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Abstract

Energy based models (EBMs) are appealing due to their generality and simplicity in
likelihood modeling, but have been traditionally difficult to train. We present tech-
niques to scale EBM training through a MCMC framework to modern architectures.
We show that MCMC sampling on EBMs generate significantly better samples than
other likelihood models (with significantly lower generation cost and parameters),
so much so that they are competitive with GANs. We show that EBMs are good
likelihood models, able to both reliably restore test CIFAR-10 images and inter-
convert between classes of CIFAR-10 images. Finally show that EBMs generalize
well. On CIFAR10, we achieve better out of distribution generalization than other
state of the art generative models (such as assigning high likelihood to CIFAR-10
images than SVHN images). For time series modeling, EBMs generalize much bet-
ter for long term time series prediction than corresponding feed-forward networks.
Compositionaly, we find EBMs generalize to effectively generate samples when
jointly conditioned on independent conditional EBMs for different latents.

1 Introduction

Two fundamental problems with deep learning are data efficiency and out of distribution generaliza-
tion. Generative models capture world knowledge and enable faster learning by fine-tuning existing
features. Furthermore, by learning to model to both likely and unlikely regions of data, generative
modeling are less prone to catastrophical failure in out of distribution cases.

Generative modeling has seen a flux of interest. Many approaches reply on directly maximizing the
likelihood. Modeling a correlated high dimensional data distribution is difficult. Auto-regressive
models [Van Oord et al., 2016, Graves, 2013] solve this by completely factorizing the underlying
distribution, but such an approach leads to accumulation of error and dispersal of underlying structural
information. Other approaches such as the variational auto-encoder [Kingma and Welling, 2014] or
flow based models [Dinh et al., 2014, Kingma and Dhariwal, 2018] rely on a factorized prior distri-
bution to simplify likelihood estimation. Flow models require invertible Jacobian transformations,
which limits model capacity and have difficulty fitting discontinuous data. Such approximations have
prevented likelihood models from generating high quality images in diverse domains. In contrast,
approaches based on generative adversarial networks [Goodfellow et al., 2014] put no constraints on
the latent space and have generated high-quality images but do not cover the entire data distribution.

Energy based models (EBMs) are flexible likelihood models with no latent constraints and in essence
represent all possible distributions [LeCun et al., 2006]. EBMs received attention in the past [Hinton
et al., 2012, Dayan et al., 1995] but have not seen wide adoption due to difficulties in training and
scaling.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.



Figure 1: Images of Langevin Dynamic Sampling (gradient based) on a class condition EBMs
initialized with random image and image of different class.

We propose methods to stabilize/scale up EBMs to modern day architectures. We find that our EBMs
are able to generate significantly better samples (Figure 1 shows images of the sampling process)
than other likelihood models, so much so that they are competitive with GANs. Through several
image completion experiments and likelihood evaluation, we find that the sample quality does not
come at the expense of mode collapse. Finally, we show that EBMs generalize well. On images,
EBMs exhibit better distribution generalization [Hendrycks and Gimpel, 2016] than other state of the
art likelihood models, such as being able to assign higher log likelihood to CIFAR10 test images than
SVHN images. For time series modeling, EBMs generalize much better for long term time series
prediction than corresponding feed-forward networks. Compositionally, we find EBMs generalize to
effectively generate samples when jointly conditioned on independent conditional EBMs for separate
latents. Overall, our results show that EBMs are a class of models worth further adoption.

2 Related Work

Energy based models have seen large amounts of attention in the past [LeCun et al., 2006, Hinton
et al., 2012]. Previous methods have also relied on MCMC training to sample from the partition
function, but have primarily relied on Gibb’s Sampling on older architectures [Nair and Hinton,
2010]. We instead use Langevin Dynamics (also used in [Mnih and Hinton]) or MPPI([Williams
et al., 2017]) to more efficiently sample negative samples on modern architectures.

While there are been other recent works that have focused on training EBMs, sampling is done
through a sampling network [Zhao et al., 2016, Haarnoja et al., 2017]. Our contrast, our sampling is
done entirely through an MCMC approximation of the original distribution. Our method is preferable
as we use our original network to sample, and so are able to explore all modes in the probability
density, while sampling network based methods are prone to collapse or fail to sample modes of the
energy function. Furthermore, this allows us to easily use our sampling procedure down-stream to
restore and cross map images in the energy landscape.

