
Building an AI-native 
engineering team

How coding agents accelerate the software 
development lifecycle



Introduction

AI models are rapidly expanding the range of tasks they can perform, with significant implications 
for engineering. Frontier systems now sustain multi-hour reasoning: as of August 2025, METR 
found that leading models could complete 2 hours and 17 minutes of continuous work with roughly 
50% confidence of producing a correct answer.


This capability is improving quickly, with task length doubling about every seven months. Only a 
few years ago, models could manage about 30 seconds of reasoning – enough for small code 
suggestions. Today, as models sustain longer chains of reasoning, the entire software development 
lifecycle is potentially in scope for AI assistance, enabling coding agents to contribute effectively to 
planning, design, development, testing, code reviews, and deployment.

The time-horizon of software engineering tasks different LLMs can complete 50% of the time

METR, Measuring AI Ability to Complete Long Tasks

In this guide, we’ll share real examples that outline how AI agents are contributing to the software 
development lifecycle with practical guidance on what engineering leaders can do today to start 
building AI-native teams and processes. 

2 Building an AI-native engineering team

https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/


Introduction

AI coding: from autocomplete to agents

AI coding tools have progressed far beyond their origins as autocomplete assistants. Early tools 
handled quick tasks such as suggesting the next line of code or filling in function templates. As 
models gained stronger reasoning abilities, developers began interacting with agents through chat 
interfaces in IDEs for pair programming and code exploration.


Today’s coding agents can generate entire files, scaffold new projects, and translate designs into 
code. They can reason through multi-step problems such as debugging or refactoring, with agent 
execution also now shifting from an individual developer’s machine to cloud-based, multi-agent 
environments. This is changing how developers work, allowing them to spend less time generating 
code with the agent inside the IDE and more time delegating entire workflows. 

Advancement What it enables

Unified context 
across systems

A single model can read code, configuration, and telemetry, providing 
consistent reasoning across layers that previously required separate tooling.

Structured tool 
execution

Models can now call compilers, test runners, and scanners directly, 
producing verifiable results rather than static suggestions.

Persistent project 
memory

Long context windows and techniques like compaction allow models to 
follow a feature from proposal to deployment, remembering previous design 
choices and constraints.

Evaluation loops Model outputs can be tested automatically against benchmarks—unit tests, 
latency targets, or style guides—so improvements are grounded in 
measurable quality.

3 Building an AI-native engineering team



Introduction

At OpenAI, we have witnessed this firsthand. Development cycles have accelerated, with work that 
once required weeks now being delivered in days. Teams move more easily across domains, 
onboard faster to unfamiliar projects, and operate with greater agility and autonomy across the 
organization. Many routine and time-consuming tasks, from documenting new code and surfacing 
relevant tests, maintaining dependencies and cleaning up feature flags are now delegated to 
Codex entirely. 


However, some aspects of engineering remain unchanged. True ownership of code—especially for 
new or ambiguous problems—still rests with engineers, and certain challenges exceed the 
capabilities of current models. But with coding agents like Codex, engineers can now spend more 
time on complex and novel challenges, focusing on design, architecture, and system-level 
reasoning rather than debugging or rote implementation. 


In the following sections, we break down how each phase of the SDLC changes with coding agents 
— and outline the concrete steps your team can take to start operating as an AI-native engineering 
org.

4 Building an AI-native engineering team



Plan
Teams across an organization often depend on engineers to determine whether a feature is 
feasible, how long it will take to build, and which systems or teams will be involved. While anyone 
can draft a specification, forming an accurate plan typically requires deep codebase awareness 
and multiple rounds of iteration with engineering to uncover requirements, clarify edge cases, and 
align on what is technically realistic.

How coding agents help
AI coding agents give teams immediate, code-aware insights during planning and scoping. For 
example, teams may build workflows that connect coding agents to their issue-tracking systems to 
read a feature specification, cross-reference it against the codebase, and then flag ambiguities, 
break the work into subcomponents, or estimate difficulty.


Coding agents can also instantly trace code paths to show which services are involved in a feature 
— work that previously required hours or days of manual digging through a large codebase.

What engineers do instead
Teams spend more time on core feature work because agents surface the context that previously 
required meetings for product alignment and scoping. Key implementation details, dependencies, 
and edge cases are identified up front, enabling faster decisions with fewer meetings.

Delegate AI agents can take the first pass at feasibility and architectural analysis. They read a 
specification, map it to the codebase, identify dependencies, and surface ambiguities 
or edge cases that need clarification.

