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Abstract
We explore the use of expert iteration in the con-
text of language modeling applied to formal math-
ematics. We show that at same compute bud-
get, expert iteration, by which we mean proof
search interleaved with learning, dramatically out-
performs proof search only. We also observe that
when applied to a collection of formal statements
of sufficiently varied difficulty, expert iteration is
capable of finding and solving a curriculum of in-
creasingly difficult problems, without the need for
associated ground-truth proofs. Finally, by apply-
ing this expert iteration to a manually curated set
of problem statements, we achieve state-of-the-art
on the miniF2F benchmark, automatically solving
multiple challenging problems drawn from high
school olympiads.

1. Introduction
Deep learning has enjoyed spectacular success in many do-
mains, including language (Brown et al., 2020; Devlin et al.,
2018; Wu et al., 2016), vision (Radford et al., 2021; Tan
& Le, 2019), and image generation (Ramesh et al., 2021;
Karras et al., 2019). One domain where deep learning has
not yet enjoyed a comparable success is in tasks that re-
quire extensive planning and symbolic reasoning, with the
exception of two-player games (Silver et al., 2016; 2017;
Berner et al., 2019; Vinyals et al., 2019). In such games,
deep learning systems exhibit a considerable degree of rea-
soning, especially when trained with self-play combined
with a search procedure such as Monte Carlo Tree Search
(MCTS) (Browne et al., 2012). But the resulting reasoning
abilities achieved are limited due to the relatively narrow
scope of games.

As such, theorem proving in interactive proof assistants, or
formal mathematics, appears as an interesting game-like
domain to tackle due to its increased scope. Like games,
formal mathematics has an automated way of determining
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whether a trajectory (i.e. a proof) is successful (i.e. formally
correct). But the vast scope of formal mathematics means
that any strong reasoning result obtained in it will be more
meaningful than comparable results in games (e.g. finding
proofs to mathematical conjectures), and could even be
applicable to important practical problems (e.g. software
verification).

However, tackling formal mathematics involves two main
challenges that we must address in order to continue making
progress:

Infinite action space Not only does formal mathematics
have an extremely large search space (like Go for example),
it also has an infinite action space. At each step of proof
search, the model must choose not from a well-behaved
finite set of actions, but a complex and infinite set of tac-
tics, potentially involving exogenous mathematical terms
that have to be generated (e.g., generating a mathematical
statement to be used as a witness, an object used steps such
as “there exists an x ...”, or a cut, the introduction and the
chaining of a lemma in the middle of a proof).

No direct self-play setup In formal mathematics, a prover
is not playing against an opponent but against a set of state-
ments to prove. When faced with a statement that is just too
hard, there is no obvious reframing of the formal mathemat-
ics setup that will let the prover generate intermediary easier
statements to tackle first. This asymmetry prevents naive ap-
plication of the symmetric self-play algorithms commonly
used in 2-player games.

These two differences make a naive application of reinforce-
ment learning to formal mathematics unlikely to succeed.
Past work proposed to address the infinite action space prob-
lem by sampling from a language model (Polu & Sutskever,
2020). This paper focuses on this second problem and our
basis for addressing it is the observation that the key role
of self-play is to provide an unsupervised curriculum. We
propose instead to supply auxiliary sets of problem state-
ments (without requiring proofs) of varying difficulty. We
empirically show that, when the difficulty of these auxil-
iary problems is varied enough, a simple expert iteration
procedure is able to solve a curriculum of increasingly diffi-
cult problems, eventually generalizing to our target distri-
bution. We show that this works with both automatically-
generated and manually-curated auxiliary distributions of
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problems and leverage this to achieve state-of-the-art on the
miniF2F benchmark. Our results suggest that continuous
self-improvement in formal mathematics can potentially
be reduced to the problem of generating such sets of for-
mal statements, which we have done in part manually in
this work, but could eventually be scaled in the future with
more automation (such as more domain-specific statements
generator or even informal to formal machine translation).

1.1. miniF2F benchmark

In this work, we target the miniF2F (Zheng et al., 2021)
benchmark, which consists of 244 validation and 244 test
formalized statements of mathematical problems from var-
ious competitions. We believe it to be a better measure
of mathematical reasoning compared to a formal library-
derived split. Also, the extreme scarcity in formal libraries
of this type of problems makes it an ideal test-bed for the
expert iteration methodology studied in this paper.

1.2. Contribution

Our contributions are the following: we present lean-gym,
a simple REPL interface for interacting with the Lean the-
orem prover; we propose an expert iteration methodology
for GPT-f (Polu & Sutskever, 2020) which uses proofs gen-
erated by our models as training data to iteratively improve
their performance; we demonstrate that, at fixed compute
budget, expert iteration outperforms proof search only; we
present a synthetic inequality generator and study how ex-
pert iteration finds and solves a curriculum of increasingly
difficult problems from a set of generated statements of var-
ious difficulty; finally, we present a manually curated set of
formalized problem statements and leverage it to achieve
state-of-the-art performance on the miniF2F benchmark.

2. Related Work
Our work strongly relies on, and can be seen as a natural
continuation of the work presented in the original GPT-f
paper (Polu & Sutskever, 2020) which studies the use of
language models to generate tactics, the PACT paper (Han
et al., 2021) which applies GPT-f to Lean and studies the
benefits from co-training on self-supervised objectives, and
the miniF2F benchmark (Zheng et al., 2021).

We present additional related work in Appendix A.

3. Formal Environment
We choose Lean (de Moura et al., 2015; lea) as our for-
mal environment. Unlike Metamath (Megill & Wheeler,
2019), which has been studied in the original GPT-f pa-
per (Polu & Sutskever, 2020), Lean benefits from high-level
tactics which were shown to be beneficial in the context of

the miniF2F benchmark (Zheng et al., 2021)–Lean proofs
are typically 10x shorter than Metamath’s. Also, Lean has
recently received a lot of attention from the mathemati-
cal community, thanks to projects such as the Perfectoid
Spaces (Buzzard et al., 2019) and the Liquid Tensor experi-
ment (Scholze, 2020), and benefits from a vibrant commu-
nity of hundreds of contributors to its main mathematical
library called mathlib. We refer to the PACT paper’s Back-
ground section (Han et al., 2021) for a detailed introduction
to Lean in the context of neural theorem proving.

3.1. lean-gym

In the PACT paper (Han et al., 2021), proof search is per-
formed by the Lean runtime using the LEANSTEP environ-
ment, with a generic backend interface to models. While
easy to use–one just needs to plug in their model–this ap-
proach makes it difficult to alter and iterate on the search
procedure because it is programmed in Lean (which is not
designed or intended for cluster-wide parallelised I/O inten-
sive tasks), and the coupling of the search procedure with
the Lean runtime introduces challenges when scaling to a
large number of parallel workers.

To solve these issues we implemented lean-gym1 – a
simple REPL interface over the standard input/output im-
plemented in Lean directly. We present lean-gym’s API
and discuss some of its advantages and limitations in Ap-
pendix B.

3.2. Proof datasets extraction

We rely on the proof extraction methodology presented
in the PACT paper (Han et al., 2021) to extract human
tactic proof steps from mathlib (the tactic dataset) as
well as the various other proof artifacts (mix1 and mix2
datasets). We also extract mathlib-{train,valid,test}, the
set of statements from mathlib along the split proposed in
Han et al. (2021) (the validation and test splits of tactic,
mix1, mix2 being aligned with mathlib-{valid, test} as
the splits are determined by declaration name hashes (across
all data sources including proof-term mining) as opposed to
individual proof steps or data-points).