We show a connection of energy based training to GANS which has also been shown in [Finn et al.,
2016, Zhao et al., 2016, Kim and Bengio, 2016]. Finn et al. [2016] show a direct connection between
training a GAN and energy functions, using a separate proposal distribution q(x) to estimate the
partition function. Zhao et al. [2016], Kim and Bengio [2016] and many related works use adversarial
training on a separate q(x) to provide fast estimation of the partition function. Our work is separate
from these models as we use a MCMC approximation of the original function to estimate the partition
function and use this MCMC approximation as our generator. Since our “generator” is then dependent
on our original function, the generator adapts implicitly while only training our energy function
(discriminator). This then removes the need to train the generator, which combined with the fact
the model itself has modes of probability at all training data points, reduces the likelihood of mode
collapse. Our derivation for EBMs show that training on the Wassterstein GAN [Arjovsky et al.,
2017] criterion on an optimal “generator” corresponds exactly to maximum likelihood.

3 Scaling EBM Training

In the section, we formulate our method for training EBMs. We outline our likelihood objective and
sampling distributions. We then detail architectural changes and sampling modifications. Finally, we
provide our overall loss and show a connection with GAN-based training.
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3.1 Likelihood Objective

Our overall training algorithm for EBMs follows the contrastive divergence algorithm [Hinton, 2002].
Given an energy function E(x; θ) ∈ R, represented as a neural network ∗, we model the probability
distribution as p(x) through the Gibb’s distribution.

p(x) =
e−E(x;θ)

Z(θ)
; Z(θ) =

∫
e−E(y;θ)dy

Given data distribution pd(x), we seek to minimize negative likelihood given by

Ex∼pd(x)
[
E(x; θ) + log

(∫
e−E(y;θ)dy

)]
= Ex∼pd(x)

[
E(x; θ) + log(Ey∼q(x)[e−E(y;θ)/q(y)])

]
(1)

where q(x) is a proposal distribution which we choose to be a finite step MCMC approximation
of p(x). The exact likelihood q(y) is difficult to calculate. We choose to use one of either two
approximations: either that q(y) has uniform probability or if q(y) matches the energy distribution
p(y). If we assume that all q(y) are equal, we have an approximate negative log likelihood objective
of

min
θ

Ex∼pd(x)
[
E(x; θ) + log(Ey∼q(x)[e−E(y;θ)])

]
(2)

Alternatively, if we assume that q(y) = p(y) then we obtain the exact negative log likelihood
objective below from Equation 1 (derivation in Section 9.1)

min
θ

Ex∼pd(x)
[
E(x; θ)− Ey∼q(x)[E(y; θ)]

]
. (3)

Empirically, we find that q(y) appears to have almost equal probability distribution to pd(x) (Figure 2),
indicating that its likely that q(y) = p(y), indicating a preference of Equation 3. However, during
training, we found that empirically Equation 3 was slightly less stable than Equation 2, so we choose
to use Equation 2 for our training procedures.

3.2 Proposal Distributions

We use a proposal distribution q(x) to gather samples for the likelihood objective. In contrast to
recent work, our proposal distributions are MCMC approximations of the original distribution as
opposed to seperate sampling networks. We either use Langevin Dynamics (LD) [Welling and Teh,
2011]

x̃q = x̃k, x̃k = x̃k−1 − λ(∇xk−1E(x̃k−1) + ωk; θ), ω ∼ N(0, σ) (4)

or MPPI based MCMC sampling [Williams et al., 2017]

x̃k =
∑
i

wix
k
i , xki ∼ N(0, σ) + xk−1, wi =

(
e−E(xki ;θ)∑
j e
−E(xji ;θ)

)
. (5)

For stability, we further clip gradients in LD sampling. We find that either MCMC proposals lead to
good training performance, with LD scaling better on high dimensional data, but MPPI sampling
working better on lower dimensional data. The gradient descent direction given by an energy function
in LD allows quick mode generation, but may also make it difficult to find all nearby modes, which
MPPI sampling allows. We demonstrate that both methods perform well on time series data but for
images, only LD was viable.

At the start of training, we initialize MCMC chains with uniform random noise. To improve mixing
of MCMC chains, as training progresses, we maintain a replay buffer of past generated samples,
∗We use residual networks [He et al., 2015] with zero initialization [Anonymous, 2019b] for images. For

time series prediction we use a combination of fully connected, self-attention and 1D convolutions layers (see
appendix)

3



re-initializing 5% of samples with random noise. This is similar to PCD in [Tieleman, 2008], but
a replay buffer has the added benefit of discouraging models from exhibiting cyclical behavior.
Furthermore, a replay buffer encourages models to not have spurious modes at all stages of sampling,
and we found replay buffers crucial for sampled images to be reasonable, if the sampling procedure
is significantly longer than during training.