Review Teams review the agent’s findings to validate accuracy, assess completeness, and 
ensure estimates reflect real technical constraints. Story point assignment, effort 
sizing, and identifying non-obvious risks still require human judgment.

Own Strategic decisions — such as prioritization, long-term direction, sequencing, and 
tradeoffs — remain human-led. Teams may ask the agent for options or next steps, but 
final responsibility for planning and product direction stays with the organization.

5 Building an AI-native engineering team



Plan

Getting started 
checklist

Identify common processes that require alignment 
between features and source code. Common areas 
include feature scoping and ticket creation.

Begin by implementing basic workflows, for example 
tagging and deduplicating issues or feature requests.

Consider more advanced workflows, like adding sub-
tasks to a ticket based on an initial feature description. 
Or kick off an agent run when a ticket reaches a 
specific stage to supplement the description with 
more details.

6 Building an AI-native engineering team



Design
The design phase is often slowed by foundational setup work. Teams spend significant time wiring 
up boilerplate, integrating design systems, and refining UI components or flows. Misalignment 
between mockups and implementation can create rework and long feedback cycles, and limited 
bandwidth to explore alternatives or adapt to changing requirements delays design validation.

How coding agents help
AI coding tools dramatically accelerate prototyping by scaffolding boilerplate code, building 
project structures, and instantly implementing design tokens or style guides. Engineers can 
describe desired features or UI layouts in natural language and receive prototype code or 
component stubs that match the team’s conventions.


They can convert designs directly into code, suggest accessibility improvements, and even analyze 
the codebase for user flows or edge cases. This makes it possible to iterate on multiple prototypes 
in hours instead of days, and to prototype in high fidelity early, giving teams a clearer basis for 
decision-making and enabling customer testing far sooner in the process.

What engineers do instead
With routine setup and translation tasks handled by agents, teams can redirect their attention to 
higher-leverage work. Engineers focus on refining core logic, establishing scalable architectural 
patterns, and ensuring components meet quality and reliability standards. Designers can spend 
more time evaluating user flows and exploring alternative concepts. The collaborative effort shifts 
from implementation overhead to improving the underlying product experience.

7 Building an AI-native engineering team



Design

Delegate Agents handle the initial implementation work by scaffolding projects, generating 
boilerplate code, translating mockups into components, and applying design tokens or 
style guides.

Review The team reviews the agent’s output to ensure components follow design conventions, 
meet quality and accessibility standards, and integrate correctly with existing systems.

Own The team owns the overarching design system, UX patterns, architectural decisions, 
and the final direction of the user experience.

Getting started 
checklist

Use a multi-modal coding agent that accepts 
both text and image input 

Integrate design tools via MCP with coding 
agents

Programmatically expose component 
libraries with MCP, and integrate them with 
your coding model

Build workflows that map  
designs → components →  
implementation of components

Utilize typed languages (e.g. Typescript) to 
define valid props and subcomponents for 
the agent

8 Building an AI-native engineering team



Build
The build phase is where teams feel the most friction, and where coding agents have the clearest 
impact. Engineers spend substantial time translating specs into code structures, wiring services 
together, duplicating patterns across the codebase, and filling in boilerplate, with even small 
features requiring hours of busy-work.


As systems grow, this friction compounds. Large monorepos accumulate patterns, conventions, 
and historical quirks that slow contributors down. Engineers can spend as much time rediscovering 
the “right way” to do something as implementing the feature itself. Constant context switching 
between specs, code search, build errors, test failures, and dependency management adds 
cognitive load — and interruptions during long-running tasks break flow and delay delivery further.

How coding agents help
Coding agents running in the IDE and CLI accelerate the build phase by handling larger, multi-step 
implementation tasks. Rather than producing just the next function or file, they can produce full 
features end-to-end — data models, APIs, UI components, tests, and documentation — in a single 
coordinated run. With sustained reasoning across the entire codebase, they handle decisions that 
once required engineers to manually trace code paths.


With long-running tasks, agents can:

Draft entire feature implementations 
based on a written spec.


Search and modify code across dozens of 
files while maintaining consistency.


Generate boilerplate that matches 
conventions: error handling, telemetry, 
security wrappers, or style patterns.

Fix build errors as they appear rather than 
pausing for human intervention.


Write tests alongside implementation as 
part of a single workflow.


Produce diff-ready changesets that follow 
internal guidelines and include PR 
messages.

