
Preprint

LEARNING PHYSICS PRIORS FOR DEEP REINFORCE-
MENT LEARNING

Yilun Du
OpenAI

Karthik Narasimhan
OpenAI

ABSTRACT

While model-based deep reinforcement learning (RL) holds great promise for
sample efficiency and generalization, learning an accurate dynamics model is chal-
lenging and often requires substantial interactions with the environment. Further, a
wide variety of domains have dynamics that share common foundations like the
laws of physics, which are rarely exploited by these algorithms. Humans often
acquire such physics priors that allow us to easily adapt to the dynamics of any
environment. In this work, we propose an approach to learn such physics priors
and incorporate them into an RL agent. Our method involves pre-training a frame
predictor on raw videos and then using it to initialize the dynamics prediction
model on a target task. Our prediction model, SpatialNet, is designed to implicitly
capture localized physical phenomena and interactions. We show the value of
incorporating this prior through empirical experiments on two different domains –
a newly created PhysWorld and games from the Atari benchmark, outperforming
competitive approaches and demonstrating effective transfer learning.

1 INTRODUCTION

Recent advances in deep reinforcement learning (RL) have largely relied on model-free approaches,
demonstrating strong performance on a variety of domains (Silver et al., 2016; Mnih et al., 2013;
Kempka et al., 2016; Zhang et al., 2018b). Unfortunately, model-free techniques do not have very
good sample efficiency (Sutton, 1990) and are difficult to adapt to new tasks or domains (Nichol
et al., 2018). This is mainly because a single value function represents both the agent’s policy and
its knowledge of environment dynamics. On the other hand, decoupling the dynamics model from
the policy, possible with model-based RL, allows for better generalization and transfer (Zhang et al.,
2018a). However, estimating an accurate dynamics model of the environment while simultaneously
using it to learn a policy is challenging and expensive, often leading to sub-optimal policies and
slower learning. One way to facilitate this process would be to initialize dynamics models with
generic priors for more efficient and stable model-based reinforcement learning.

t t+1

Figure 1: Two different environments with object dy-
namics that obey the common laws of physics. Agents
that have a knowledge of general physics will be able to
adapt quickly to either environment.

Consider the scenarios in Figure 1 for example.
Both environments contain a variety of objects
with different dynamics. For an agent to obtain
a good understanding of world dynamics and
understand physical laws like conservation of
momentum, it has to observe a large number of
transitions. For instance, observing just a cou-
ple of transitions, the agent cannot infer that the
orange circle is a freely moving object while the
grey rectangle is stationary. Further, it would re-
quire a significant number of collisions between
the circle and the rectangle (at various angles
and velocities) to understand the laws governing
elastic collisions between two bodies, which is
crucial to learning a good model of this envi-
ronment. Moreover, this entire model learning
process has to be repeated from scratch for each

new environment. Humans, on the other hand, have reliable priors that allow us to learn the dynamics
of new environments very quickly (Dubey et al., 2018). In this work, we demonstrate that learning

1



Preprint

a prior of general physics (ex. concepts of velocity, mass, acceleration) allows for better and more
efficient estimation of the dynamics of new environments, thereby resulting in better control policies.

In order to learn a prior for physical dynamics, we utilize unsupervised learning over raw videos
containing moving objects. In particular, we first train a dynamics model to predict the next frame
given the previous k frames, over a wide variety of scenarios with moving objects. This training
allows the parameters of the dynamics model to capture the general laws of physics which are useful
in predicting entity movements. We can then use this pre-trained dynamics model as a prior in a
model-based RL algorithm for a control task. Specifically, we initialize the dynamics model with
the pre-trained parameters and finetune them using transitions from the specific task. We utilize this
dynamics model in order to predict future frames up to a finite horizon, which are then used as an
additional context input into a policy network, similar to the approach of Weber et al. (2017). We
show that this results in both faster learning and more optimal policies.

We characterize our dynamics model as an image pixel prediction model. Learning a good future
frame model is challenging (Mathieu et al., 2015), mainly because of two reasons - a) the high-
dimensionality of the output space with arbitrary number of moving objects and interactions, and b)
the partial observability in environments. Existing techniques that use a combination of recurrent and
convolutional networks (Oh et al., 2015) suffer from the problem of error compounding and poor
generalization as they encode a image into a single vector. In contrast, we propose SpatialNet, a
neural network that consists of a convolutional encoder, a spatial memory block, and a convolutional
decoder that captures the local nature of dynamics. The spatial memory module operates by per-
forming convolution operations over a temporal 3-dimensional state representation that keeps spatial
information intact, similar to the model of Xingjian et al. (2015). This allows the network to capture
localized physics of objects such as directional movements and collisions in a more fine-grained
manner, resulting in lower prediction error, better generalization and input size invariance.

We evaluate our approach and compare it with existing techniques on two different RL scenarios.
First, we consider PhysWorld, a suite of randomized physics-focused games, where learning object
movement is crucial to a successful policy. Second, we also evaluate on a stochastic variant of the
popular ALE framework consisting of Atari games Bellemare et al. (2013). In both scenarios, we first
demonstrate the value of learning a physics prior for model dynamics — our agent achieves up to
130% higher performance on a shooting game, PhysShooter and 49.8% higher on the Atari game of
Asteroids, compared to the most competitive baseline. Further, we also show that the dynamics model
fine-tuned on these tasks can transfer to new tasks effectively. For instance, our model achieves a
relative score improvement of 37.4% on transfer from PhysForage to PhysShooter, than compared to
a relative score improvement of 5.4% from a policy-transfer baseline.

2 RELATED WORK

Video prediction and reinforcement learning Our frame prediction model is closest in spirit to
the ConvolutionalLSTM which has been applied to several domains including weather forecast-
ing (Xingjian et al., 2015), gesture recognition (Zhu et al., 2017), and forecasting passenger de-
mand (Ke et al., 2017). Similar architectures that incorporate differentiable memory modules have
been proposed (Patraucean et al., 2015), with applications to deep RL (Parisotto and Salakhutdinov,
2017). We use a simpler architecture, which we show generalizes better at capturing dynamics, that
captures entity movements more directly and demonstrate its use in learning useful physics priors for
environment dynamics.

Several recent methods have combined policy learning with future frame prediction in various ways.
Action-conditioned frame prediction (Oh et al., 2015; Finn et al., 2016; Weber et al., 2017) has been
used to simulate trajectories for policy learning. Predicted frames have also been used to incentivize
exploration in agents, via hashing (Yin et al., 2017) or using the prediction error to provide intrinsic
rewards (Pathak et al., 2017). The main departure of our work from these papers are that we use
a frame prediction model that is not conditioned on actions, which allows us to learn the model
from videos independent of the task, and then use it as a prior for learning the specific dynamics of
different tasks.

