has context awareness of the different test suites it can run.

Own

Engineers own aligning test coverage with feature specifications and user experience
expectations. Adversarial thinking, creativity in mapping edge cases, and focus on
intent of the tests remain critical skills.

Gettl ng Sta rted O Guide the model to implement tests as a

separate step, and validate that new tests

CheC kl |St fail before moving to feature implementation.

Set guidelines for test coverage in your
AGENTS.md file

Give the agent specific examples of code

coverage tools it can call to understand
test coverage

Building an Al-native engineering team

Review

On average, developers spend 2-5 hours per week conducting code reviews. Teams often face a
choice between investing significant time in a deep review or doing a quick “good enough” pass for
changes that seem small. When this prioritization is off, bugs slip into production, causing issues
for users and creating substantial rework.

How coding agents help

Coding agents allow the code review process to scale so every PR receives a consistent baseline of
attention. Unlike traditional static analysis tools (which rely on pattern matching and rule-based
checks) Al reviewers can actually execute parts of the code, interpret runtime behavior, and trace
logic across files and services. To be effective, however, models must be trained specifically to
identify PO and P1-level bugs, and tuned to provide concise, high-signal feedback; overly verbose
responses are ignored just as easily as noisy lint warnings.

What engineers do instead

At OpenAl, we find that Al code review gives engineers more confidence that they are not shipping
major bugs into production. Frequently, code review will catch issues that the contributor can
correct before pulling in another engineer. Code review doesn’t necessarily make the pull request
process faster, especially if it finds meaningful bugs - but it does prevent defects and outages.

Delegate vs. review vs. own

Even with Al code review, engineers are still responsible for ensuring that the code is ready to ship.
Practically, this means reading and understanding the implications of the change. Engineers
delegate the initial code review to an agent, but own the final review and merge process.

14 Building an Al-native engineering team

Review

Delegate Engineers delegate the initial coding review to agents. This may happen multiple times
before the pull request is marked as ready for review by a teammate.

Review Engineers still review pull requests, but with more of an emphasis on architectural
alignment; are composable patterns being implemented, are the correct conventions
being used, does the functionality match requirements.

Own Engineers ultimately own the code that is deployed to production; they must ensure it
functions reliably and fulfills the intended requirements.

Example Sansan uses Codex review for race conditions and database relations, which
are issues humans often overlook. Codex has also been able to catch improper
hard-coding and even anticipates future scalability concerns.

Getting started
checklist

O Curate examples of gold-standard PRs that have

been conducted by engineers including both the
code changes and comments left. Save this as
an evaluation set to measure different tools.

Select a product that has a model specifically
trained on code review. We’ve found that
generalized models often nitpick and provide a
low signal to noise ratio.

Define how your team will measure whether
reviews are high quality. We recommend tracking
PR comment reactions as a low-friction way to
mark good and bad reviews.

Start small but rollout quickly once you gain
confidence in the results of reviews.

Building an Al-native engineering team

Document

Most engineering teams know their documentation is behind, but find catching up costly. Critical
knowledge is often held by individuals rather than captured in searchable knowledge bases, and
existing docs quickly go stale because updating them pulls engineers away from product work.
And even when teams run documentation sprints, the result is usually a one-off effort that decays
as soon as the system evolves.

How coding agents help

Coding agents are highly capable of summarizing functionality based on reading codebases. Not
only can they write about how parts of the codebase work, but they can also generate system
diagrams in syntaxes like mermaid. As developers build features with agents, they can also update
documentation simply by prompting the model. With AGENTS.md, instructions to update
documentation as needed can be automatically included with every prompt for more consistency.

Since coding agents can be run programmatically through SDKs, they can also be incorporated
into release workflows. For example, we can ask a coding agent to review commits being included
in the release and summarize key changes. The result is that documentation becomes a built-in
part of the delivery pipeline: faster to produce, easier to keep current, and no longer dependent on
someone “finding the time.”

What engineers do instead

Engineers move from writing every doc by hand to shaping and supervising the system. They
decide how docs are organized, add the important “why” behind decisions, set clear standards and
templates for agents to follow, and review the critical or customer-facing pieces. Their job becomes
making sure documentation is structured, accurate, and wired into the delivery process rather than
doing all the typing themselves.

16 Building an Al-native engineering team

Document

Delegate Fully hand off low-risk, repetitive work to Codex like first-pass summaries of files and
modules, basic descriptions of inputs and outputs, dependency lists, and short
summaries of pull-request changes.