In practice, this shifts much of the mechanical “build work” from engineers to agents. The agent 
becomes the first-pass implementer; the engineer becomes the reviewer, editor, and source of 
direction.

9 Building an AI-native engineering team



Build

What engineers do instead
When agents can reliably execute multi-step build tasks, engineers shift their attention to higher-
order work:

Clarifying product behavior, edge cases, 
and specs before implementation.


Reviewing architectural implications of AI-
generated code instead of performing rote 
wiring.


Refining business logic and performance-
critical paths that require deep domain 
reasoning.

Designing patterns, guardrails, and 
conventions that guide agent-generated 
code.


Collaborating with PMs and design to 
iterate on feature intent, not boilerplate.

Instead of “translating” a feature spec into code, engineers concentrate on correctness, coherence, 
maintainability, and long-term quality, areas where human context still matters most.

Delegate Agents draft the first implementation pass for well-specified features — scaffolding, 
CRUD logic, wiring, refactors, and tests. As long-running reasoning improves, this 
increasingly covers full end-to-end builds rather than isolated snippets.

Review Engineers assess design choices, performance, security, migration risk, and domain 
alignment while correcting subtle issues the agent may miss. They shape and refine AI-
generated code rather than performing the mechanical work.

Own Engineers retain ownership of work requiring deep system intuition: new abstractions, 
cross-cutting architectural changes, ambiguous product requirements, and long-term 
maintainability trade-offs. As agents take on longer tasks, engineering shifts from line-
by-line implementation to 

10 Building an AI-native engineering team



Build

Example Engineers, PMs, designers, and operators at Cloudwalk use Codex daily to turn 
specs into working code whether they need a script, a new fraud rule, or a full 
microservice delivered in minutes. It removes the busy work from the build 
phase and gives every employee the power to implement ideas at remarkable 
speed.

Getting started 
checklist

Start with well specified tasks

Have the agent use a planning tool via MCP, 
or by writing a PLAN.md file that is 
committed to the codebase

Check that the commands the agent 
attempts to execute are succeeding

Iterate on an AGENTS.md file that unlocks 
agentic loops like running tests and linters to 
receive feedback

11 Building an AI-native engineering team



Test 
Developers often struggle to ensure adequate test coverage because writing and maintaining 
comprehensive tests takes time, requires context switching, and deep understanding of edge 
cases. Teams frequently face trade-offs between moving fast and writing thorough tests. When 
deadlines loom, test coverage is often the first thing to suffer.


Even when tests are written, keeping them updated as code evolves introduces ongoing friction. 
Tests can become brittle, fail for unclear reasons, and can require their own major refactors as the 
underlying product changes. High quality tests let teams ship faster with more confidence.

How coding agents help
AI coding tools can help developers author better tests in several powerful ways. First, they can 
suggest test cases based on reading a requirements document and the logic of the feature code. 
Models can be surprisingly good at suggesting edge cases and failure modes that may be easy for 
a developer to overlook, especially when they have been deeply focused on the feature and need a 
second opinion.


In addition, models can help tests up to date as code evolves, reducing the friction of refactoring 
and avoiding stale tests that become flaky. By handling the basic implementation details of test 
writing and surfacing edge cases, coding agents accelerate the process of developing tests.

What engineers do instead
Writing tests with AI tools doesn’t remove the need for developers to think about testing. In fact, as 
agents remove barriers to generating code, tests serve a more and more important function as a 
source of truth for application functionality. Since agents can run the test suite and iterate based 
on the output, defining high quality tests is often the first step to allowing an agent to build a 
feature.


Instead, developers focus more on seeing the high level patterns in test coverage, building on and 
challenging the model’s identification of test cases. Making test writing faster allows developers to 
ship features more quickly and also take on more ambitious features.

12 Building an AI-native engineering team



Test

Delegate Engineers will delegate the initial pass at generating test cases based on feature 
specifications. They’ll also use the model to take a first pass at generating tests. It can 
be helpful to have the model generate tests in a separate session from the feature 
implementation.

Review Engineers must still thoroughly review model-generated tests to ensure that the model 
did not take shortcuts or implement stubbed tests. Engineers also ensure that tests 
are runnable by their agents; that the agent has the appropriate permissions to run, 
and that the agent has context awareness of the different test suites it can run.

Own Engineers own aligning test coverage with feature specifications and user experience 
expectations. Adversarial thinking, creativity in mapping edge cases, and focus on 
intent of the tests remain critical skills.

Getting started 
checklist

Guide the model to implement tests as a 
separate step, and validate that new tests  
fail before moving to feature implementation.