Physics models for reinforcement learning Incorporating physics priors into learning dynamics
models of environments has been the subject of some recent work. Cutler et al. (2014); Cutler and
How (2015) learn Bayesian nonparametric priors for physical systems and use it to guide policy
search. Scholz et al. (2014) model latent physical parameters like mass and friction and use an

2



Preprint

external physics simulator to predict future states for planning. Kansky et al. (2017) learn a generative
physics simulator and demonstrate its usefulness in transferring policies across task variations, but
require objects to be detected from raw images. Xie et al. (2016) develop a model that incorporates
prior knowledge about the dynamics of rigidbody systems in order to perform model-predictive
control. Nguyen-Tuong and Peters (2010) use parametric physics models as priors for learning
environment dynamics. While all these approaches demonstrate the importance of having relevant
priors to sample efficient model learning, they all require some manual parameterization. In contrast,
we learn physics priors in the form of a predictive neural network, directly from observing raw videos.

Decoupling dynamics from policy Our work also falls into the general direction of decoupling the
agent’s knowledge of the environment dynamics from its task-oriented policy. Successor representa-
tions Dayan (1993) decompose the agent’s value function into a feature-based state representation and
a reward projection operator, resulting in better exploration of the state space Kulkarni et al. (2016);
Barreto et al. (2017); Machado et al. (2017b). While these state abstractions help with exploration,
such representations do not explicitly capture dynamics models of the environment. Zhang et al.
(2018a) recently proposed an approach to learn two separate models for dynamics and rewards
and use it to perform online planning. However, they learn a dynamics model using task-specific
transitions, while we learn a prior from task-independent videos and demonstrate its usefulness in
learning different environment dynamics.

3 FRAMEWORK

Our goal is to demonstrate that agents can learn useful physics priors from raw videos and employ
them effectively to learn dynamics of new environments. To this end, our approach has two phases:

1. Pre-training: we first design a suitable neural network architecture (SpatialNet) to predict
pixels in the next frame given the previous k frames of a video. We train this network on a
newly created video dataset that captures various physical phenomena between entities.

2. Reinforcement learning: We use the pre-trained dynamics predictor from the previous phase
to initialize the dynamics model for a reinforcement learning agent. This dynamics model is
used by the agent to predict a few frames into the future and use them as additional context
for its policy. The dynamics model is simultaneously fine-tuned using trajectories observed
in the task environment.

We first describe SpatialNet, and then demonstrate how we use it for reinforcement learning.

3.1 SPATIALNET

Predicting the physical behavior of an entity requires a model that can perform two crucial operations
– 1) isolation of dynamics of an entity, and 2) accurately model localized spaces and interactions
around the entity. LSTM-based recurrent networks used in prior work (Oh et al., 2015) are ill-suited
for this task since they encode the entire scene into a single latent vector, thereby losing the localized
spatio-temporal correlations that are important for making accurate physical predictions. On the other
hand, the ConvLSTM (Xingjian et al., 2015) architecture has localized spatio-temporal correlations,
but is not able to accurately maintain dynamics of entities due to LSTM state updates and limited
separation of stationary and non-stationary objects. In order to satisfy both the above desiderata,
SpatialNet uses a spatial memory that explicitly encodes dynamics that are updated with object
movement through convolutions. This allows us to implicitly capture and maintain localized physics,
such as entity velocities and collisions between entities, in our frame prediction model and allows
significantly lower long term prediction error.

Architecture SpatialNet is conceptually simple and consists of three modules. The first module is
a standard convolutional encoder E that converts an input image x into a 3D representational map
z. The second module is a spatial memory block, σ, that converts z and the hidden state h from
the previous timestep into an output representation o and new hidden state h′. Finally, we have
a convolutional decoder D that predicts the next frame x′ from o. Both the encoder and decoder
modules (E and D) use two convolutional layers each with residual connections.

We implement the spatial memory block σ as a 2D convolution operation. The module takes in a
previous hidden state ht and input zt at timestep t, both of shape k× n× n where k is the number of
channels and n× n is the dimensionality of the grid. We then perform the following operations:

it = f(Ce ⊕ [ht; zt]); ut = f(Cu ⊕ [it;ht]); ht = f(Cdyn ⊕ ut); ot = f(Cd ⊕ [zt;ht+1])

3



Preprint

Future Frame

Spatial Memory

Input Conv2D, K=8, S=2
+

Residual Block, F=64

Residual Block, F=64
+

Conv2DT, K=4, S=2

Residual Block, F=64
+

Conv2DT, K=4, S=2

State Old (ht)
(64 x 21 x 21)

Input Encoding (zt)
(64 x 21 x 21)

Conv2D, K=5, F=64

Gated Input (it)
(64 x 21 x 21)

State Old (ht)
(64 x 21 x 21)

Conv2D, K=5, F=64

Proposal State (ut)
(64 x 21 x 21)

Conv2D, K=5, F=64

State New (ht+1)
(64 x 21 x 21)

Input Encoding (zt)
(64 x 21 x 21)

Conv2D, K=3, F=64

Spatial Memory

SpatialNet

Output Encoding (ot)
(64 x 21 x 21)

Conv2D, K=4, S=2
+

Residual Block, F=64

Ce
Cu

Cdyn

zt ht

zt ht+1

Cd

Figure 2: Overview of the SpatialNet architecture. SpatialNet takes an RBG image as input and passes it into
encoder (E) consisting of two residual blocks to form an input encoding zt. zt is processed by a spatial memory
module (σ) to obtain an output representation ot, which is used by the decoder (D) to predict the next frame.
The spatial memory stores meta information about each entity and its locality. See Section 3 for more details.

where ⊕ denotes a convolution operation, [; ] denotes concatenation, Ce, Cu, Cdyn, Cd are con-
volutional kernels and f is a non-linearity (we use ELU (Clevert et al., 2015)). The module first
encodes a combination of zt and ht into a proposal state ut, using two convolutions Ce, Cu. Cdyn
acts like a dynamics simulator and generates a new hidden state ht+1, which captures the localized
predictions for the next state around each entity. Finally, Cd uses ht+1 and zt to produce ot, encoding
information about the entire frame to be rendered by subsequent decoding.

Intuitively, this architecture biases the module towards storing relevant physics information about
each entity in a block of pixels at the entity’s corresponding location. This information is sequentially
updated through the convolutions, while static information such as background texture are passed
directly through the input encoding zt. We note that our spatial memory is not action-conditional,
which allows us to learn from task-independent videos, as well as generalize better to new environ-

ments. Given training videos D =
{

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
Ti

}N
i=1

, we learn the parameters of the model

using a standard MSE-based loss function, L(θ) =
∑
i

∑
j

‖x̂ij − xij‖2 .