4. Expert Iteration
Expert iteration was introduced in Silver et al. (2017) and
broadly consists in iteratively training models on their previ-
ously sampled trajectories, to achieve continuous improve-
ment. In this section we present our expert iteration method-
ology, including the models and pre-training strategies we
rely on.

1https://github.com/openai/lean-gym
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4.1. Model

We use decoder-only Transformers similar to GPT-3 (Brown
et al., 2020). Throughout this paper we focus on a model
with 36 layers and 774 million trainable parameters (referred
to as the 700m model in the GPT-f paper (Polu & Sutskever,
2020)).

4.2. Pre-Training

We pre-train our models successively on GPT-3’s post-
processed version of CommonCrawl (for 300B tokens) and
an updated version of WebMath (Polu & Sutskever, 2020)
(for 72B tokens) whose mix is presented in Appendix C.

4.3. Training objectives

4.3.1. Proofstep objective

The proofstep objective, introduced in Polu & Sutskever
(2020), consists in generating a PROOFSTEP (a Lean
tactic) given a GOAL (a Lean tactic state). We also
condition this objective on the current DECLARATION
(a Lean theorem name), which remains the same
throughout a proof search: DECL <DECLARATION>
GOAL <GOAL> PROOFSTEP <PROOFSTEP>.

The rationale for conditioning on the declaration name is to
hint our models on the position of the current declaration in
the mathlib library. It can be considered as a weak proxy
signal for the large amount of information not shown to
the model (the full environment consisting of the available
imports and currently open declarations such as module
names, notations, declared instances, ...). The declaration
name lets models at least in principle memorize and then
retrieve some of that information, knowing that lean-gym
errors if a theorem or definition that is not available in
the environment associated with the current declaration is
used by tactics generated by our models. Also note that
conversely to Polu & Sutskever (2020) and like Han et al.
(2021) <GOAL> is not necessarily a single goal but a Lean
tactic state, which possibly comprises multiple goals.

4.3.2. Proofsize objective

We depart from Polu & Sutskever (2020) and use a
proofsize objective to guide our proof searches, which
consists in generating one token that represents a proof
size estimate bucket for the current goal (Lean tac-
tic state): DECL <DECLARATION> GOAL <GOAL>
PROOFSIZE <PROOFSIZE_BUCKET_TOKEN>

For a given goal g, either the goal was proved as part of the
proof search and we denote its proof size (the number of
tactic applications (compounded Lean tactics counting as
one)) as ps(g), or the goal was not proved in which case we
assign the goal to a bucket that virtually represents "infinite"

proof sizes.

We use 11 buckets B = 0...10 and compute the proofsize
bucket b(g) for a goal g by assigning infinite proof sizes to
bucket 0, all proof sizes over 20 to bucket 1 and linearly pro-
jecting proof sizes lower than 20 on the remaining buckets
2, ..., 10 (10 being the bucket for the shortest proof sizes).
In practice, when training and sampling from the model, we
map B to the tokens ’A’...’K’.

To value goals as we run proof searches, we sample the
proofsize bucket token and record the logits pb(g) for each
viable bucket and use them to get a weighted average with
the following formula: v(g) = 1

#B

∑
b∈B pb(g).b.

As an example, if the model assigns p0 = 1 (hence pb ̸=0 =
0) then v(g) = 0. Conversely if the model assigns p10 =
1 (10 being the bucket for the shortest proof sizes) then
v(g) = 1.

The rationale for using this proofsize objective instead of
the outcome objective described in Polu & Sutskever (2020)
is that (i) it achieves better performance compared to the
outcome objective (see table 1), and (ii) it prioritizes goals
that potentially lead to shorter proofs during proof search,
creating an intrinsic incentive for the system to converge to-
wards shorter proofs. Similarly to Polu & Sutskever (2020)
we favor this token-based approach to the introduction of
a separate value head to keep the overall architecture sim-
ple. This way the proofsize objective can be implemented
by simply augmenting the training dataset and without any
architectural change.

4.4. Bootstrapping

Bootstrapping consists in the steps required to train an initial
model on both the proofstep objective and the proofsize
objective.

Given a pre-trained model on WebMath, we fine-tune it
on the tactic dataset extracted from mathlib as well as
the proof artifacts dataset mix1 as described in Han et al.
(2021). This initial model, which we denote θ0 is solely
trained on the proofstep objective. We use the validation
splits of the tactic and m1 datasets to early-stop training.
Note that this is our only use of mathlib-valid to influence
the training process throughout this paper.

To generate data for the proofsize objective, we use θ0 to
sample proofs for statements from mathlib-train. For each
statement from mathlib-train (25k) we attempt a = 1 proof
searches using the cumulative logprob priority search de-
scribed in Polu & Sutskever (2020) (which does not require
a trained value function) using d = 512 expansions and
e = 8 samples per expansion. We denote the set of success-
ful proof searches created in this process as S0.

Using S0 we generate dataset D0 by concatenating: (i) the
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Table 1. Performance of θ0 and θ1 on mathlib-valid and miniF2F-
valid compared to PACT Lean GPT-f as reported in Han et al.
(2021); Zheng et al. (2021). All models have the same architecture.
θ0 is sampled using cumulative logprob priority best-first search.
θ1 is sampled using best-first search based on the proofsize objec-
tive. We report our setup (d = 512 expansions and e = 8 tactic
samples per expansions) as well as the setups used in Han et al.
(2021); Zheng et al. (2021) to control for compute. We also report
the performance of θ1 on mathlib-valid when trained using the
outcome objective from Polu & Sutskever (2020) as an ablation of
our proposed proofsize objective.

Model d e pass@1 pass@8

mathlib-valid
PACT 512 16 48.4%
θ0 (PACT setup) 512 16 48.5% 57.6%
θ0 512 8 46.7% 57.5%
θ1 512 8 56.3% 66.3%
θ1 (outcome objective) 512 8 55.6% 65.9%

miniF2F-valid
MiniF2F 128 16 23.9% 29.3%
θ0 (MiniF2F setup) 128 16 27.6% 31.8%
θ0 512 8 28.4% 33.6%
θ1 512 8 28.5% 35.5%
θ1 (outcome objective) 512 8 28.3% 34.7%

initial tactic dataset (proofstep objective), (ii) a dedu-
plicated set of proofsteps extracted from the proofs in S0

(proofstep objective) and (iii) a deduplicated set of proofsize
tuples (goals and proofsize) extracted from the full proof
searches in S0 (proofsize objective).

Note that the full proof searches in S0 include goals that
are visited but eventually remain unproved, which provides
useful negative examples for the trained value function (even
if these negatives may include provable goals that simply
were not prioritized by the search). Also note that S0 doesn’t
include failed proof searches (which would contain only
negative examples and no proofstep objective data).

We fine-tune θ0 on D0 for exactly one epoch (no use of val-
idation data for early-stopping) to obtain our initial model
θ1 trained on both the proofstep objective and the proofsize
objective. θ0 is used in our expert iteration setup as base
model to fine-tune from at each iteration, and θ1 is our first
iterated model or mathlib bootstrapped model trained on
both objectives.