Set guidelines for test coverage in your 
AGENTS.md file

Give the agent specific examples of code 
coverage tools it can call to understand  
test coverage

13 Building an AI-native engineering team



Review
On average, developers spend 2–5 hours per week conducting code reviews. Teams often face a 
choice between investing significant time in a deep review or doing a quick “good enough” pass for 
changes that seem small. When this prioritization is off, bugs slip into production, causing issues 
for users and creating substantial rework.

How coding agents help
Coding agents allow the code review process to scale so every PR receives a consistent baseline of 
attention. Unlike traditional static analysis tools (which rely on pattern matching and rule-based 
checks) AI reviewers can actually execute parts of the code, interpret runtime behavior, and trace 
logic across files and services. To be effective, however, models must be trained specifically to 
identify P0 and P1-level bugs, and tuned to provide concise, high-signal feedback; overly verbose 
responses are ignored just as easily as noisy lint warnings.

What engineers do instead
At OpenAI, we find that AI code review gives engineers more confidence that they are not shipping 
major bugs into production. Frequently, code review will catch issues that the contributor can 
correct before pulling in another engineer. Code review doesn’t necessarily make the pull request 
process faster, especially if it finds meaningful bugs – but it does prevent defects and outages.

Delegate vs. review vs. own
Even with AI code review, engineers are still responsible for ensuring that the code is ready to ship. 
Practically, this means reading and understanding the implications of the change. Engineers 
delegate the initial code review to an agent, but own the final review and merge process.

14 Building an AI-native engineering team



Review

Delegate Engineers delegate the initial coding review to agents. This may happen multiple times 
before the pull request is marked as ready for review by a teammate.

Review Engineers still review pull requests, but with more of an emphasis on architectural 
alignment; are composable patterns being implemented, are the correct conventions 
being used, does the functionality match requirements. 

Own Engineers ultimately own the code that is deployed to production; they must ensure it 
functions reliably and fulfills the intended requirements.

Example Sansan uses Codex review for race conditions and database relations, which 
are issues humans often overlook. Codex has also been able to catch improper 
hard-coding and even anticipates future scalability concerns. 

Getting started 
checklist

Curate examples of gold-standard PRs that have 
been conducted by engineers including both the 
code changes and comments left. Save this as 
an evaluation set to measure different tools.

Select a product that has a model specifically 
trained on code review. We’ve found that 
generalized models often nitpick and provide a 
low signal to noise ratio.

Define how your team will measure whether 
reviews are high quality. We recommend tracking 
PR comment reactions as a low-friction way to 
mark good and bad reviews.

Start small but rollout quickly once you gain 
confidence in the results of reviews.

15 Building an AI-native engineering team



Document
Most engineering teams know their documentation is behind, but find catching up costly. Critical 
knowledge is often held by individuals rather than captured in searchable knowledge bases, and 
existing docs quickly go stale because updating them pulls engineers away from product work. 
And even when teams run documentation sprints, the result is usually a one-off effort that decays 
as soon as the system evolves.

How coding agents help
Coding agents are highly capable of summarizing functionality based on reading codebases. Not 
only can they write about how parts of the codebase work, but they can also generate system 
diagrams in syntaxes like mermaid. As developers build features with agents, they can also update 
documentation simply by prompting the model. With AGENTS.md, instructions to update 
documentation as needed can be automatically included with every prompt for more consistency.


Since coding agents can be run programmatically through SDKs, they can also be incorporated 
into release workflows. For example, we can ask a coding agent to review commits being included 
in the release and summarize key changes. The result is that documentation becomes a built-in 
part of the delivery pipeline: faster to produce, easier to keep current, and no longer dependent on 
someone “finding the time.”

What engineers do instead
Engineers move from writing every doc by hand to shaping and supervising the system. They 
decide how docs are organized, add the important “why” behind decisions, set clear standards and 
templates for agents to follow, and review the critical or customer-facing pieces. Their job becomes 
making sure documentation is structured, accurate, and wired into the delivery process rather than 
doing all the typing themselves.

16 Building an AI-native engineering team



Document

Delegate Fully hand off low-risk, repetitive work to Codex like first-pass summaries of files and 
modules, basic descriptions of inputs and outputs, dependency lists, and short 
summaries of pull-request changes.

Review Engineers review and edit important docs drafted by Codex like overviews of core 
services, public API and SDK docs, runbooks, and architecture pages, before anything 
is published.