3.2 REINFORCEMENT LEARNING WITH SPATIALNET

There are several ways one can incorporate a learned dynamics model into a reinforcement learning
setup. One approach is to use the model to generate synthetic trajectories and use them in addition to
observed transitions while training a policy (Oh et al., 2015; Feinberg et al., 2018). Another direction
is to perform rollouts from the current step using the model and then use the predicted states as
additional context input to the policy (Weber et al., 2017). Our method is similar to the latter – we
use our learned dynamics model to predict k future frames and concatenate these frames along with
the current frame to form the input to our policy network. There are two differences however – (1) we
predict future state observations without conditioning on the actions of the agent and without rewards
since our dynamics model is task agnostic, and (2) we do not use a global encoding for future frames,
but stack frames and use convolutions to extract local dynamic information.

Formally, we consider a standard Markov Decision Process (MDP) setup represented by the tuple
〈S,A, T,R〉, where S is the set of all possible state configurations, A is the set of actions available
to the agent, T is the transition distribution, and R is the reward function. Assuming our dynamics

4



Preprint

model to be Ω, given the current state st, we apply our prediction model iteratively:

ŝt+1 = Ω(st), ŝt+2 = Ω(ŝt+1), ... ŝt+k = Ω(ŝt+k−1)

We then train a policy network to output an action using all these predicted states as context in
addition to the current state:

at = π(st, ŝt+1, ... ŝt+k) (1)
For the policy network, we follow the architecture described in Mnih et al. (2015) and use the
Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm for learning from rewards
obtained in the task. We call this framework an Intuitive Physics Agent (IPA).

We update the policy parameters by using the standard PPO loss, L(θ) =

E[min(rt(θ)At, clip(rt(θ), 1 − ε, 1 + ε)At] where rt = πθ(at|ŝt)
πθold (at|ŝt)

and At is computed us-
ing the value function V (ŝt). Simultaneously, we also update the parameters of the dynamics model
using the same transitions from the environment with the same loss function as in Section 3.1. Policy
gradients are not back-propagated to SpatialNet.

4 DYNAMICS PREDICTION EXPERIMENTS

We train and evaluate SpatialNet on a variety of 2D environments. These environments require
accurate identification of objects and their dynamics for good prediction. To train our model, we
generate videos containing moving objects of various shapes and sizes, complete with acceleration,
collisions and other physical phenomena.

Data We generate a video dataset called PhysVideos using the physics engine Pymunk with the
included debug renderer (pym). Our dataset consists of frames of size 84× 84× 3 containing moving
balls and boxes (Figure 3). Each frame has 4-8 random moving circles or squares inside a room
with 0-3 randomly generated interior walls. Objects are initialized with friction of 0.9 and elasticity
of 0.95, leading to diversity in object movement across a trajectory. All objects are initialized with
random positions and velocities. Being able to predict the future in this type of environment requires
considerable 2-dimensional physics reasoning, such as inferring velocity from past object movement,
anticipating changes in momentum due to collisions, and predicting rotations of each object. We
generate 4500 different trajectories for training and 500 trajectories for testing, with each trajectory
containing 125 different steps. We train and evaluate the prediction models using the metric of mean
squared error (MSE) on a variety of different domains with varying dynamics. We use the Adam
optimizer (Kingma and Ba, 2015) in our experiments with a learning rate of 10−4.

Baselines We compare our SpatialNet model with a modified version of the video prediction model
of Oh et al. (2015) which we shall refer to as RCNet which uses convolutional and recurrent networks
to encode a sequence of frames in order to predict the next frame. While their model also makes
use of the agent’s action to condition this prediction on, we implement a model without the action-
conditioning, i.e. hdect = henct . We also compare to the ConvLSTM model of (Xingjian et al., 2015)
which uses local LSTMs through convolutions where we use kernel sizes of 5 and identical encoders
and decoders to SpatialNet.

Results From Table 1, we see that SpatialNet acheives a much lower test MSE compared to RCNet
and ConvLSTM, especially for multi-step predictions. This suggests that SpatialNet encourages
better dynamic generalization compared to RCNet and ConvLSTM. Qualitatively, in Figure 3, we
see that SpatialNet is able to maintain the number of objects in video while RCNet suffers from
merging of objects. In addition, the predictions of SpatialNet appear much more similar to ground

Model 1 step 3 step 5 step 10 step Objects Lost (20 step)

RCNet (Oh et al., 2015) 0.0061 0.0099 0.0140 0.0268 1.0
ConvLSTM 0.0026 0.0157 0.0303 0.0503 0.4
SpatialNet 0.0024 0.0076 0.0114 0.0176 0.13

Table 1: MSE for multi-step prediction on PhysVideos (test). All models were trained with 1 step prediction loss.
SpatialNet suffers less from compound errors during prediction, and is able to maintain objects and dynamics
more consistently (Figure 3). Number of objects lost was determined manually by evaluating 15 videos in the
test set.

5



Preprint

T+1 T+4 T+7 T+11 T+21

GT

SpatialNet

RCNet

ConvLSTM

Label Frames Predicted Frames

Figure 3: Visualization of multi-step predictions of SpatialNet and RCNet. After 20 steps of self prediction,
SpatialNet maintains the internal wall and all seven objects in the scene while RCNet (Oh et al., 2015) loses the
internal wall and 3 of the moving objects. ConvLSTM loses shape information and has less accurate dynamics
prediction. SpatialNet is the most consistent in obeying physical laws.

truth movement even after 20 steps. Further, SpatialNet is able to maintain background details such
as walls that are quickly lost in RCNet, as the spatial memory structure allows the input to easily pass
fixed background information. We also find that spatial memory’s overall structure allows it to be
very resistant to input noise – even when Gaussian noise of magnitude 0.5 is added independently to
each pixel in test images, SpatialNet achieves a MSE of 0.0062, while RCNet MSE error rises to
0.0268. We provide a table showing sensitivity to random noise in the appendix.

Dataset Generalization. We test generalization by evaluating on two unseen datasets. For the first,
we create a test set where objects are half the size of the training set and initialized randomly with
approximately twice the starting velocity. In this new regime, we found that RCNet had a MSE of
0.0115, ConvLSTM has a MSE of 0.0067, while SpatialNet had a MSE of 0.0039. We find RCNet
is unable to maintain shapes of the smaller objects, sometimes omitting them, while ConvLSTM
maintains shape but is unable to adapt to new dynamics. In contrast, SpatialNet local structure
allows it to generate new shapes, and its dynamic seperation allows better generalization. In the
second dataset, we explore input size invariance. We create a second testing data-set consisting 16-32
random circles and squares and input images of size 168x168x3 (the density of objects per area is
conserved). On this dataset, we obtained a MSE of 0.0042 compared to ConvLSTM of 0.0060, which
is comparable to the MSE on the original test dataset of 0.0024, showing that the spatial memories
local structure allows to easily generalize to different input image sizes. We show qualitative plots of
both datasets in the supplementary.