Review Engineers review and edit important docs drafted by Codex like overviews of core
services, public APl and SDK docs, runbooks, and architecture pages, before anything
is published.

Own Engineers remain responsible for overall documentation strategy and structure,

standards and templates the agent follows, and all external-facing or safety-critical
documentation involving legal, regulatory, or brand risk.

Experiment with documentation generation by
prompting the coding agent

Getting started
checklist

Incorporate documentation guidelines into your
AGENTS.md

Identify workflows (e.g. release cycles) where
documentation can be automatically generated

o O 0O O

Review generated content for quality,
correctness, and focus

17 Building an Al-native engineering team

Deploy & maintain

Understanding application logging is critical to software reliability. During an incident, software
engineers will reference logging tools, code deploys, and infrastructure changes to identify a root
cause. This process is often surprisingly manual and requires developers to tab back and forth
between different systems, costing critical minutes in high pressure situations like incidents.

How coding agents help

With Al coding tools, you can provide access to your logging tools via MCP servers in addition to
the context of your codebase. This allows developers to have a single workflow where they can
prompt the model to look at errors for a specific endpoint, and then the model can use that context
to traverse the codebase and find relevant bugs or performance issues. Since coding agents can
also use command line tools, they can look at the git history to identify specific changes that might
result in issues captured in log traces.

What engineers do instead

By automating the tedious aspects of log analysis and incident triage, Al enables engineers to
concentrate on higher-level troubleshooting and system improvement. Rather than manually
correlating logs, commits, and infrastructure changes, engineers can focus on validating Al-
generated root causes, designing resilient fixes, and developing preventative measures.This shift
reduces time spent on reactive firefighting, allowing teams to invest more energy in proactive
reliability engineering and architectural improvements.

Delegate Many operational tasks can be delegated to agents — parsing logs, surfacing
anomalous metrics, identifying suspect code changes, and even proposing hotfixes.

Review Engineers vet and refine Al-generated diagnostics, confirm accuracy, and approve
remediation steps. They ensure fixes meet reliability, security, and compliance
standards.

Own Critical decisions stay with engineers, especially for novel incidents, sensitive

production changes, or situations where model confidence is low. Humans remain
responsible for judgment and final sign-off.

18 Building an Al-native engineering team

Deploy & maintain

Example

Virgin Atlantic uses Codex to strengthen how teams deploy and maintain their

systems. The Codex VS Code Extension gives engineers a single place to
investigate logs, trace issues across code and data, and review changes
through Azure DevOps MCP and Databricks Managed MCPs. By unifying this
operational context inside the IDE, Codex speeds up root cause discovery,
reduces manual triage, and helps teams focus on validating fixes and improving

system reliability.

Getting started checklist

Q Connect Al tools to logging and

deployment systems: Integrate Codex
CLI or similar with your MCP servers and
log aggregators.

Define access scopes and permissions:
Ensure agents can access relevant logs,
code repositories, and deployment
histories, while maintaining security
best practices.

Configure prompt templates: Create
reusable prompts for common
operational queries, such as “Investigate
errors for endpoint X” or “Analyze log
spikes post-deploy.”

Q Test the workflow: Run simulated incident
scenarios to ensure the Al surfaces
correct context, traces code accurately,
and proposes actionable diagnostics.

Q Iterate and improve: Collect feedback
from real incidents, tune prompt
strategies, and expand agent capabilities
as your systems and processes evolve.

Building an Al-native engineering team

Conclusion

Coding agents are transforming the software development lifecycle by taking on the mechanical,
multi-step work that has traditionally slowed engineering teams down. With sustained reasoning,
unified codebase context, and the ability to execute real tools, these agents now handle tasks
ranging from scoping and prototyping to implementation, testing, review, and even operational
triage. Engineers stay firmly in control of architecture, product intent, and quality — but coding
agents increasingly serve as the first-pass implementer and continuous collaborator across every
phase of the SDLC.

This shift doesn’t require a radical overhaul; small, targeted workflows compound quickly as
coding agents become more capable and reliable. Teams that start with well-scoped tasks, invest
in guardrails, and iteratively expand agent responsibility see meaningful gains in speed,
consistency, and developer focus.

If you’re exploring how coding agents can accelerate your organization or preparing for your first
deployment, reach out to OpenAl. We’re here to help you turn coding agents into real leverage—
designing end-to-end workflows across planning, design, build, test, review, and operations, and
helping your team adopt production-ready patterns that make Al-native engineering a reality.

20 Building an Al-native engineering team