Own Engineers remain responsible for overall documentation strategy and structure, 
standards and templates the agent follows, and all external-facing or safety-critical 
documentation involving legal, regulatory, or brand risk.

Getting started 
checklist

Experiment with documentation generation by 
prompting the coding agent

Incorporate documentation guidelines into your 
AGENTS.md

Identify workflows (e.g. release cycles) where 
documentation can be automatically generated

Review generated content for quality, 
correctness, and focus

17 Building an AI-native engineering team



Deploy & maintain
Understanding application logging is critical to software reliability. During an incident, software 
engineers will reference logging tools, code deploys, and infrastructure changes to identify a root 
cause. This process is often surprisingly manual and requires developers to tab back and forth 
between different systems, costing critical minutes in high pressure situations like incidents.

How coding agents help
With AI coding tools, you can provide access to your logging tools via MCP servers in addition to 
the context of your codebase. This allows developers to have a single workflow where they can 
prompt the model to look at errors for a specific endpoint, and then the model can use that context 
to traverse the codebase and find relevant bugs or performance issues. Since coding agents can 
also use command line tools, they can look at the git history to identify specific changes that might 
result in issues captured in log traces.

What engineers do instead
By automating the tedious aspects of log analysis and incident triage, AI enables engineers to 
concentrate on higher-level troubleshooting and system improvement. Rather than manually 
correlating logs, commits, and infrastructure changes, engineers can focus on validating AI-
generated root causes, designing resilient fixes, and developing preventative measures.This shift 
reduces time spent on reactive firefighting, allowing teams to invest more energy in proactive 
reliability engineering and architectural improvements.

Delegate Many operational tasks can be delegated to agents — parsing logs, surfacing 
anomalous metrics, identifying suspect code changes, and even proposing hotfixes.

Review Engineers vet and refine AI-generated diagnostics, confirm accuracy, and approve 
remediation steps. They ensure fixes meet reliability, security, and compliance 
standards.

Own Critical decisions stay with engineers, especially for novel incidents, sensitive 
production changes, or situations where model confidence is low. Humans remain 
responsible for judgment and final sign-off.

18 Building an AI-native engineering team



Deploy & maintain

Example Virgin Atlantic uses Codex to strengthen how teams deploy and maintain their 
systems. The Codex VS Code Extension gives engineers a single place to 
investigate logs, trace issues across code and data, and review changes 
through Azure DevOps MCP and Databricks Managed MCPs. By unifying this 
operational context inside the IDE, Codex speeds up root cause discovery, 
reduces manual triage, and helps teams focus on validating fixes and improving 
system reliability.

Getting started checklist
Connect AI tools to logging and 
deployment systems: Integrate Codex 
CLI or similar with your MCP servers and 
log aggregators.

Define access scopes and permissions: 
Ensure agents can access relevant logs, 
code repositories, and deployment 
histories, while maintaining security 
best practices.

Configure prompt templates: Create 
reusable prompts for common 
operational queries, such as “Investigate 
errors for endpoint X” or “Analyze log 
spikes post-deploy.”

Test the workflow: Run simulated incident 
scenarios to ensure the AI surfaces 
correct context, traces code accurately, 
and proposes actionable diagnostics.

Iterate and improve: Collect feedback 
from real incidents, tune prompt 
strategies, and expand agent capabilities 
as your systems and processes evolve.

19 Building an AI-native engineering team



Conclusion

Coding agents are transforming the software development lifecycle by taking on the mechanical, 
multi-step work that has traditionally slowed engineering teams down. With sustained reasoning, 
unified codebase context, and the ability to execute real tools, these agents now handle tasks 
ranging from scoping and prototyping to implementation, testing, review, and even operational 
triage. Engineers stay firmly in control of architecture, product intent, and quality — but coding 
agents increasingly serve as the first-pass implementer and continuous collaborator across every 
phase of the SDLC.


This shift doesn’t require a radical overhaul; small, targeted workflows compound quickly as 
coding agents become more capable and reliable. Teams that start with well-scoped tasks, invest 
in guardrails, and iteratively expand agent responsibility see meaningful gains in speed, 
consistency, and developer focus. 


If you’re exploring how coding agents can accelerate your organization or preparing for your first 
deployment, reach out to OpenAI. We’re here to help you turn coding agents into real leverage—
designing end-to-end workflows across planning, design, build, test, review, and operations, and 
helping your team adopt production-ready patterns that make AI-native engineering a reality.

20 Building an AI-native engineering team