5 REINFORCEMENT LEARNING EXPERIMENTS

In this section, we describe the use of SpatialNet to accelerate reinforcement learning. We first
train SpatialNet on the physics video dataset described in the previous section. Then, we use the
pre-trained SpatialNet model as a future frame predictor for a reinforcement learning agent. We
perform empirical evaluations on on two different platforms consisting of 2D games - PhysWorld
and a stochastic version of Atari games (Machado et al., 2017a). We demonstrate that IPA with
pre-training outperforms other approaches in both platforms. The IPA architecture also allows for
effective decoupling of environment dynamics from agent policy, which results in better transfer
performance across tasks.∗

∗Note that the dynamics models we learn do not include prediction of the agent’s dynamics (ego-dynamics).
This is by design, since ego-dynamics depend on the action space of individual environments and do not easily
transfer to new environments.

6



Preprint

5.1 PHYSWORLD

The first environment we consider is PhysWorld, a new collection of three physics-centric games that
we created. These games require an agent to accurately predict object movements and rotations in
order to perform well. All three tasks have an environment consisting of around 10 randomly moving
boxes and circles as well as up to three internal impassable walls. PhysGoal is a navigation task while
having to avoid hitting moving objects, PhysForage is an object gathering task, and PhysShooter
requires an agent to shoot selected moving objects while avoiding others. The objects in each of
these environments are different colors and sizes than those used to train the dynamics predictor in
Section 4. We provide a detailed description of each task in the Appendix (A.2). We emphasize
that the main parameters (like object velocities, rotations,etc.) in the PhysWorld games are fully
randomized at the start of each episode. To obtain good performance, agents to really have a good
understanding of general physics and not memorize frames.

Experimental setup. In our experiments, we use SpatialNet to predict the next k† future frames. We
then stack the current frame with the k predicted frames and use this as input to a model free policy.
We use the Adam optimizer with learning rate 1e-4 to train model predictions and the same set of
hyper-parameters for training all policy agents as those used in Schulman et al. (2017). For our policy
network, we use the architecture described in Mnih et al. (2015).

Baselines. We compare our model with a number of different baselines. The first baseline is a
standard implementation of Proximal Policy Gradient (PPO) (Schulman et al., 2017), which is model-
free and uses the current frame with the last k frames to output an action. The number of frames
provided to PPO is the same as the number provided to IPA.

We also compare with alternative methods to incorporate dynamic models: (1) through value function
expansion Feinberg et al. (2018), which uses a dynamics predictor to obtain a more consistent estimate
of the current state’s value, (2) Imagination Augmented Agents (I2A) Weber et al. (2017) which uses
a combination of past frames and a recurrent encoding of future rollouts as input to the policy,‡ (3) a
model that uses the hidden layer of SpatialNet as input to the policy network (ISP), and (4) a model
based on ISP but has an auxiliary frame prediction loss (JISP).

Finally, we also consider baselines where we augment the input to PPO with future frames predicted
by either RCNet (Oh et al., 2015) or ConvLSTM (Xingjian et al., 2015). We report numbers averaged
over 3 different random seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

 L
os

s

MSE Loss Predictions on PhysShooter

Scratch Initialization
PhysVideos Initialization

Figure 4: MSE loss when SpatialNet is
trained on PhysShooter environment with or
without PhysVideos initialization

Results. We detail the performance of our approach com-
pared to the baselines in Table 2 and show learning curves
in Figure 5. Quantitatively, we find large gains in per-
formance in all three tasks in PhysWorld using IPA with
SpatialNet. We find that IPA with RCNet or ConvLSTM
provides less benefits, due to slower learning than Spa-
tialNet. We also find PPO with value expansions also
provides slight gains, but significantly less than the gains
conferred by IPA. We find that I2A leads to no gains in
performance, likely due to a global encoding of a image
destroying local dynamics information of objects. We also
find that both ISP and JISP perform worse than IPA ex-
cept on PhysForage. On PhysForage, we find that JISP
performs better, likely due to increased policy capacity
compared to IPA.

IPA encourages the policy to take into account the future physics of objects, a bias crucial for good
performance on each of the PhysWorld environments. Qualitatively, we observe that in all three
environments, IPA agents navigate to goals and collect objects with more confidence, even if there
are nearby obstacles nearby. In PhysShooter, IPA agents are much more able to hit objects further
away on the map, which require multiple time-steps before collisions. Figure 4 demonstrates how
having a good prior results in faster learning of the environment dynamics of PhysShooter.

†We find k=3 to work well in our experiments.
‡We use the encoding of five future frames predicted by SpatialNet.

7



Preprint

PPO + IPA + IPA + I2A + IPA +
Environment PPO VF RCNet ConvLSTM SpatialNet ISP JISP SpatialNet

(ours)

PhysGoal 17.7 ± 0.1 19.2 ± 2.4 20.7 ± 3.1 21.56 ± 2.1 16.4 ± 6.2 15.2 ± 1.2 18.2 ± 5.5 30.8 ± 6.2
PhysForage 38.9 ± 8.9 40.4 ± 5.4 46.3 ± 23.4 39.47 ± 7.0 20.75 ± 2.0 45.3 ± 5.5 124.3 ± 27.1 50.6 ± 11.5
PhysShooter 23.2 ± 1.3 26.1 ± 2.9 31.7 ± 1.0 29.1 ± 1.6 19.3 ± 0.7 18.6 ± 1.1 28.6 ± 1.5 39.1 ± 2.9

Table 2: Average scores (along with standard deviation) obtained in PhysWorld environments after 10 million
frames of training. Scores are rewards over 100 episodes, averaged over runs with 3 different random seeds. IPA
+ SpatialNet consistently outperforms the other approaches. Both RCNet, SpatialNet, ConvLSTM are pretrained
on PhysVideos. PPO+VF = PPO with Value Function Expansion.

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0

20

40

Sc
or

e

PhysGoal
IPA
PPO

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0

20

40

60

Sc
or

e

PhysForage
IPA
PPO

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0

20

40

Sc
or

e

PhysShooter
IPA
PPO

Figure 5: Training curves for PPO and IPA agents on PhysWorld environments. In PhysGoal and PhysForage,
IPA demonstrates better performance during later stages of training. In PhysShooter, IPA provides better
performance early on because in this game planning is essential since a player can only fire one bullet at a time.

Figure 5 shows the relative training rates of policies under PPO and IPA. In Phys-Shooter we see
immediate benefits in using a physics model, as physics knowledge of the future is crucial as the
agent only gets one action approximately every 4-5 frames. In Phys-Goal and Phys-Forage, we see
long term benefits in knowing future physics as this knowledge allows the agents to more efficiently
collect points.