We report in Table 1 the pass rates of θ0 and θ1 on mathlib-
valid and miniF2F-valid and compare with previously re-
ported pass rates for equivalent amounts of compute. As
reported in Polu & Sutskever (2020), training a value func-
tion to guide search greatly improves the pass rates of θ1
on mathlib-valid (see Polu & Sutskever (2020) for an abla-
tion of the value function). Interestingly, the gap between
θ0 and θ1 on miniF2F-valid is not as significant, demon-

strating that training a value function on proofs sampled
from mathlib-train has limited transfer to miniF2F-valid.
The main differences with Zheng et al. (2021), potentially
explaining the gap on minif2f-valid (27.6% vs 23.9%), con-
sists in the new pre-training described in section 4.2 as well
as the use of a more recent mathlib checkpoint for the mix1,
mix2 and tactic datasets.

4.5. Iterated sampling and training

Our expert iteration process takes as input: (i) a set of
formal statements St , (ii) a function a : St −→ N indicating
the number of proof search attempts to run per statement at
each iteration, (iii) a base model θ0 to fine-tune from at each
iteration, and (iv) a mathlib bootstrapped model θ1 trained
on both objectives.

Each iteration k consists in sampling proof searches for
statements in St using θk, filtering successful proof searches
Sk to extract a new dataset Dk, and fine-tuning θ0 on it to
obtain θk+1, on which we can iterate. To sample proof
searches from St we use the best-first search described in
Polu & Sutskever (2020) with the value function described
in section 4.3.2. We attempt a(s ∈ St) proof searches
for each statement s with d = 512 expansions and e = 8
samples per expansion. We denote the set of successful
proof searches for iteration k as Sk.

Using Sk we generate datasets Dk by concatenating: (i) the
initial tactic dataset (proofstep objective), (ii) a dedu-
plicated set of proofsteps extracted from the proofs in⋃

1≤i≤k Sk (proofstep objective), and (iii) a deduplicated
set of proofsize tuples (goals and proofsize) extracted from
the full proof searches in

⋃
1≤i≤k Sk (proofsize objective).

Note that we use a global deduplication across iterations
for both proofsteps and proofsize tuples which we found to
be important to maintain the stability of the expert iteration
procedure. This global deduplication is somewhat equiva-
lent for each statement to growing a unique proof tree by
aggregating all the proof searches that have been run for
it across iterations. This virtual proof tree accumulates a
growing number of positive proof paths as well as a grow-
ing number of visited goals that remain unproven. We use
these goals as negative examples for the proofsize objective,
labeling them with an infinite proofsize. Positive goals are
deduplicated keeping the minimum proof sizes across proof
searches.

Finally θk is obtained by fine-tuning θ0 for exactly one
epoch on Dk. Note that the initial tactic dataset is in-
cluded in each Dk, despite θ0 being already trained on it
(along with mix1). We found this repetition to be beneficial
overall (as it adds the mathlib extracted proofsteps to our
deduplicated per statements virtual proof trees) despite it
leading to a slight overfit on the tactic dataset in terms
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of validation loss.

4.6. Expert iteration on mathlib-train

In this section we propose to set St to the statements in
mathlib-train, run our expert iteration process with it and re-
port performance on both mathlib-valid and miniF2F-valid.
Performance is reported in terms of pass rate (percentage of
successful proof searches) as a function of the number of
attempts per statement, noted pass@k where k is the num-
ber of attempts per statement at test time. To reduce noise
in these metrics we generally run more than k attempts at
test time (generally 32 to compute pass@1 and pass@8),
averaging across attempts as needed to obtain a smoother
pass@k value.

Given the large number of statements in mathlib-train (25k)
we uniformly set a = 1 and use θ0 and θ1 as described in
section 4.4 and report pass@1 and pass@8 across 8 itera-
tions in figure 1. The pass@1 on mathlib-valid goes from
56.3% for θ1 to 62.6% for θ9. The performance steadily
improves and follows a clear logarithmic scaling law on
mathlib-valid. It is also notable that, initially, transfer to out-
of-distribution minif2f-valid appears limited but eventually
kicks in as we reach better performance on mathlib-valid.
This demonstrates that the expert iteration process does not
just overfit to mathlib but also leads to improved perfor-
mance on out-of-distribution statements.
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Figure 1. pass@1 (plain) and pass@8 (dotted) for mathlib-valid
and minif2f-valid when running 8 expert iterations with St set to
be the statements in mathlib-train. The x-axis is log-scaled. It
corresponds to the indices of the θk models and serves as a good
proxy to compute (the amount of test-time and train-time compute
per iteration being fixed). The y-axis is scaled linearly and simply
shifted between the two graphs (spans an equal range).

We define the cumulative pass rate at iteration k as the pass
rate consisting of all proof searches up to iteration k (neces-
sarily monotonic in k). Since we set a = 16 for evaluation
on mathlib-valid and minif2f-valid at each iteration, the

2 4 6 8
68

70

72

74

76

78

2 4 6 8
36

38

40

42

44

46

Expert iteration

Sample only

Adjusted compute

mathlib-valid minif2f-valid

Figure 2. Cumulative pass rate for our expert iteration loop as well
as a sample only loop where we skip re-training the model between
iterations. The adjusted compute line is computed by fitting the
sample only curve and shifting it to approximate a setup where we
would focus all the additional compute used by expert iteration
(sampling training data from mathlib-train as well as re-training
models at each iteration) towards running proof searches against
mathlib-valid.

cumulative pass rate at iteration k can be seen as a noisy
ensembled pass@16k (multiple models (θk), no averaging).
In figure 2, we report this cumulative pass rate for two it-
eration loops, our normal one and a sampling-only loop
where we skip re-training the model between iterations and
solely sample from θ1. This directly compares test-time
compute scaling (scaling proof search attempts) to expert
iteration scaling (interleaved training on new data sampled
from mathlib-train) and provides a very clear visualization
of the gains of expert iteration. For a fair comparison, we
also report an adjusted compute line which approximates
the test-time performance we would get at each iteration if
we were to focus all the additional compute used by expert
iteration (sampling proofs from mathlib-train as well as
re-training models at each iteration) towards solely running
proof searches against mathlib-valid.

As shown by figure 2, the scaling exponent of expert it-
eration is substantially higher than the scaling exponent
associated with solely scaling test-time compute (running
more proof searches), demonstrating the clear benefit of
expert iteration. We’ll denote the fully iterated model from
this section as θmathlib

9 .

Even in the presence of ground-truth proofs for each of
the statements in mathlib-train (tactic dataset), expert
iteration generates data that further improves the perfor-
mance of the model. The number of statements proved
in mathlib-train goes from 17390 (67.8%) at iteration 1 to
19476 (76.0%) at iteration 9, while the average proof length
of these statements goes from 4.8 to 4.0. We hypothesize
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that this continuously improving performance through ex-
pert iteration stems from two effects: (i) the model finding
new original proofs for the same statements and (ii) the
model closing marginally harder statements at each itera-
tion – which in turn provides more useful training data for
the next iteration. By iteration 9, the model is trained on
more than 90% generated data. We present in Appendix E
a few examples of original proofs found by our models on
mathlib-train compared with their ground-truth versions.