3.3 Model Constraints

Figure 2: Relative energy of points sampled from
q(x) compared to CIFAR10 train data points. We
find that q(x) exhibits a relatively similar distribu-
tion to pd(x).

Arbitrary energy models can have sharp changes
in gradients that make sampling with LD very
difficult. We find that simply constraining the
Lipschitz constant remove many of these prob-
lems and allow most architectures blocks (such
as residual and self attention blocks) to be sam-
plable and thus trainable, as long as activations
were kept piece-wise linear without activation
normalization. To constrain the Lipschitz con-
stant, we follow the method of [Miyato et al.,
2018] and add spectral normalization to all lay-
ers of the model.

Constraining the Lipschitz constant in models
can significantly reduce the capacity of models
and there may exist blocks that are not easily
samplable even with spectral normalization. A
more general solution we found was to then add
an additional loss to minimize KL distance be-
tween proposal distribution and the original dis-
tribution (with the drawback of computational
expense).

Specifically, we minimize the KL objective

min
θ

KL(q(x; θ), p(x; stop_gradient(θ))) = min
θ
−Exi∼q(x;θ)[E(xi; stop_gradient(θ))].

(6)

We note that both MCMC sampling distributions are differentiable, allowing us to change our model’s
landscape to be more samplable. We choose to ignore the first entropy term of the KL divergence, as
it is difficult to evaluate the likelihood of q(x). Methods such as [Liu et al., 2017] may be helpful in
simultaneously minimizing both terms.

In our tasks, we found that constrained Lipschitz residual networks were sufficiently expressive to
model images. In the case of particle dynamics, we found the Lipschitz constant constraint overly
restrictive and chose to add the above loss to impose sampleability.

3.4 Loss Functions

use three different loss functions to train EBMS, LML, a maximum likelihood loss described in
Section 3.1, LKL, an optional sampling loss described in Section 3.3 and a regularization loss LReg.
Our overall loss function is given by

Ltotal = LML + LKL + LReg

For LML we approximate Equation 2 over N points, where x−i and sampled from proposal distribution
q(x; θ) and x+i are real data points to obtain the following loss

LML =
1

N

N∑
i=0

E(x+i ; θ) + log

(
N∑
i=0

e−E(x−
i ;θ

)
. (7)
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In practice, we found that gradient of the log term
N∑
i=0

( e−Eθ(x
−
i

)∑
i e

−Eθ(x
−
i

)
)E(x−i ) to be numerically unstable

due to close to zero denominators. Therefore, we rewrite our objective in an equivalent form which
removes this issue

LML =
1

N

N∑
i=0

Eθ(x
+
i )−

N∑
i=0

−stop_gradient

(
e−Eθ(x

−
i )∑

i e
−Eθ(x−

i ) + ε

)
E(x−i ). (8)

When using a sampling loss (only on time series data), we approximate Equation 6 over N points to
get

LKL =
1

N

∑
xi∼q(x)

Estop_gradient(θ)(q(xi)). (9)

Finally, we add a regularization loss to prevent energy explosion during training, as above losses only
enforce relative energy difference between points and not absolute energy magnitude

LReg =
1

N

∑
i

Eθ(x
+
i )

2 + Eθ(x
−
i )

2. (10)

We include a detail of our algorithm in Algorithm 1

3.5 Relationship to GAN training

We note that our likelihood objective is similar to the GAN training objective, where the generator
G(x) is our MCMC proposal distribution q(x) and the discriminator is the energy function p(x). In
fact, when setting N = 1 in Equation 7 or assuming q(x) = p(x) Equation 3, we precisely obtain the
Wasserstein objective [Arjovsky et al., 2017]. Furthermore, in cases where proposal distribution is LD
sampling on residual network based EBM, we note each step of sampling is operationally equivalent
to a forward pass through a generator, since the gradient of a convolution is a deconvolution.

However an important difference between our likelihood training and GAN based training is that
our "generator" is implicitly a function of our "discriminator" (and in the infinite limit of number
of the steps the "discriminator"). As a result, the "generator" is able to co-adapt with training of the
discriminator and there is no need to explicitly train the "generator". This reduces the likelihood
of over-fitting of the "generator" and makes it exhibit the same modes that a discriminator exhibits.
Furthermore, this allows our framework to work well on discrete values in which training generators
is difficult.