5.2 STOCHASTIC ATARI GAMES

In addition to PhysWorld, we also investigate the performance of IPA on a stochastic version of the
Arcade Learning Environment (ALE) (Bellemare et al., 2013). The original ALE is fully deterministic
(except for random starts) and hence, a dynamics predictor would not provide much value. We modify
ALE by adding sticky actions, where an agent repeats its last action with probability p = 0.5. This
stochasticity was shown to be the most challenging type of randomization to add to ALE (Hausknecht
and Stone, 2015; Machado et al., 2017a). We evaluate performance on all Atari games and in
more detail on selected subset of 10 games though we thought had relevant physics features before
evaluation. Experiments on all Atari environments were run with 5 seeds.

Results. On overall performance on all Atari games, we find that IPA performs better on 31 games
and worse on 18 games as seen in Table 6. In Table 3, we find on our selected games, we observe
that IPA outperforms PPO in 8 out of the 10 different tasks. On worse performing tasks, we found
no significant degradation. In several games like Enduro, Breakout, Frostbite, FishingDerby and
Assault, IPA provides benefits later on in training after the agent has figured out a good initial policy.
In others like Asteroids and DemonAttack, IPA provide immediate benefits to training performance,
resulting in faster policy learning. One interesting observation is even with the added stochasticity, the
dynamics predictor in the Atari domain obtains a very small MSE of around 0.001 or lower, orders of
magnitude smaller than the MSE in PhysWorld environments. This indicates that the stochastic Atari
environments are still relatively deterministic and simpler in terms of dynamics prediction compared
to PhysWorld. We provide additional qualitative results, including frame predictions in the appendix.

5.3 TRANSFER AND GENERALIZATION

We now present some empirical results under the transfer scenario and also provide some analysis
of our model. Table 4 also shows the impact of initializing IPA with different pre-trained dynamics
models on the PhysShooter environment. We find that initializin SpatialNet with random parameters
does not perform very well, but using a pretrained SpatialNet pretrained on PhysVideos provides
better performance (see Figure 4 for MSE errors). Moreover, we observe that transferring a SpatialNet
model fine-tuned on a different task like PhysForage/PhysGoal results in even greater performance
improvements. Interestingly, we note that transferring just the dynamics model in IPA results in a
larger performance gains than transferring both model and policy. For instance, transferring the

8



Preprint

Label Assault Asteroids Breakout DemonAttack Enduro

PPO 2932.2 ± 153.2 1321.0 ± 233.5 19.7 ± 0.9 5510.9 ± 412.5 376.7 ± 10.5
IPA 2968.4 ± 124.0 2098.4 ± 102.0 23.4 ± 1.0 6793.6 ± 558.0 398.6 ± 23.0

MSE 0.0023 0.0023 0.00029 0.0032 0.00230

Label FishingDerby Frostbite IceHockey Pong Tennis

PPO 6.7 ± 10.1 1342.5 ± 2154.5 -5.9 ± 0.3 6.6 ± 14.1 -6.5 ± 2.1
IPA 9.3 ± 3.0 1701.1 ± 2485.0 -6.1 ± 0.0 2.2 ± 13.0 -3.8 ± 1.0

MSE 0.00150 0.00110 0.000035 0.00016 0.00075

Table 3: Scores (and standard deviation) obtained on Stochastic Atari Environments with sticky actions (actions
repeated with 50% probability at each step). Scores are average performance over 100 episodes after 10M
training frames, over 5 different random seeds with included standard deviations.

Source environment What is transferred? Reward MSE

None PPO 23.2 -
Random IPA 35.42 0.00578
PhysVideos IPA 39.05 0.00554

PhysGoal

PPO 25.42 -
Fixed SpatialNet 26.30 -

Finetune SpatialNet 42.83 0.00540
Model + Policy 42.44 0.00540

PhysForage

PPO 24.47 -
Fixed SpatialNet 30.30 -

Finetune SpatialNet 53.66 0.00533
Model + Policy 40.40 0.00533

Table 4: Effects of model initialization and transfer on training policies in PhysShooter. Topmost section shows
baseline PPO, random initialization of dynamics for IPA, and pre-trained IPA using PhysVideos. The bottom
two sections demonstrate results while transferring different models from two other games – direct policy (PPO),
transfer dynamics model and fix it (Fixed SpatialNet), transfer dynamics and finetune (Finetune SpatialNet),
and transfer both dynamics+policy and finetune (Model+Policy). IPA allows decoupling of policy transfer from
model transfer, allowing better transfer in cases of environment similarity but task dissimilarity. Scores obtained
on the PhysWorld environments after training for 10M frames and evaluated by taking average rewards of the
last 100 training episodes.

model from PhysForage results in a score of 53.7 while transferring both model+policy gets a lower
score of 40.4. This provides further evidence that decoupling model learning from policy learning
allows for better generalization.

SpatialNet Predictions. Figure 6 shows the qualitative next 3 frame predictions of SpatialNet on
each of the different PhysWorld environment with the first frame being the current observation. In
PhysGoal, SpatialNet is able to infer the movement of the obstacles, the dark blue agent, and the red
goal after agent collection. In PhysGather, SpatialNet is able to infer movement of obstacles as well
as the gather of a circle. In PhysShooter, SpatialNet is able to anticipate a collision of the bullet with
a moving obstacle and further infer the shooting of a green bullet by the agent.

Visualization of Spatial Memory. We provide visualization of the values of spatial memory hidden
state while predicting future frames. We visualize the values of spatial memory on PhysVideos,
PhysGoal and the Atari environment Demon Attack in Figure 7. To visualize, we take the mean across
the channels of each grid pixel in the spatial memory hidden state. We find strong correspondence
between high activation regions in the spatial memory and dynamic objects in the associated ground
label of the dynamic objects. We further find that static background, such as walls in the input, goals
and platforms appear to be passed along in input features.

6 CONCLUSION

We have proposed a new approach to model-based reinforcement learning by learning useful physics
priors. First, we pre-train a frame prediction model (SpatialNet) on raw videos of a variety of objects
in motion. We then use this network to initialize a dynamics model for an RL agent, which makes use

9



Preprint

Figure 6: Future image prediction on PhysGoal (left) and PhysShooter (right). First image is current observation,
the next three are predicted. SpatialNet is able to predict future dynamics of boxes and balls and anticipate agent
movement (PhysGoal) and agent shooting (PhysShooter).