To verify our hypothesis that expert iteration is capable of
closing a curriculum of increasingly difficult problems out
of a set of problem statements, and that this capability is
independent of having access to ground-truth proofs, we
propose in the next section to study expert iteration applied
to a synthetically generated set of problems for which we
have fine-grained control on the difficulty of each statement.

5. Statement curriculum learning
In this section we focus on running expert iteration on syn-
thetic statements generated by an inequality generator. The
use of synthetic statements enables us to control the dif-
ficulty of each statement to present evidence that expert
iteration can hill-climb the intrinsic difficulty gradient of
the resulting set of statements. In particular, we show that,
at fixed compute budget, expert iteration eventually closes
proofs of hard statements that remain completely out of
reach of simply sampling proof searches without interleaved
training.

5.1. Synthetic inequality generator

We designed a synthetic inequality statement generator for
Lean in the spirit of the INT (Wu et al., 2020) generator.
The generator consists in generating inequalities from well
known inequality theorems (AM-GM, Trivial inequality,
Cauchy-Schwarz, Bernoulli, Young, Hölder) and compos-
ing them. It is driven by two difficulty parameters: ND

which controls depth of composition of inequalities and
NS which controls the complexity of the input expressions
to the composed inequalities. We provide details on its
implementation in Appendix D.

Using this generator we generate a curriculum of 5600 in-
equality statements (for which we don’t have proofs), 100
for each values of 0 ≤ NS ≤ 7 and 0 ≤ ND ≤ 6. We
denote this set of statements as synth-ineq.

To bootstrap our models capabilities on this specific task, we
also generate 100 statements of low difficulty (ND = 1 and
NS = 5) and formalize a proof for each of these statements.
We refer to this dataset as synth-ineq-train. In the rest of
this paper we adjunct this training dataset to the tactic
dataset used to train our models.

5.2. Expert iteration on synthetic inequality statements

In this section we propose to set St to the union of the state-
ments in mathlib-train and synth-ineq. Again, we uniformly
set a = 1 and use θ0 and θ1 as described in section 4.4,
except that they are now also trained on synth-ineq-train.

Similarly to the previous section, we report in figure 3 the
cumulative pass rate for two loops, our standard expert
iteration loop, and a proof search only loop where we don’t
interleave training between iterations. The pass rates are
reported split by values of ND (pooling together 0 ≤ NS ≤
7) which we found to be the main driver for difficulty.
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Figure 3. Cumulative pass rate for our expert iteration loop as well
as a sample only loop where we skip re-training the model between
iterations. Pass rates are reported for each value of ND (pooling
together 0 ≤ NS ≤ 7).

Despite the challenging nature of these synthetic inequali-
ties, figure 3 demonstrates that expert iteration is capable of
learning the intrinsic curriculum induced by synth-ineq. In
particular, expert iteration is capable of closing 6 problems
of difficulty ND = 6 without having been provided with
any seed ground-truth proof for this difficulty level. Note
that difficulty ND = 6 remains completely out of reach of
simply scaling the number of attempts per statements (the
sample only loop remaining stuck at 0 for ND = 6).

This confirms on our synthetic statements dataset synth-ineq
that not only expert iteration is capable of learning the cur-
ricula occurring in a set of statements, but this process also
enables the emergence of new capabilities without the need
for ground-truth proofs (ability to close, highly challenging,
deeply composed inequalities).

6. Targeting miniF2F

Motivated by the results from Section 5, we curated and
manually formalized a set of math exercises to target
miniF2F. miniF2F statements being quite out of distribu-
tion compared to the distribution of statements present in
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mathlib (which typically includes generic theorems and lem-
mas but very few exercises), we hypothesized that if the
difficulty of this set of statements was made varied enough,
expert iteration could potentially leverage it to effectively
shift our models’ distribution closer to miniF2F’s, and in
turn, improve their eventual performance on it.

6.1. Formalization effort

We manually formalized 327 statements2 drawn from the fol-
lowing sources: 302 examples and exercises from Lehoczky
& Rusczyk (a;b). The books are classic problem solving
textbooks for students in grades 7-12 preparing for contests
such as AMCs and AIMEs. 25 problems from the MATH
dataset (Hendrycks et al., 2021). All problems were drawn
from the train split of the dataset, focusing on difficulty 5
problems (miniF2F only contains problems from the test
split).

We refer to Zheng et al. (2021) for more details on the
formalization procedure and the typical time needed for it
as these problems were formalized in similar conditions.
We denote this set of statements as miniF2F-curriculum
and verified (based on problem provenance and manual
inspection of statements) that it had an empty intersection
with miniF2F-{test,valid}.

6.2. Transfer to miniF2F

In this section we propose to set St to the union of the state-
ments in mathlib-train, synth-ineq and miniF2F-curriculum.
We uniformly set a = 1 on mathlib-train and synth-ineq
and a = 8 on miniF2F-curriculum and use θ0 and θ1 as
described in section 5.

Similarly to previous sections, we report in figure 4 (left)
the cumulative pass rate on miniF2F-valid of our full cur-
riculum expert iteration loop and compare them with the
mathlib-train only expert iteration from section 4.6. Since
more compute is deployed in our full-curriculum loop (more
statements) we also report a mathlib-train only loop taking
a = 2. At the end of the expert iteration, 100 out of the 327
statements from miniF2F-curriculum end up being closed,
suggesting a lack of density in our manually formalized set
of statement.

We also report in figure 4 (right) the pass@1 and pass@8
for our full curriculum expert iteration loop. The steady im-
provement on miniF2F-valid shows that the expert iteration
procedure we propose does not overfit on the statements
that compose the curriculum it uses. Despite the potential
inefficiency of our curriculum, the improved performance
associated with its use demonstrates, as hypothesized, an

2https://github.com/openai/miniF2F/tree/
statement_curriculum_learning/lean/src/
statement_curriculum_learning
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Figure 4. Left: cumulative pass rate on miniF2F-valid for our
expert iteration loop using our full curriculum (mathlib-train, synth-
ineq and miniF2F-curriculum) compared to the expert iteration
loop from section 4.6. The total number of attempts per iteration
in our full loop is 25k + 5.6k + 8 ∗ 327 ≈ 33.2k, which means
the total compute deployed is higher than in the mathlib-train only
loop (25k). We therefore also report in dotted a mathlib-train only
loop, taking a = 2, whose total number of attempts per iteration is
≈ 50k. Right: pass@1 (plain) and pass@8 (dotted) for our expert
iteration loop using our full curriculum (mathlib-train, synth-ineq
and miniF2F-curriculum) compared to the expert iteration loop
from section 4.6.

effective transfer between miniF2F-curriculum, synth-ineq
and miniF2F-valid through expert iteration. We’ll denote
the fully iterated model from this section as θfull

9 .

6.3. Results

We report in table 2 the pass rates on mathlib-{valid, test}
and miniF2F-{valid, test} for the models trained in previous
sections, namely θ1, θmathlib

9 , and θfull
9 . We achieve a 47.3%

pass rate (using a = 64 attempts) on miniF2F-valid and a
36.6% pass rate on miniF2F-test, substantially improving
from the previous state-of-the-art (Zheng et al., 2021).

These results include the resolution of 26 AMC12
problems, 6 AIME problems and 2 problems adapted
from the IMOs. Out of these statements, 4 AMC12
problems (amc12b_2020_p5, amc12a_2009_p9,
amc12a_2003_p24, amc12b_2003_p17), 2 AIME
problems (aime_1984_p1, aime_1990_p4),
and 2 IMO-adapted problems (imo_1961_p13,
imo_1964_p2) are uniquely solved by expert iter-
ated models, the two IMO-adapted and the two AIME
problems being uniquely solved by θfull

9 .