This connections may explain one reason in which EBMs are able to sharper samples than other
likelihood models. However, we note that unlike in GANs, our generation procedure doesn’t appear
to exhibit significant mode collapse as seen in Figure 5.

4 Images Modeling
We measure EBM’s ability to model complex distribution on both class-conditional and unconditional
CIFAR10 datasets. Our model is based on the ResNet architecture (using conditional gains and biases
per class) with details in Section 9.5. Our models have around 7-20 million parameters, comparatively
smaller than other state of the art models. We preprocess images to be between 0 and 1 with details in
Section 9.6. We evaluate EBMs ability to generate images, show that it constructs a good likelihood
model of the underlying distribution, measure representation learning, and show that exhibits good
out of distribution generalization

4.1 Image Generation

We provide unconditional generated images in Figure 3 and conditional generated images in Figure 4a.
In Figure 3, we see that compared to Glow, are model is able to make much ore object like images.
We show in Figure 13 that our generated images are not merely copies of images in the dataset.

We evaluate image quality of EBMs with Inception score [Salimans et al., 2016] and report comparison
with other models Table 4b. As evidenced by qualitative examples, we find higher inception scores
than PixelCNN (4.60) and is similar to performance to DCGAN (6.4) [Radford et al., 2016] in
unconditional generation (6.43). One issue we found during evaluation is that LD sampling takes
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(a) GLOW [Kingma and Dhari-
wal, 2018] samples

(b) Unconditional
EBM samples

(c) Historical ensemble(10) EBM
unconditional samples

Figure 3: Illustrations of image generation from GLOW as compared to our EBM models. Our
models are able to more accurately generate objects.

(a) conditional CIFAR10 EBM samples

Model Inception Score

Unconditional CIFAR10

PixelCNN 4.60
DCGAN 6.40
Ours (single) 6.43
Ours (10 historical ensemble) 6.79
Conditional CIFAR10

Improved GAN 8.09
Ours 8.52
Spectral Normalization GAN 8.59

(b) Table of Inception Scores

large amounts of time to explore all modes from random noise at test time, a problem mitigated by a
replay buffer during training time. To mimic a replay buffers ability to increase sample diversity, we
consider alternate sampling from the last 10 snapshots of a model. Under this scheme, we are able to
improve scores to 6.79 and believe that additional improvements can be obtained by more explicit
exploration. We note that numbers are still lower than current state of the art unconditional GAN
models, likely due to reduced mode exploration.

For conditional generation, we find that our inception score of 8.52 is higher than 8.09 in [Salimans
et al., 2016] and is close to 8.59 in [Miyato et al., 2018]. Our conditional CIFAR10 scores are
very similar to state of the art GAN model scores. We believe a large reason for the increase in
competitiveness of conditional EBMs relative to unconditional EBMs is increased mode exploration
during evaluation / training time. With conditional EBMs, during test time evaluation, we able to able
to initialize generation of class images from images initially generated from other classes, allowing
more mode exploration.

4.2 Likelihood Evaluation

Quantitative Evaluation We found it difficult to estimate the partition function of EBMs to
measure exact likelihood †. However, relative probability of data points can be evaluated by computing
energies of points. We found that our unconditional model had average energies of−0.00169±0.0196
on the train dataset and 0.001454 ± 0.0176 on the test dataset. For conditional model, we found
energies of 0.00198±0.0369 on the train dataset and 0.00751±0.0374 on the test dataset. The small

†After training, we founding that using AIS [Neal, 2001] with HMC transitions took too long to explore
modes.
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Salt and 
Paper (0.1)

Inpainting

Ground Truth 
Initialization

Figure 5: Conditional EBM image restoration on images in the test set through MCMC. The right
column shows failure (approx. 10% objects change with ground truth initialization and 30% of
objects change in salt/pepper corruption or in-painting. Right column shows worst case of change.)

Figure 6: Illustration of cross-class mapping using MCMC on a conditional EBM. The EBM is
conditioned on a particular class but is initialized with an image from a separate class(left). Target
classes of ship, car, ship. Additional images in Figure 12

mean difference relative to individual standard deviation indicates EBMs assigns close likelihoods on
train and test sets are not over-fitting to training images.