Spatial Memory 
State

Ground Truth 
Label

Figure 7: Visualization of SpatialNet hidden state on PhysVideos (left), PhysGoal (middle) and Atari DemonAt-
tack (right). Hidden state has high activations for moving objects while background objects such as walls (left),
red goals (middle) and platforms (right) are not attended to as much.

of predicted frames as additional context for its policy. Through several experiments on two different
domains, we demonstrate that our approach outperforms model-free techniques and approaches that
learn environment dynamics from scratch. We also demonstrate the generalizability of our dynamics
predictor through transfer learning experiments.

REFERENCES

Pymunk. http://www.pymunk.org/en/latest/. Accessed: 2018-09-26. 5

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David Silver.
Successor features for transfer in reinforcement learning. In Advances in neural information processing
systems, pages 4055–4065, 2017. 3

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013. 2, 8

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015. 4

Mark Cutler and Jonathan P How. Efficient reinforcement learning for robots using informative simulated priors.
2015. 2

Mark Cutler, Thomas J Walsh, and Jonathan P How. Reinforcement learning with multi-fidelity simulators. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 3888–3895. IEEE, 2014. 2

Peter Dayan. Improving generalization for temporal difference learning: The successor representation. Neural
Comput., 5(4):613–624, 1993. 3

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and Alexei A Efros. Investigating human
priors for playing video games. ICML, 2018. 1

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine. Model-
based value estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101,
2018. 4, 7

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through video
prediction. In NIPS, 2016. 2

Matthew J Hausknecht and Peter Stone. The impact of determinism on learning atari 2600 games. 2015. 8

10

http://www.pymunk.org/en/latest/


Preprint

Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou, Nimrod
Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks: Zero-shot transfer with a
generative causal model of intuitive physics. In ICML, 2017. 3

Jintao Ke, Hongyu Zheng, Hai Yang, and Xiqun Chen. Short-term forecasting of passenger demand under
on-demand ride services: A spatio-temporal deep learning approach. CoRR, abs/1706.06279, 2017. 2

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Vizdoom: A
doom-based ai research platform for visual reinforcement learning. In Computational Intelligence and Games
(CIG), 2016 IEEE Conference on, pages 1–8. IEEE, 2016. 1

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 5

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor reinforcement
learning. arXiv:1606.02396, 2016. 3

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. CoRR, abs/1709.06009, 2017a. URL http://arxiv.org/abs/1709.06009. 6, 8

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray Campbell.
Eigenoption discovery through the deep successor representation. arXiv preprint arXiv:1710.11089, 2017b. 3

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square
error. arXiv preprint arXiv:1511.05440, 2015. 2

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Workshop, 2013. 1

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nat., 518(7540):529–533, 2015. 5, 7

Duy Nguyen-Tuong and Jan Peters. Using model knowledge for learning inverse dynamics. In ICRA, pages
2677–2682, 2010. 3

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A new
benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018. 1

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional video
prediction using deep networks in atari games. In NIPS, 2015. 2, 3, 4, 5, 6, 7

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement learning.
CoRR, abs/1702.08360, 2017. 2

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017. 2

Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder with differentiable
memory. CoRR, abs/1511.06309, 2015. 2

Jonathan Scholz, Martin Levihn, Charles Isbell, and David Wingate. A physics-based model prior for object-
oriented mdps. In International Conference on Machine Learning, pages 1089–1097, 2014. 2

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017. 5, 7

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search.
Nat., 529(7587):484–489, 2016. 1

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic
programming. In ICML, 1990. 1

Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende,
Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-augmented agents for
deep reinforcement learning. arXiv preprint arXiv:1707.06203, 2017. 2, 4, 7

11

http://arxiv.org/abs/1709.06009


Preprint

Chris Xie, Sachin Patil, Teodor Moldovan, Sergey Levine, and Pieter Abbeel. Model-based reinforcement
learning with parametrized physical models and optimism-driven exploration. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 504–511. IEEE, 2016. 3

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional
lstm network: A machine learning approach for precipitation nowcasting. In Advances in neural information
processing systems, pages 802–810, 2015. 2, 3, 5, 7

Haiyan Yin, Jianda Chen, and Sinno Jialin Pan. Hashing over predicted future frames for informed exploration
of deep reinforcement learning. arXiv preprint arXiv:1707.00524, 2017. 2

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning. arXiv
preprint arXiv:1804.10689, 2018a. 1, 3

Susan Zhang, Michael Petrov, Pachoki Jacob, Henrique Pondé, Brooke Chan, Filip Wolski, Szymon Sidor,
Rafał Józefowicz, Przemysław Dębiak, David Farhi, Greg Brockman, Jonathan Raiman, Jie Tang, Christy
Dennison, Paul Christiano, Shariq Hashme, Larissa Schiavo, Ilya Sutskever, Eric Sigler, Jonas Schneider,
John Schulman, Christopher Hesse, Jack Clark, Quirin Fischer, Diane Yoon, Christopher Berner, Scott Gray,
Alec Radford, and David Luan. Openai five, 2018b. 1

Guangming Zhu, Liang Zhang, Peiyi Shen, and Juan Song. Multimodal gesture recognition using 3-d convolution
and convolutional lstm. IEEE Access, 5:4517–4524, 2017. 2

12



Preprint

A APPENDIX

A.1 ADDITIONAL DYNAMIC PREDICTION EXPERIMENTS

ε RCNet ConvLSTM SpatialNet (ours)

0 0.0061 0.0026 0.0024
0.1 0.0078 0.0030 0.0026
0.5 0.0268 0.0072 0.0062

Table 5: MSE loss on physics prediction data-set on on single-step prediction with test inputs corrupted with
Gaussian noise of magnitude ε (model trained with no corruption). Due to its local nature, SpatialNet suffers less
form errors in inputs and is able to maintain object numbers/dynamics more consistently even with domain shift.

Sensitivity to Corruption of Inputs We investigate the effects of noisy observations in the input
domain at test time on both SpatialNet and RCNet, by adding different amounts of Gaussian random
noise to input images (Table 5). We find that SpatialNet is more resistant to noise addition. SpatialNet
predictions are primarily local, preventing compounding of error from corrupted pixels elsewhere in
the image whereas RCNet compresses all pixels into a latent space, where small errors can easily
escalate.

Qualitative visualizations of Generalization Predictions We provide visualizations of video pre-
diction on each of the generalization datasets in Figure 8 and Figure 9.

GT

SpatialNet

RCNet

ConvLSTM

T+1 T+2 T+3 T+5T+4

Label Frames Predicted Frames

Figure 8: Predictions of SpatialNet, RCNet on test data-set with objects twice as small and with twice the
movement speed as trained on. All shown frames are one step predictions. SpatialNet is able to accurately
generalize to smaller, faster objects while RCNet is unable to generate the shapes of the smaller objects and
suffers from background degradation and ConvLSTM is unable to maintain shapes and dynamics.