We provide a selection of the proofs found by our models

3Note that this IMO-adapted statement from miniF2F-valid is
a much weaker version than the original problem (see Appendix F
for more context)

https://github.com/openai/miniF2F/tree/statement_curriculum_learning/lean/src/statement_curriculum_learning
https://github.com/openai/miniF2F/tree/statement_curriculum_learning/lean/src/statement_curriculum_learning
https://github.com/openai/miniF2F/tree/statement_curriculum_learning/lean/src/statement_curriculum_learning
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Table 2. Performance of θ1 (value-function based search), θmathlib
9

(expert iterated on mathlib-train) and θfull
9 (expert iterated on our

full curriculum) on mathlib-{valid, test} and miniF2F-{valid, test}.
All proof searches are run with d = 512 and e = 8.

Model pass@1 pass@8 pass@64

mathlib-valid
PACT (Han et al., 2021) 48.4% - -
θ1 56.3% 66.3% 72.0%
θmathlib
9 62.6% 70.7% 75.8%
θfull
9 61.7% 69.8% 75.3%

mathlib-test
θ1 56.5% 66.9% 73.7%
θmathlib
9 63.0% 71.5% 77.1%
θfull
9 62.9% 71.6% 76.3%

miniF2F-valid
PACT (Zheng et al., 2021) 23.9% 29.3% -
θ1 28.5% 35.5% 41.2%
θmathlib
9 31.3% 38.3% 44.1%
θfull
9 33.6% 41.2% 47.3%

miniF2F-test
PACT (Zheng et al., 2021) 24.6% 29.2% -
θ1 25.9% 31.1% 33.6%
θmathlib
9 27.2% 33.0% 35.2%
θfull
9 29.6% 34.5% 36.6%

for these statements as well as a qualitative analysis of them
in Appendix F.

Also, we achieve a higher than 75% pass rate (using a = 64
attempts) on mathlib-{valid, test} (a new state-of-the-art as
well) suggesting that our models have the potential to be
effectively leveraged as proof assistants in the formalization
efforts associated with mathlib.

7. Discussion
7.1. Model Size

Throughout this paper, we used a single model size (774m
trainable parameters). We briefly experimented with dif-
ferent model sizes (not reported in this paper) and found
that model size scaling is not as straightforward as in the
case of unsupervised learning (Kaplan et al., 2020). We
found that bigger models are better, in the sense that they
consistently exhibit higher pass@1. But, they are also much
more expensive to sample from. And despite their pass@1
being higher, it is often the case that for a fixed amount
of compute, sampling more attempts from a smaller model
leads to a better final performance.

For the compute budget we had available, we estimated the
model size we used to be a compelling trade-off. We leave
as future work a more thorough study of these dynamics to
better understand the different compute frontiers involved.

Indicatively, with our 774m parameters model, running a
full expert iteration to train θfull

9 required about 2000 A100
days of compute. Running one full proof search (a = 1
d = 512 e = 8) when properly parallelised, requires on
average about 0.1 A100 hour of compute.

7.2. Limitations

Despite our models’ capability, as discussed in Ap-
pendix F.1, to generate cuts and witnesses, we believe that
their current main limitation lies in their inability (under
our proposed search procedure) to chain more than 2 or
3 non-trivial steps of mathematical reasoning, preventing
them from consistently (instead of exceptionally) solving
challenging olympiad problems. We’ve been repeatedly
impressed by the complexity of some of the proofsteps gen-
erated by our models. But, proofs requiring many of such
reasoning steps remain beyond our current compute horizon.
Even if we solved a selection of challenging olympiad prob-
lems, our models are still very far from being competitive
with the brightest students in these competitions.

While our models have demonstrated some capabilities to
generate cuts, the cuts they generate are often shallow (they
involve only a few proofsteps and don’t necessarily deeply
change the structure of the proof–we refer the reader to the
Cut-Elimination theorem and Carbone & Semmes (1996)
for a discussion of the influence of cuts on proof size). We
believe that studying language models’ ability to generate
cuts, and designing search procedures that leverage that
capability (related ideas can be found in Czechowski et al.
(2021)), are interesting avenues of research to alleviate this
limitation.

8. Conclusion
In this paper we presented an expert iteration procedure
for GPT-f (Polu & Sutskever, 2020), demonstrating that it
is capable of solving a curriculum of increasingly difficult
problems out of a set of formal statements of sufficiently var-
ied difficulty. Our results suggest that the lack of self-play
in the formal mathematics setup can be effectively compen-
sated for by automatically as well as manually curated sets
of formal statements, which are much cheaper to formalize
than full proofs. Finally, we hope that the statement curricu-
lum learning methodology we presented in this work will
help accelerate progress in automated reasoning, especially
if scaled with automated generation and curation of formal
statements in the future.
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A. Related Work
Deep learning applied to premise selection and proof guidance Early applications of deep learning to formal mathemat-
ics focused primarily on premise selection and proof guidance. DeepMath (Irving et al., 2016) explored the use of CNNs
and RNNs to predict whether a premise is useful to demonstrate a given conjecture. Their results were later improved with
FormulaNet (Wang et al., 2017) by the use of graph neural networks, reminiscent of NeuroSAT (Selsam et al., 2018). Proof
guidance consists in selecting the next clause to process inside an automated theorem prover. Loos et al. (2017) investigated
the use of models similar to DeepMath’s for proof guidance and demonstrated a significant uplift on the Mizar library.
More recently Firoiu et al. (2021) demonstrated the potential of deep learning techniques to be competitive with E prover’s
heuristics when applied to resolution calculus while training on fully synthetic data.

Deep learning applied to automated theorem-proving HOList (Bansal et al., 2019a) proposes a formal environment
based on HOL Light. They achieve their best performance (Bansal et al., 2019b) with a GNN model designed for premise
selection and the use of exploration. The same team studied the use of a skip-tree objective with Transformers on formal
statements (Rabe et al., 2020), demonstrating, along with GPT-f (Polu & Sutskever, 2020), the potential of leveraging
Transformers for formal reasoning. GamePad (Huang et al., 2018) and CoqGymn/ASTactic (Yang & Deng, 2019) introduce
environments based on the Coq theorem prover. ASTactic generates tactics as programs by sequentially expanding a
partial abstract syntax tree. Urban & Jakubův (2020) studied the capability of GPT-2 to produce useful conjectures for the
Mizar library and IsarStep (Li et al., 2020) explored the synthesis of intermediate propositions in declarative proofs for
Isabelle/HOL using Transformers.

B. Lean-gym
lean-gym presents the following API:

• init-search: declaration → tactic_state. Takes a declaration name (a theorem name from the loaded library)
and initializes a search while setting the run-time environment at that particular declaration. It returns the initial tactic
state along with a fresh search_id and tactic_state_id.

• run_tac: (tactic_state, tactic) → tactic_state. Takes a search_id and a tactic_state_id to identify a
tactic state, as well as a tactic string to apply to it. It returns a new tactic state and its associated tactic_state_id.