Image Restoration While unable to evaluate exact likelihood, we can measure the relative likeli-
hood modeling of models through image decorruption on test images. If a model is a able to reliably
restore and maintain test images, its likely that we have a good likelihood model of overall data. In
Figure 5, we find that if we initialize sampling with images from the test set, images do not move
significantly, indicating modes of probability at all test images. In Figure 5, we also test models
ability to inpaint and decorrupt images. We found in a large majority of cases, we are also able to
reliably decorrupt images, indicating relatively little mode collapse. In comparison, GANs have been
shown to miss many modes of data and cannot reliably reconstruct many different test images [Yeh
et al.].

As an additional measure of likelihood modeling, we initialize conditional models with images from
images from another class. We find in Figure 6 that energy models are still able to reliably convert
these images to images of the target class, indicating good likelihood modeling and generalization.

4.3 Representation Learning

We further investigate representation learning in EBMs, which we measure by fine-tuning energy
models to a supervised classification task. We remove the last linear layer of our model and replace it
with a classification layer after pretraining in an unsupervised way. During training, we backpropogate
through all weights and get results found in Table 1. We find EBMs learns representations that allow
better generalization on CIFAR10. We believe even larger gains may be achieved by pre-training on
larger dataset or joint training.

# Baseline FT Baseline + DA FT + DA

Accuracy 83.6 86.5 89.7 90.2
Table 1: Test Accuracy on CIFAR10 with or without finetuning (FT) with or without data augmenta-
tion (DA). We using horizontal flip and random crop data augmentations. Energy based fine-tuning
allow better generalization.
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Textures SVHN Constant
Uniform

Uniform CIFAR10
Mix

CIFAR10

Figure 7: Illustration of images from each of the out of distribution dataset.

Model SVHN Textures Monochrome Uniform Uniform CIFAR10 Interpolation Average

PixelCNN++ 0.32 0.33 0.0 1.0 0.71 0.47
Glow 0.24 0.27 0.0 1.0 0.59 0.42
EBM (ours) 0.63 0.48 0.30 1.0 0.70 0.62

Table 2: AUROC scores of out of distribution classification on different datasets, only our model gets
better than chance classification.

4.4 Out-of-Distribution Generalization

An important evaluation metric for generative modeling is to measure how well models generalize
to out-of-distribution(OOD) images. If a generative model has learned a good probability data
distribution, the model should be able to assign lower probability to data from all other disjoint
distributions. Curiously, however, as found in [Anonymous, 2019a], it appears current likelihood
models, such VAE, PixelCNN, and Glow models, are unable to distinguish data from disjoint
distribution, and actual assigns higher likelihood to certain OOD images (which ameliorated somewhat
in [Hendrycks et al., 2018]).

Similar to [Hendrycks and Gimpel, 2016], we propose a OOD metric where we take generative
models trained on CIFAR10 and evaluate the AUROC score for classifying CIFAR10 test images
compared to OOD images using log probability. We choose to evaluate on SVHN, Textures [Cimpoi
et al., 2014], monochromatic uniform noise(all image pixels are the same value), uniform noise
and interpolations of separate CIFAR10 images. We choose the SVHN dataset for comparison to
previous works, Textures to test memorization of textures, monochromatic uniform noise to test
for memorization of smoothness, uniform noise as a sanity test for likelihood modeling, and image
CIFAR10 interpolation (where we mix two different CIFAR10 images) as a test of memorization of
low level image statistics. We provide illustration of out-of-distribution images in Figure 7.

As seen in Table 2, EBMs perform better out-of-distribution than other models. We provide his-
tograms of relative likelihoods for SVHN in Figure 8 which is also discussed in [Anonymous, 2019a,
Hendrycks et al., 2018]. We believe that reason for better generalization is two-fold. First, we be-
lieve that EBMs have flexible structure allowing global context when estimating probability without
imposing constraints on latents. In contrast, auto-regressive models model likelihood sequentially,
making global coherence difficult. In a different vein, flow based models must apply continuous
transformations onto a continuous connected probability distribution which makes it very difficult to

Figure 8: Histogram of relative likelihoods for SVHN images vs CIFAR10 Test Images for Glow,
PixelCNN++ and EBM models.
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model disconnected modes, consequently making it likely that large amounts of probability are wasted
at connections between modes. Second, we believe that energy models have a negative sampling
procedure to estimate the partition function, which allows the model to exhibit less bad local minima.
However, we note that there is till much work that can be done to improve the out-of-distribution
robustness of generative models.

5 Time Series Prediction

2 4 6 8 10
Prediction Steps

100

101

102

M
SE

 E
rr

or

Multistep Time Series Error

FeedForward
Gradient MCMC
MPPI MCMC

Figure 9: Multistep time series prediction MSE
errors (log scale). EBMs show out of distribution
generalization by reduced long term rollout error.