A.2 PHYSWORLD ENVIRONMENTS

We provide a description of the three games environments in PhysWorld:

PhysGoal: In this environment, an agent has to navigate to a large red goal. Each successful
navigation (+1 reward) respawns the red goal at a random location while collision with balls or boxes
terminates the episode (-1 reward).

13



Preprint

T+1 T+2

Label Frames Predicted Frames

GT

SpatialNet

Figure 9: Predictions of SpatialNet on input images of 168 x 168 when SpatialNet was trained on 84 x 84
images. Prediction shown are 1 step future predictions. SpatialNet is able to maintain physical consistency in at
large input sizes.

PhysForage: Here, an agent has to collect moving balls while avoiding moving boxes. Each collected
ball (+1 reward) will randomly respawn at a new location with a new velocity. Collision with boxes
lead to termination of episode (-1 reward).

PhysShooter: In PhysShooter, the agent is stationary and has to choose an angle to shoot bullets.
Each bullet travels through the environment until it hits a square (+1 reward) or circle (-1 reward) or
leaves the screen. If a moving ball or box hits the agent (-1 reward), the episode is terminated. After
firing a bullet, the agent cannot fire again until the bullet disappears.

Examples of agents playing the PhysWorld environments are given in Figure 10.

Figure 10: Example agent game-play in each of the PhysWorld environments. In PhysGoal (left), the dark
blue agent attempts to reach a red goal while avoiding moving objects. In PhysForage (middle), the dark blue
agent attempts to gather light blue circles while avoiding squares. In PhysShooter (right), the dark blue agent is
immobile and chooses to fire bullet a green bullet at squares while avoiding circles.

A.3 ADDITIONAL REINFORCEMENT LEARNING EXPERIMENTS

Performance on Atari We provide plots of training curves on all Atari environments in Figure 11
on provide on quantitative numbers in Figure 6.

Predictions on Atari We also investigate the benefits (in terms of MSE) of initializing SpatialNet
pretrained on the physics dataset compared to training with scratch in Figure 7. We evaluate the
MSE error at 1 million frames and find that initializing with the physics dataset provides a 12.9%
decrease in MSE error. We find that pretraining helps on 7 of the 10 Atari environments, with

14



Preprint

Frames

500

1000

1500

2000

Sc
or

e

Alien
IPA
PPO

Frames
0

250

500

750

1000

Sc
or

e

Amidar
IPA
PPO

Frames

1000

2000

3000

Sc
or

e

Assault
IPA
PPO

Frames0

1000

2000

3000

Sc
or

e

Asterix
IPA
PPO

Frames

500

1000

1500

2000

Sc
or

e

Asteroids
IPA
PPO

Frames
0

200000

400000

600000

Sc
or

e

Atlantis
IPA
PPO

Frames
0

100

200

300

Sc
or

e

BankHeist
IPA
PPO

Frames

10000

20000

30000

Sc
or

e

BattleZone
IPA
PPO

Frames

500

1000

1500

2000

Sc
or

e

BeamRider
IPA
PPO

Frames
20

40

60

80

Sc
or

e

Bowling
IPA
PPO

Frames

0

20

40

60

Sc
or

e

Boxing
IPA
PPO

Frames0

10

20
Sc

or
e

Breakout
IPA
PPO

Frames
2000

4000

6000

Sc
or

e

Centipede
IPA
PPO

Frames0

2000

4000

6000

8000

Sc
or

e

ChopperCommand
IPA
PPO

Frames

10000

20000

30000

40000

Sc
or

e

CrazyClimber
IPA
PPO

Frames
0

2000

4000

6000

8000

Sc
or

e

DemonAttack
IPA
PPO

Frames
20

15

10

5

Sc
or

e

DoubleDunk
IPA
PPO

Frames
0

100

200

300

400

Sc
or

e

Enduro
IPA
PPO

Frames100

75

50

25

0

Sc
or

e

FishingDerby
IPA
PPO

Frames
0

10

20

30

Sc
or

e

Freeway
IPA
PPO

Frames

0

2000

4000

Sc
or

e

Frostbite
IPA
PPO

Frames

250

500

750

1000

Sc
or

e

Gopher
IPA
PPO

Frames

200

400

600

Sc
or

e

Gravitar
IPA
PPO

Frames

12

10

8

6

Sc
or

e

IceHockey
IPA
PPO

Frames
0

200

400

600

800

Sc
or

e

Jamesbond
IPA
PPO

Frames
0

2000

4000

Sc
or

e

Kangaroo
IPA
PPO

Frames

2000

3000

4000

5000

Sc
or

e

Krull
IPA
PPO

Frames
0

5000

10000

15000

20000

Sc
or

e

KungFuMaster
IPA
PPO

Frames

0

100

200

Sc
or

e

MontezumaRevenge
IPA
PPO

Frames

1000

2000

Sc
or

e

MsPacman
IPA
PPO

Frames

2000

3000

4000

5000

6000

Sc
or

e

NameThisGame
IPA
PPO

Frames

150

100

50

0

Sc
or

e

Pitfall
IPA
PPO

Frames

20

10

0

10

20

Sc
or

e

Pong
IPA
PPO

Frames

250

0

250

500

Sc
or

e

PrivateEye
IPA
PPO

Frames
0

2000

4000

6000

8000

Sc
or

e

Qbert
IPA
PPO

Frames

1000

2000

3000

4000

Sc
or

e

Riverraid
IPA
PPO

Frames
0

10000

20000

Sc
or

e

RoadRunner
IPA
PPO

Frames

5

10

15

Sc
or

e

Robotank
IPA
PPO

Frames
0

500

1000

1500

Sc
or

e

Seaquest
IPA
PPO

Frames0

500

1000

Sc
or

e
SpaceInvaders

IPA
PPO

Frames

2000

4000

6000

8000

Sc
or

e

StarGunner
IPA
PPO

Frames25

20

15

10

5

Sc
or

e

Tennis
IPA
PPO

Frames
2000

3000

4000

5000

Sc
or

e

TimePilot
IPA
PPO

Frames0

50

100

150

Sc
or

e

Tutankham
IPA
PPO

Frames
0

10000

20000

Sc
or

e

UpNDown
IPA
PPO

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0

500

1000

Sc
or

e

Venture
IPA
PPO

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

5000

10000

15000

20000

Sc
or

e

VideoPinball
IPA
PPO

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0

2000

4000

6000

Sc
or

e

WizardOfWor
IPA
PPO

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0

2000

4000

6000

8000

Sc
or

e

Zaxxon
IPA
PPO

Figure 11: Plots of policy performance trained with either PPO or IPA on all Atari environments on 5 different
seeds. IPA sometimes leads to low learning early on the training due to rapid change of 3 predicted future frames.
However, later on in training in many different environments, IPA provides performance gains by giving policies
future trajectories.

the most negatively impacted environment being Enduro, a 3D racecar environment in which the
environmental prior encoded by the physics dataset may be detrimental. More significant gains in
transfer may be achievable by using a large online database of 2D YouTube videos which cover even
more of diversity of games.