Below is an example in-terminal trace demonstrating the use of lean-gym’s REPL interface:

$ lean --run src/repl.lean
["init_search", ["int.prime.dvd_mul", ""]]
{

"error":null,
"search_id":"0",
"tactic_state":"⊢ ∀ {m n : Z} {p : N}, nat.prime p →

↑p | m * n → p | m.nat_abs ∨ p | n.nat_abs",
"tactic_state_id":"0"

}
...
["run_tac",["1","1","apply (nat.prime.dvd_mul hp).mp"]]
{

"error":null,
"search_id":"1",
"tactic_state":"m n : Z, p : N, hp : nat.prime p, h : ↑p | m * n

⊢ p | m.nat_abs * n.nat_abs",
"tactic_state_id":"2"

}
...

Using lean-gym is virtually equivalent to opening a Lean editor at a specific theorem, deleting its proof and interacting
with Lean to reconstruct it.
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Table 3. Mix and source of data involved in the updated WebMath pre-training.
Dataset Size Mix

Github Python 179 GB 25%
arXiv Math 10 GB 25%
Math StackExchange 2 GB 25%
PACT mix2 28 GB 17%
Math Overflow 200 M 5%
ProofWiki 30 M 2%
PlanetMath 25 M 1%

Providing a REPL interface over the standard input/output makes it very easy to integrate lean-gym from any programming
language. Writing a wrapper in Python, as an example, only takes a few dozen lines of code. Since lean-gym is a Lean
program, managing the loaded libraries is done directly using Lean’s own infrastructure (using leanpkg.toml), making
it quite straightforward to have access to both mathlib and miniF2F statements from the same lean-gym instance.

Note that lean-gym is stateful, meaning that distributing proof searches on multiple lean-gym instances requires to
track which instance is associated with which proof search. In practice, we were able to scale the use of lean-gym to
thousands of cores running thousands of proof searches in parallel. Finally, lean-gym’s REPL interface is blocking,
preventing inner-proof search parallelization, though this limitation can probably be removed in the future.

C. WebMath
Our updated WebMath pre-training dataset consists in the mix presented in table 3.

As demonstrated in table 3, we empirically up-weighted (compared to their token size) parts of WebMath with high-quality
mathematical content while making sure they don’t overfit (despite running >1 epochs for some of them). We also included
PACT mix2 directly in the WebMath pre-training to avoid having to sequence more than two pre-training phases to prepare
Lean models.

D. Synthetic inequalities
D.1. Design

The generator consists of three phases:

Seed expressions generation The first phase consists in generating seed expressions for which we track the sign. We start
by initializing an expression set E composed of tuples of expressions and sign constraints, by generating nv variable names
(letters) assumed strictly positive as well as nn integers (for which we know the sign). For NS rounds, we compose elements
of E using unary (log(·), log(1/·), sqrt(·)) or binary operations (+,−,×, /,∧,max,min) for which we can deduce the
sign based on the sign condition of the input expression(s) and re-inject the resulting expression and sign constraint in E.
This produces a set E of signed seed expressions of size nv + nn +NS .

Inequality composition The second phase consists in generating inequalities from well known inequality theorems (AM-
GM, Trivial inequality, Cauchy-Schwarz, Bernoulli, Young, Hölder) taking as input to these theorems expressions from E
based on the sign constraints required for each theorem. We finally compose these inequalities ND times using compositions
theorems detailed in D.2. The resulting inequality is a composed inequality of depth ND based on nv + nn +NS seed
expressions.

Simplification We finally post-process these inequalities so that they are parsable by Lean and run them through Lean’s
simp tactic for a final simplification.

ND and NS together control for the difficulty of the resulting inequality. ND controls depth of composition, while NS

controls for obfuscation as it increases the complexity of the input expressions to the composed inequalities. When sampling
inequalities, we nn = 4 and randomly sample 2 ≤ nv ≤ 8 at each generation. We report below examples of generated
inequalities for various values of ND and NS .
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D.2. List of inequality composition theorems

Below is the list of theorem names from mathlib that we use to compose inequalities together. One third of the time, we only
transform the current composed inequality with one of the following theorems:

• neg_le_neg

• inv_le_inv

• mul_self_le_mul_self

• div_le_one_of_le

We otherwise compose the current composed inequality with a newly generated inequality using the following theorems:

• mul_le_mul

• add_le_add

• div_le_div

• mul_le_mul_of_nonneg

• le_mul_of_ratio

D.3. Examples

ND = 0 NS = 0

Compositions AmGm a b (67:R) ((1:R)/(10:R)) ((1:R)/(10:R)) ((8:R)/(10:R))

Statement

theorem synthetic_ineq_nb_seed_var_0_depth_0_p_1
(a b : R)
(h0 : 0 < a)
(h1 : 0 < b) :
(67:R) ^ ((8:R) / (10:R)) * b ^ (10:R)−¹ *

a ^ (10:R)−¹ ≤ (8:R) / (10:R) * (67:R) +
(10:R)−¹ * a + b * (10:R)−¹ := sorry

ND = 0 NS = 4

Compositions Sqnonneg a ((a) + ((-68:R)))

Statement

theorem synthetic_ineq_nb_seed_var_4_depth_0_p_4
(a b : R)
(h0 : 0 < a)
(h1 : 0 < b) :
(2:R) * (a * (a + -(68:R))) ≤
(a + -(68:R)) ^ 2 + a ^ 2 := sorry
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ND = 4 NS = 4

Compositions

AddLeAdd
Bernoulli 99 c
AddLeAdd
SelfDivConst ((a) / (f)) 6
LeMulOfRatio
SelfDivConst c 70
DivLeDiv
Cauchy ((a) / (f)) d c (log (((59:R) + f)))
Young ((a) / (f)) a ((3:R)/(2:R)) ((3:R)/(1:R))

Statement

theorem synthetic_ineq_nb_seed_var_4_depth_4_p_13
(a b c d e f : R)
(h0 : 0 < a)
(h1 : 0 < b)
(h2 : 0 < c)
(h3 : 0 < d)
(h4 : 0 < e)
(h5 : 0 < f) :
(1:R) + (99:R) * c + (a / f / (6:R) + a * (a / f) /
((d ^ 2 + a ^ 2 / f ^ 2) *
(real.log ((59:R) + f) ^ 2 + c ^ 2))) ≤
((a / f) ^ ((3:R) / (2:R)) / ((3:R) / (2:R)) +
a ^ 3 / (3:R)) /
(real.log ((59:R) + f) * d + a / f * c) ^ 2 *
(c / (c / (70:R))) + a / f + (c + (1:R)) ^ 99 := sorry
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E. Example proofs from mathlib-train

We present in this section original proofs found by our models from mathlib-train, compared with their ground-truth version.

comap_eq_of_inverse

Statement

lemma comap_eq_of_inverse {f : filter α} {g : filter β}
{ϕ : α → β} (ψ : β → α) (eq : ψ ◦ ϕ = id)
(hϕ : tendsto ϕ f g) (hψ : tendsto ψ g f) :
comap ϕ g = f :=