To demonstrate the generality of our technique,
we also explore the ability of energy functions
to model future predictions on time series. We
consider two time series tasks; either predicting
the trajectory of a single moving ball.

5.1 Particle Dynamics

To test particle dynamics modeling, we simulate
one moving ball with wall collisions, drag and
friction. We train models to predict the next
ball positions given the past 3 positions using
4500 training trajectories with 500 time-steps
and evaluate MSE of future state predictions on
500 test trajectories. We compare training an
energy model with directly doing a feed-forward
prediction of state by modifying the last layer to
predict the next state. We use the architecture
given in Figure 15c and use either MPPI of LD
to sample from. Details can be found in Sec-
tion 9.6. The train feed-forward prediction on
MSE error.

We present results of multistep time series pre-
dictions at test time in Figure 9. When using model roll-outs, we find that energy functions have
significantly lower error for multistep prediction despite higher initial error, compared to feed forward
networks. We believe this is due to EBMs being able to generalize better in out of distribution
situations that occur after a couple model rollouts. Interestingly, we find the MPPI based sampling
methods lead to better generalization than LD based sampling methods, probably partially due to
better mode exploration during training time as the gradient may be biased to certain minima.

6 Combinatorial Generalization
To further evaluate generalization of EBMs, we consider sampling from the joint distribution of
several separately trained conditional EBMs on different latents. Due to the functional form of
EBMs, sampling from the joint distribution using LD is equivalent to taking gradient descent on
each respective conditional EBM with added noise. Sampling from the joint distribution tests
generalization by leading to constraints/mode exploration likely not seen during training. We evaluate
on the DSprites dataset [Higgins et al., 2017], which consists images of a single object varied by
scale, position, rotation, and shape.

Latent Conditioning We found that it to we could effectively model conditional latent with
conditional gains and biases following each convolution. Latents can be either continuous or discrete
and are projected to the size of each gain or bias. We found latents of scale, position and rotation
were well. The latent of shape was difficult to learn, and we found that even our unconditional
models were not able to reliably generate different shapes which is also the case in [Higgins et al.,
2017], perhaps due to the combinatorical explosion of different shapes at different scales. We further
found by incorporating latent sampling into proposal sampling during training, latents could also be
effectively inferred from images at test time.

Joint Conditioning In Figure 10, we provide generated images where we condition on 4 separate
EBMs trained on conditioning of scale, position, rotation and shape on the entire DSprites dataset.
We find that we are able to effectively sample from the joint distribution without significant loss in
sample quality (all factors except shape appeared to be preserved; the original conditional shape
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Figure 10: Images generated by joint distribution of 4 conditional EBMs trained independently on
scale, position, rotation and shape (left) with associated ground truth rendering (right). Despite never
being trained to sample with other conditional models, EBMs are able to compositionaly combine.

model is also unable to generate definitive shapes). We believe a unique advantage of EBMs is
the ability for sampling cost to scale linearly with the number separate conditional distribution as
opposed to exponentially in the case of rejection sampling.

7 Conclusion
We have presented techniques to scale up EBM training. We show that EBMs are class of generative
models worth exploring as EBMs are able to generate much better samples than other state-of-the-art
models while simultaneously maximizing likelihood and maintaining modes of probability on test
images. Furthermore, EBMs generalize well, achieving better out-of-distribution generalization
than other likelihood models, compositionally combining at test time separately condition energy
functions, and achieving significantly reduced long term trajectory roll-out error.

We believe that the EBM formulation of generative modeling is flexible, able to accommodate any
existing modern architecture and relatively fast, as models are smaller and image generation occurs at
once. Our current formulation of EBMs undergoes generation by inference over input images, but we
believe an identical method can be done to infer latents, allowing EBMs to simultaneously generate,
maximize likelihood, and classify images. Overall, we believe that EBMs are a class of generative
models worth further exploration.
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9 Appendix
9.1 Derivation

Assuming that we have the following equation NLL objective with q(y) = p(y)

Ex∼pd(x)
[
E(x; θ) + log(Ey∼q(x)[e−E(y;θ)/q(y)])

]
is equal to

Ex∼pd(x)
[
E(x; θ) + log(Ey∼q(x)[e−E(y;θ)/stop_gradient(e−E(y;θ))])

]
(11)

Taking the gradient of the above expression gets

Ex∼pd(x)
[
∇θE(x; θ)− Ey∼q(x)[∇θE(y; θ)]