SpatialNet Predictions We further visualize qualitative results on SpatialNet on training Atari in
Figure 12. In general, across the Atari Suite, we found that SpatialNet is able to accurately model
both the environment and agents behavior. In the figure, we seed that SpatialNet is able to accurately

15



Preprint

Environment PPO D2A

Alien 1668.6 ± 224.3 1485.5 ± 281.0
Amidar 855.9 ± 98.6 725.5 ± 135.0
Assault 2939.2 ± 153.2 2968.4 ± 124.0
Asterix 2920.8 ± 287.3 2334.0 ± 184.0

Asteroids 1321.0 ± 233.5 2098.4 ± 102.0
Atlantis 323205.4 ± 277643.2 289369.8 ± 239469.0

BankHeist 310.4 ± 44.0 334.3 ± 29.0
BattleZone 26828.0 ± 8472.0 16526.7 ± 6986.0
BeamRider 553.1 ± 28.4 1630.3 ± 400.0

Bowling 46.6 ± 5.2 64.3 ± 13.0
Boxing 54.3 ± 2.5 8.9 ± 20.0

Breakout 19.7 ± 0.9 23.4 ± 1.0
Centipede 6043.7 ± 990.6 6032.5 ± 199.0

ChopperCommand 6549.4 ± 1779.1 4112.0 ± 1024.0
CrazyClimber 36893.2 ± 463.9 38499.0 ± 1221.0
DemonAttack 5510.9 ± 412.5 6793.6 ± 558.0
DoubleDunk -4.0 ± 0.5 -3.8 ± 0.0

Enduro 376.7 ± 10.5 398.6 ± 23.0
FishingDerby 6.7 ± 10.1 9.3 ± 3.0

Freeway 29.2 ± 3.6 31.2 ± 1.0
Frostbite 1342.5 ± 2154.5 1701.1 ± 2485.0
Gopher 904.0 ± 42.3 941.1 ± 56.0
Gravitar 574.9 ± 36.2 627.2 ± 25.0

IceHockey -5.9 ± 0.3 -6.1 ± 0.0
Jamesbond 598.9 ± 112.1 454.3 ± 34.0
Kangaroo 2842.4 ± 2461.2 1373.0 ± 445.0

Krull 5178.9 ± 205.1 5219.3 ± 129.0
KungFuMaster 13831.6 ± 4483.6 13358.5 ± 4352.0

MontezumaRevenge 0.0 ± 0.0 129.7 ± 122.0
MsPacman 1990.1 ± 227.9 2097.3 ± 259.0

NameThisGame 5406.4 ± 278.0 5131.3 ± 427.0
Pitfall -0.1 ± 0.3 0.0 ± 0.0
Pong 6.6 ± 14.1 2.2 ± 13.0

PrivateEye 95.6 ± 5.4 99.6 ± 0.0
Qbert 6981.0 ± 548.0 6331.4 ± 769.0

Riverraid 3411.0 ± 201.9 3612.4 ± 130.0
RoadRunner 19329.6 ± 8472.6 20041.8 ± 4906.0

Robotank 11.9 ± 1.8 14.9 ± 3.0
Seaquest 1426.0 ± 43.5 1408.7 ± 51.0

SpaceInvaders 902.4 ± 66.0 1132.6 ± 101.0
StarGunner 3450.0 ± 801.5 5778.5 ± 1584.0

Tennis -6.5 ± 2.1 -3.8 ± 1.0
TimePilot 4281.8 ± 126.6 4580.0 ± 314.0

Tutankham 128.5 ± 12.3 118.2 ± 35.0
UpNDown 15872.3 ± 3995.3 16913.7 ± 6344.0

Venture 930.2 ± 137.9 946.7 ± 167.0
VideoPinball 18878.1 ± 1251.7 13981.2 ± 2136.0
WizardOfWor 3835.6 ± 404.7 4629.8 ± 662.0

Zaxxon 7197.4 ± 220.6 7271.0 ± 264.0

Table 6: Scores obtained on Stochastic Atari Environments with sticky actions (actions repeated with 50%
probability at each step). Scores are average performance over 100 episodes after 10M training frames, over 5
different random seeds.

predict agent movement and ice block movement in Frostbite. On DemonAttack, SpatialNet is able to
infer the falling of bullets. On Asteroid, SpatialNet is able to infer the movement of asteroids. Finally,
on FishingDerby, SpatialNet is able to the right player capturing a fish and also predict that the left
player is likely to catch a fish (indicated by the blurriness of the rod). We note that any blurriness
in predicted output may in fact even be beneficial to the policy, since policy can learn to interpret
the input. We provide training curves and additional analysis on effects of physics transfer on these
environments in the supplementary material.

16



Preprint

Environment MSE PD MSE DN Percent Advantage

Assault 0.00477 0.00522 9.4%
Asteroids 0.002506 0.002518 4.7%
Breakout 0.000417 0.000423 1.4%
DemonAttack 0.00433 0.00562 29.8%
Enduro 0.00576 0.00411 -28.7%
FishingDerby 0.00183 0.00192 4.9%
Frostbite 0.000965 0.00107 10.8%
IceHockey 0.000614 0.0013 111.7%
Pong 0.00636 0.00584 -8.2%
Tennis 0.00142 0.00132 -7.1%

Table 7: MSE on Stochastic Atari Environments (a action is repeated with a geometric distribution with p=0.5)
at 1 million training frames. MSE PD is trained with a model from physics dataset while MSE DN is trained
with a model from scratch. We evaluate percentage advantage for initializing with a physics dataset as compared
to from scratch. We average 12.9% decrease in MSE error using a initialization from pretraining on a physics
dataset. The most negative environment, Enduro, involves a 3D landspace which initializing from model trained
on a physics data set may be detrimental.

Figure 12: Visualization of model future state prediction on 4 games in Atari (Frostbite - upper left, DemonAt-
tack - lower left, Asteroids - upper right, FishingDerby - lower right). SpatialNet is able to predict falling
of bullets, the catching of fish, movement of asteroids, and the movement of tiles/future agent movement in
different environments. First frame visualized is ground truth observation, next 3 frames are model future frame
predictions.

17


	Introduction
	Related Work
	Framework
	SpatialNet
	Reinforcement Learning with SpatialNet

	Dynamics prediction experiments
	Reinforcement Learning experiments
	PhysWorld
	Stochastic Atari Games
	Transfer and Generalization

	Conclusion
	Appendix
	Additional Dynamic Prediction Experiments
	PhysWorld Environments
	Additional Reinforcement Learning Experiments