Ground-truth

begin
refine ((comap_mono $
map_le_iff_le_comap.1 hψ).trans _).antisymm
(map_le_iff_le_comap.1 hϕ),

rw [comap_comap, eq, comap_id],
exact le_rfl

end

Model proof

begin
refine le_antisymm _ (filter.map_le_iff_le_comap.1 hϕ),
refine λ s hs, _,
rw mem_comap,
use [ψ −¹’ s, hψ hs],
rw [← preimage_comp, eq, preimage_id]

end
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sum_range_sub_sum_range

Statement

lemma sum_range_sub_sum_range {α : Type*} [add_comm_group α]
{f : N → α} {n m : N} (hnm : n ≤ m) :∑

k in range m, f k -
∑

k in range n, f k =∑
k in (range m).filter (λ k, n ≤ k), f k :=

Ground-truth

begin
rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _

(range m)), sub_eq_iff_eq_add,
← eq_sub_iff_add_eq, add_sub_cancel’],

refine finset.sum_congr
(finset.ext $ λ a, 〈λ h, by simp at *; finish,
λ h, have ham : a < m :=

lt_of_lt_of_le (mem_range.1 h) hnm,
by simp * at *〉)

(λ _ _, rfl)
end

Model proof

begin
rw [← sum_Ico_eq_sub _ hnm],
congr,
apply finset.ext,
simp [Ico.mem, *],
tauto

end
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prod_inv_distrib

Statement
lemma prod_inv_distrib : (

∏
x in s, (f x)−¹) =

(
∏

x in s, f x)−¹ :=

Ground-truth

begin
classical,
by_cases h : ∃ x ∈ s, f x = 0,
{ simpa [prod_eq_zero_iff.mpr h, prod_eq_zero_iff]

using h },
{ push_neg at h,
have h’ := prod_ne_zero_iff.mpr h,
have hf : ∀ x ∈ s, (f x)−¹ * f x = 1 := λ x hx,
inv_mul_cancel (h x hx),
apply mul_right_cancel’ h’,
simp [h, h’, ← finset.prod_mul_distrib,
prod_congr rfl hf] }

end

Model proof

begin
classical; induction s using
finset.induction_on with a s has ih,

{ simp, },
simp only [has, prod_insert has, mul_inv_rev’],
finish

end
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F. Example proofs from minif2f-{test,valid,curriculum}

We present in this section proofs found by our models from minif2f-{test,valid,curriculum}, demonstrating some of the
capabilities emerging from our training procedure.

F.1. Qualitative analysis of proofs

We provide qualitative insights in the nature of the proofs found by our models, which we believe are useful to build a better
intuition of their capabilities beyond pass rate numbers. Throughout this section, we refer to statements and solutions found
by our models that are presented in Appendix F along with comments describing the specificity of each proof.

First, we observe that a large number of olympiad problems that are designed to be computationally challenging for humans
are rendered trivial for our models through the use of Lean tactics. As an example, mathd_numbertheory_447 which
is not necessarily considered straightforward for humans, can be closed in Lean by a simple refl (proof found by our
models).

In recent years, Lean’s mathlib community has developed high-powered tactics such as linarith/nlinarith
(solves (non)linear inequalities), norm_num (normalizes numerical expressions), simp (simplifies goals and hypotheses)
and ring (normalizes expressions in a ring). These tactics can be used with arguments to guide their underlying search
procedure. As mentioned in Zheng et al. (2021), we confirm here that our models acquire advanced capabilities to leverage
these high-level tactics by providing exogenous arguments which are not present in the current tactic state. The generation
of these exogenous arguments through language modeling seems to require a non-trivial amount of mathematical intuition.
imo_1964_p2, imo_1961_p1 and aime_1990_p15 are good examples of such uses.

We have also observed a number of proofs that require multiple non-trivial reasoning steps through the use of lower-
level tactics such as use, have, or by_cases that generally involve producing a witness or chaining implications,
requiring the generation of context specific exogenous terms. These interesting reasoning steps are structurally different
from simple normalization, simplification and rewriting of hypotheses or goals because they heavily rely on our models
ability to generate meaningful cuts or witnesses. This capability is, in our opinion, the most exciting stepping stone
towards solving more challenging mathematical problems. See, aopsbook_v2_c8_ex1, amc12b_2020_p6 and
mathd_train_algebra_217 for examples of such proofs.

More generally, we also observe that proofs generated by our models have a distinctive style compared to proofs formalized
by humans. This stems in part from the model’s capability to leverage high-level tactics in a way that is challenging for
humans as discussed in this section (e.g. one-liners such as nlinarith [sq_nonneg (x - y), sq_nonneg (y
- z)] where humans would generally decompose the problem in a less machine-like way). Additionally, as a result of our
search procedure and despite the bias towards shorter proofs introduced by our value function, extraneous proofsteps (such
as reversion/introduction of hypotheses, or no-op rewrites) are often interleaved with useful ones, which rarely happens in
human formalizations.
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imo_1961_p1

Natural language

Solve the system of equations:

x+ y + z = a

x2 + y2 + z2 = b2

xy = z2

where a and b are constants. Give the conditions that a and b must satisfy so that x, y, z (the
solutions of the system) are distinct positive numbers. Note: the formalized statement in miniF2F is
a weaker problem as it focuses on the second part of the question, providing the actual conditions,
and asking for a proof that the requirement entails them.

Model proof

theorem imo_1961_p1
(x y z a b : R)
(h0 : 0 < x ∧ 0 < y ∧ 0 < z)
(h1 : x ̸= y)
(h2 : y ̸= z)
(h3 : z ̸= x)
(h4 : x + y + z = a)
(h5 : x^2 + y^2 + z^2 = b^2)
(h6 : x * y = z^2) :
0 < a ∧ b^2 < a^2 ∧ a^2 < 3 * b^2 :=

begin
revert_all,
intros,
rw mul_comm,
split,
{ nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)], },
split,
{ nlinarith [sq_nonneg (z - 1)], },
revert h3 h4,
field_simp [mul_comm a b],
rw [mul_comm, ← h5],
contrapose!,
rw mul_comm at h6,
rw mul_comm,
intro h,
nlinarith [sq_nonneg (x - y), sq_nonneg (y - z)]

end

Comments The model is able to close this problem by splitting into cases, contraposing for the last case and
using nlinarith. It must be noted that the arguments for the first two nlinarith uses are not
necessary, however the [sq_nonneg (x - y), sq_nonneg (y - z)] argument provided
on the last line is crucial to close the goal and are completely exogenous (present in no form in the
tactic state before).
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imo_1964_p2

Natural language
Suppose a, b, c are the sides of a triangle. Prove that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc

Model proof

theorem imo_1964_p2
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : c < a + b)
(h2 : b < a + c)
(h3 : a < b + c) :
a^2 * (b + c - a) + b^2 * (c + a - b) + c^2 * (a + b - c)

≤ 3 * a * b * c :=
begin

nlinarith [sq_nonneg (b - a), sq_nonneg (c - b),
sq_nonneg (a - c), sq_nonneg (c - a)]

end

Comments The model is able to close an IMO problem in one-line. It correctly provides exogenous arguments to
nlinarith, which are necessary to close the goal. Note that either one of the last two arguments in
the sequence [sq_nonneg (b - a), sq_nonneg (c - b), sq_nonneg (a - c),
sq_nonneg (c - a)] can be omitted.
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aime_1990_p15

Natural language

Find ax5 + by5 if the real numbers a, b, x, and y satisfy the equations

ax+ by = 3,

ax2 + by2 = 7,

ax3 + by3 = 16,

ax4 + by4 = 42.

Note: the formalized statement in miniF2F provides the answer and asks for a proof of it.