]
(12)

Getting us an original objective of

Ex∼pd(x)
[
E(x; θ)− Ey∼q(x)[E(y; θ)]

]
Alternatively, assuming q(y) = p(y) we can also directly derive the NLL gradient as

Ex∼pd(x) [∇θE(x; θ)]− ∇θZ(θ)
Z(θ)

Focusing on the second term, assuming suitable regularity conditions, we bring the gradient inside
the integral to obtain

−
∫
(∇θE(x; θ)) ∗ eE(x;θ)dx

Z(θ)
= Ex∼p(x)[∇θE(x; θ)]

Giving the other gradient of NLL of

Ex∼pd(x) [∇θE(x; θ)]− Ex∼p(x)[∇θE(x; θ)]

which is equivalent to Equation 12.

9.2 Algorithm Pseudocode

We present the pseudo-code for training EBMs with q(x) based off Langevin Dynamics in Algorithm 1.
For training with MPPI, the MCMC step can be suitably changed.

9.3 Additional Qualitative Evaluation

We present images from a unconditional generation on ImageNet in Figure 11, which we generate
using the last 10 model snapshots of energy models. We find the presence of objects and scenes in
some of the generated image with occasional hybrids (such as a presence of a toaster cat in middle
bottom row).

We provide further images of cross class conversions using a conditional EBM model in Figure 12.
Our model is able to convert images from different classes into reasonable looking images of the
target class while sometimes preserving attributes of the original class.

Finally, we analyze nearest neighbors of images we generate in Figure 13.

9.4 Test Time Sampling Process

We provide illustration of image generation from conditional and unconditional EBM models starting
from random noise in Figure 14 with small amounts of random noise added. Dependent on the image
generated there is slight drift from some start image to a final generated image. We typically observe
that as sampling continues, much of the background is lost and a single central object remains.

We find that if small amounts of random noise are added, all sampling procedures generate a large
initial set of diverse, reduced sample quality images before converging into a small set of high
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Algorithm 1 Training Algorithm for EBMs with Langevin Dynamics(LD)

1: INPUT: number of proposal steps n, train dataset D, gradient clip threshold of V
2: INITIALIZE: parameter θ of network and replay buffer B ← {}
3: while Training do
4: x+, l+ ← D
5: x− ← B
6: Replace 5% of the sample images in x− with U(0, 1)
7: for i={1..n} do
8: x− = x− - λ ∗ clip(∇θ(Eθ(x−, l+; θ)),−V, V ) +N(0, ε)
9: end for

10: e_pos = E(x+, l+; θ), e_neg = E(stop_gradient(x−), l+; θ)
11: Lossml = e_pos− softmax(stop_gradient(e_neg)) · e_neg
12: Losskl = E(x−, l+; stop_gradient(θ)) . Only for time series data, otherwise set to 0
13: Lossreg = e_pos2 + e_neg2
14: Update E(x; θ) with∇θ(Lossml + Losskl + Lossreg)
15: B ← x−

16: end while

probability/quality image modes that are modes of images in CIFAR10. However, we find that if
sufficient noise is added during sampling, we are able to slowly cycle between different images with
larger diversity between images (indicating successful distribution sampling) but with reduced sample
quality.

Due to this tradeoff, we use a replay buffer to sample images at test time, with slightly high noise
then used during training time. For conditional energy models, to increase sample diversity, during
initial image generation, we flip labels of images early on in sampling.

9.5 Model

We use the residual model in Figure 15a for conditional CIFAR10 images generation and the residual
model in Figure 15b for unconditional CIFAR10 and Imagenet images. We found unconditional
models need additional capacity. Our conditional and unconditional architectures are similar to
architectures in [Miyato et al., 2018].

We found definite gains with additional residual blocks. We further found that replacing global
sum pooling with a fully connected network also worked but did not lead to substantial benefits.
We use the zero init in [Anonymous, 2019b] and spectral normalization on all weights. We use
conditional bias and gains in each residual layer for a conditional model. We found it important
when down-sampling to do average pooling as opposed to strided convolutions. We use leaky ReLUs
throughout the architecture.

We use the architecture in Figure 15c for particle time series regression.

9.6 Training Hyperparameters

For CIFAR10 experiments, we use 60 steps of LD to generate negative samples. We use a replay
buffer of size of 10000 image. We scale images to be between 0 and 1. We clip gradients to have
magnitude of 0.01 and use a step size of 10 for each gradient step of LD. We use random noise with
standard deviation of 0.005. We train our model on 1 GPU for 2 days. We use the Adam Optimizer
with β1 = 0.0 and β2 = 0.999 with a training learning rate of 1e-4. We use a batch size during
training of 128 positive and negative samples. For both experiments, we clip all training gradients
that are more than 3 standard deviations from the 2nd order Adam parameters. We use spectral
normalization on networks without backpropagating through the sampling procedure. We use the
identical setup for ImageNet 32x32 images, but train for 3 days on 1 GPU.

For trajectories, we use 20 steps of LD to generate negative samples. We use a noise standard
deviation 0.005. We use a batch size of 256 positive and negative samples. We found that a replay
buffer was not necessary. We use the Adam Optimizer with β1 = 0.0 and β2 = 0.999. For MPPI, we
use 30 steps of simulation with 5 noise simulations per step. We found spectral normalization to be
overly restrictive on trajectories so we instead backpropogate through the sampling procedure.
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Figure 11: MCMC samples from unconditional
ImageNet 32x32 EBM model

9.7 Tips And Failures

We provide a list of tips, observations and failures that we observe when trying to train energy based
models. We found evidence that suggest the following observations, though in no way are we certain
that these observations are correct.

We found the following tips useful for training.

• When training EBMs, we found the most important hyper-parameters to tune are MCMC
transition step sizes. We found that as long as this hyper-parameter was tuned correctly
models would train stably.

• We found that it is important to use piecewise linear activations in EBMs (either ReLU or
LeakyReLU). We found that other activations gave poor results and instability.

• When using residual networks, we found that performance can be improved by using 2D
average pooling as opposed to transposed convolutions

• We found that group, layer, batch, pixel or other types of normalization appeared to signif-
icantly hurt sampling, likely due to making MCMC steps dependent on surrounding data
points.

• During a typical training run, we keep training until the sampler is unable to generate
effective samples (when energies of proposal samples are much larger than energies of data
points from the training dataset). Therefore, to extend training for longer time periods, the
number of sampling steps can be increased during long time periods for better generation.
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Figure 12: Illustration of more cross class conversion applying MCMC on a conditional EBM. We
condition on a particular class but is initialized with an image from a another class(left). We are able
to preserve certain aspects of the image while altering others

• Generally, we would recommend first trying to train EBMs without a sampling loss with
spectral normalization. Only if this doesn’t given satisfactory results would we recommend
using sampling loss, as this causes models to train slowly.

• We find that there appears to be a direct relationship between depth and sample quality.
Simply increase model depth can easily increase generation quality.

• When adding noise when using MCMC sampling, we found that very low levels of noise
led to poor results. We found that high levels of noise allowed large amounts of mode
exploration initially but quickly led to early collapse of sample (failure to explore modes).

We also tried the approaches below with the relative success levels indicated. For training of models
in this paper, we do not use any of the additions listed below.

• We found that training ensembles of energy functions (sampling and evaluating on ensem-
bles) to help a bit, but was not worth the added complexity.

• We found that multistep HMC or Adam based updates didn’t work well with sampling as
the momentum term appeared to add a large amount of noise to the sampling procedure. We
did observe that include second order information helped training.

• We didn’t find much success with adding a gradient penalty term as it seemed to destablize
sampling from the proposal distribution through LD.

• We found that a version of label discovery, where we assigned each data point a label with
the lowest energy (normalized by the average energy the label assigned to other point) to
provide some benefit. However, we found this gain in performance could also be obtained
by simply increase model parameters.

• We tried a version of proposal distillation where we tried to make each proposal step equal
to the final outcome after a large number of proposal steps. We found small benefits but did
not found this computationally expensive.

• We tried training a separate network to help parametrize MCMC sampling but found that
this made training very unstable. However, we did find that using some part of the original
model to parametrize MCMC (such as using the magnitude to energy to control step size) to
help performance.
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(a) Nearest neighbor images in CIFAR10 for conditional
energy models (leftmost generated, seperate class per
row).

(b) Nearest neighbor images in CIFAR10 for uncondi-
tional energy model (leftmost generated)

Figure 13: Nearest neighbor images for images generated with GEO

(a) Illustration of GEO on conditional model of CI-
FAR10

(b) Illustration of GEO on unconditional model on CI-
FAR10

Figure 14: Generation of images from random noise.
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(a) Architecture used for condi-
tional CIFAR10 experiments
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(b) Architecture used for uncondi-
tional CIFAR10 experiments
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(c) Architecture used for Time Se-
ries Experiments
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