Model proof

theorem aime_1990_p15
(a b x y : R)
(h0 : a * x + b * y = 3)
(h1 : a * x^2 + b * y^2 = 7)
(h2 : a * x^3 + b * y^3 = 16)
(h3 : a * x^4 + b * y^4 = 42) :
a * x^5 + b * y^5 = 20 :=

begin
revert_all,
intros a b x y h3 h1 h2 h4,
ring_nf at h1 h2,
rw ← sub_eq_zero at h1,
nlinarith [sq_nonneg (x - y), sq_nonneg (a + b - 2),
sq_nonneg (x + y - (2:R)), sq_nonneg (a - b - 2)]

end

Comments The model is able to close a challenging AIME problem by providing crucial exogenous arguments
sq_nonneg (x - y) and sq_nonneg (x + y - (2 : R)) to nlinarith, which are
required to close the goal (while the other two can be removed).
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mathd_train_algebra_217

Natural language
Let f(x) = Ax+B and g(x) = Bx+A, where A ̸= B.
If f(g(x))− g(f(x)) = B −A, what is A+B? Note: the formalized statement in our curriculum
provides the answer and asks for a proof of it.

Model proof

theorem mathd_train_algebra_217
(a b : R)
(f g : R → R)
(h0 : ∀ x, f x = a * x + b)
(h1 : ∀ x, f x = b * x + a)
(h2 : a ̸= b)
(h3 : ∀ x, f (g x) - g (f x) = b - a) :
a + b = 0 :=

begin
revert_all,
intros a b,
intros f g,
contrapose!,
rintro 〈h0, 〈h1, h2〉〉,
use (0 : R),
simp only [sub_eq_iff_eq_add, h0, mul_zero] at *,
simp only [*, zero_add],
norm_num at h0

end

Comments The model is able to close the goal by contraposing, supplying a witness by the use of use (0 : R)
and finally leveraging the simp and norm_num. This example demonstrates the model’s ability to
chain multiple non-trivial steps of reasoning including the generation of witnesses.
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amc12b_2020_p6

Natural language

For all integers n ≥ 9, the value of

(n+ 2)!− (n+ 1)!

n!

is always which of the following?
(A) a multiple of 4 (B) a multiple of 10 (C) a prime number
(D) a perfect square (E) a perfect cube.

Model proof

theorem amc12b_2020_p6
(n : N)
(h0 : 9 ≤ n) :
∃ x : N, (x:R)^2 = (nat.factorial (n + 2) -
nat.factorial (n + 1)) / nat.factorial n :=

begin
revert_all,
intros n hn,
use n + 1,
field_simp [nat.factorial_ne_zero, pow_succ’],
ring_exp

end

Comments The model exhibits here its ability to implicitly interpret factorial expressions by guessing the correct
answer with the use of use n + 1 and straightforwardly proving its claim right after.
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mathd_algebra_140

Natural language
The expression 24x2 − 19x− 35 can be written as (Ax− 5)(2Bx+ C), where A, B, and C are
positive numbers. Find AB − 3C. Note: the formalized statement in miniF2F provides the answer
and asks for a proof of it.

Model proof

theorem mathd_algebra_140
(a b c : R)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : ∀ x, 24 * x^2 - 19 * x - 35 =

(((a * x) - 5) * ((2 * (b * x)) + c))) :
a * b - 3 * c = -9 :=

begin
revert_all,
rintro a b c h1,
rw mul_comm,
rw ←sub_eq_zero,
field_simp,
rw sub_eq_add_neg,
rw ← eq_neg_iff_add_eq_zero,
rw [mul_comm, ← sub_eq_add_neg, sub_eq_add_neg,
← sub_eq_add_neg],
rw ←sub_eq_zero,
simp only [mul_add, neg_mul_eq_neg_mul_symm, mul_comm,
add_left_comm],
norm_num,
simp only [pow_two],
intro h0,
rw ← sub_eq_zero,
linarith [h1.2, h1.1, h0 3, h0 1, h0 2]

end

Comments The model mostly "struggles" to make progress up to the last line. There, it presents us with
the idea to specialize the statement given in h1 (which became h0 in the process of the proof) at
three consecutive natural numbers 1, 2, 3 which closes the goal with nlinarith. This proof is
interesting as it demonstrates the model’s ability to evaluate symbolic expressions implicitly.
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aime_1984_p1

Natural language
Find the value of a2 + a4 + a6 + a8 + . . .+ a98 if a1, a2, a3 . . . is an arithmetic progression with
common difference 1, and a1 + a2 + a3 + . . . + a98 = 137. Note: the formalized statement in
miniF2F provides the answer and asks for a proof of it.

Model proof

theorem aime_1984_p1
(u : N → Q)
(h0 : ∀ n, u (n + 1) = u n + 1)
(h1 :

∑
k in finset.range 98, u k.succ = 137) :∑

k in finset.range 49, u (2 * k.succ) = 93 :=
begin
revert_all,
simp [finset.sum_range_succ],
ring,
simp [pow_succ, mul_comm, add_left_comm, add_assoc],
simp [two_mul],
rintro p,
revert p,
simp [add_comm],
intros p hp,
simp [hp], ring_nf,
intros,
nlinarith

end

Comments The model finds a rather short proof of the statement compared to typical
human formalizations (see https://gist.github.com/MantasBaksys/
3efd5c0d42f440d16c09076db42822f2).

https://gist.github.com/MantasBaksys/3efd5c0d42f440d16c09076db42822f2
https://gist.github.com/MantasBaksys/3efd5c0d42f440d16c09076db42822f2
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aopsbook_v2_c8_ex1

Natural language Consider the sequence { n
n+1

} = 1
2

, 2
3

, 3
4

, ...
Prove that this sequence tends to 1 as n→ ∞

Model proof

theorem aopsbook_v2_c8_ex1
(u : N → R)
(h0 : ∀ n, u n = n / (n + 1)) :
filter.tendsto u filter.at_top (N 1) :=

begin
revert_all,
simp [← nnreal.coe_one],
norm_cast,
intros,
revert h0,
assume h,
simp [tendsto_const_nhds, ← nnreal.coe_one, h],
revert u,
assume f,
norm_num,
rw tendsto_iff_norm_tendsto_zero,
assume H,
convert tendsto_norm_zero.comp
tendsto_one_div_add_at_top_nhds_0_nat,

funext n,
have h0 : (((n:R) + 1) : R) ̸= 0,
{ norm_cast, exact n.succ_ne_zero, },
rw H,
field_simp [h0, norm_neg],
ring,
rw [← sub_eq_zero],
simp [← sub_eq_zero],
simp [sub_eq_add_neg],

end

Comments An interesting example of a generated have statement, denoted by h0, which is introduced as a cut
in order to simplify the expression containing divisions by using field_simp[h0, norm_neg]
at a later step.

mathd_numbertheory_447

Natural language What is the sum of the units digits of all the multiples of 3 between 0 and 50? Note: the formalized
statement in miniF2F provides the answer and asks for a proof of it.

Model proof

theorem mathd_numbertheory_447 :∑
k in finset.filter (λ x, 3|x)

(finset.erase (finset.range 50) 0), (k % 10) = 78 :=
begin
refl

end

Comments Because the predicate λ x, 3|x is registered as decidable over N, we can state the problem by
using finset.filter, which is computable. Hence, refl is able to close the goal.


