
Generative Pretraining from Pixels

Mark Chen 1 Alec Radford 1 Rewon Child 1 Jeff Wu 1 Heewoo Jun 1 David Luan 1 Ilya Sutskever 1

Abstract
Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input struc-
ture. Despite training on low-resolution ImageNet
without labels, we find that a GPT-2 scale model
learns strong image representations as measured
by linear probing, fine-tuning, and low-data clas-
sification. On CIFAR-10, we achieve 96.3% ac-
curacy with a linear probe, outperforming a su-
pervised Wide ResNet, and 99.0% accuracy with
full fine-tuning, matching the top supervised pre-
trained models. We are also competitive with
self-supervised benchmarks on ImageNet when
substituting pixels for a VQVAE encoding, achiev-
ing 69.0% top-1 accuracy on a linear probe of our
features.

1. Introduction
Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000’s, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). It was believed that a model which learned
the data distribution P (X) would also learn beneficial fea-
tures for the subsequent supervised modeling of P (Y |X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben-
gio, 2010), and normalization strategies (Ioffe & Szegedy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt
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on the benefits of deep unsupervised representations and re-
ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
et al., 2015) have shown significant promise. A combination
of new training objectives (Oord et al., 2018), more recent
architectures (Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even outperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLP, this class of methods is due
for a modern re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
a flexible architecture (Vaswani et al., 2017), a tractable and
efficient likelihood based training objective (Larochelle &
Murray, 2011; Oord et al., 2016), and significant compute
resources (1024 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns
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Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.

representations that significantly improve the state of the
art in low-resolution unsupervised representation learning
settings.

This is especially promising as our architecture uses a dense
connectivity pattern which does not encode the 2D spatial
structure of images yet is able to match and even outperform
approaches which do. We report a set of experiments charac-
terizing the performance of our approach on many datasets
and in several different evaluation settings (low data, linear
evaluation, full fine-tuning). We also conduct several exper-
iments designed to better understand the achieved perfor-
mance of these models. We investigate how representations
are computed inside our model via the performance of linear
probes as a function of model depth as well as studying how
scaling the resolution and parameter count of the approach
affects performance.

2. Approach
Our approach consists of a pre-training stage followed by
a fine-tuning stage. In pre-training, we explore both the
auto-regressive and BERT objectives. We also apply the
sequence Transformer architecture to predict pixels instead
of language tokens.

One way to measure representation quality is to fine-tune for
image classification. Fine-tuning adds a small classification
head to the model, used to optimize a classification objective
and adapts all weights. Pre-training can be viewed as a
favorable initialization or as a regularizer when used in
combination with early stopping (Erhan et al., 2010).

Another approach for measuring representation quality uses
the pre-trained model as a feature extractor. In particular,
given labeled examples (X,Y ), the model is applied to X
to produce features fX . Then, a linear classifier is trained
on (fX , Y ). Linear probing captures the intuition that good
features should linearly separate the classes of transfer tasks.
Furthermore, linear probes help disentangle feature quality
from model architecture: in fine-tuning, one model may
outperform another because its architecture is more suited

for the downstream task rather than because of better pre-
training.

We begin this section by defining the auto-regressive and
BERT objectives in the context of images. Next, we outline
implementation details for our transformer decoder. Finally,
we describe how the transformer is used for fine-tuning and
how features are extracted for linear probes.

2.1. Pre-training

Given an unlabeled dataset X consisting of high dimen-
sional data x = (x1, ..., xn), we can pick a permutation π
of the set [1, n] and model the density p(x) auto-regressively
as follows:

p(x) =

n∏
i=1

p(xπi
|xπ1

, ..., xπi−1
, θ)

When working with images, we pick the identity permuta-
tion πi = i for 1 ≤ i ≤ n, also known as raster order. We
train our model by minimizing the negative log-likelihood
of the data:

LAR = E
x∼X

[− log p(x)]

We also consider the BERT objective, which samples a
sub-sequence M ⊂ [1, n] such that each index i indepen-
dently has probability 0.15 of appearing in M . We call M
the BERT mask, and we train our model by minimizing
the negative log-likelihood of the “masked” elements xM
conditioned on the “unmasked” ones x[1,n]\M :

LBERT = E
x∼X

E
M

∑
i∈M

[
− log p

(
xi|x[1,n]\M

)]
In pre-training, we pick one of LAR or LBERT and mini-
mize the loss over our pre-training dataset.

2.2. Architecture

The transformer decoder takes an input sequence x1, ..., xn
of discrete tokens and produces a d-dimensional embedding
for each position. The decoder is realized as a stack of
L blocks, the l-th of which produces an intermediate em-
bedding hl1, ..., h

l
n also of dimension d. We use the GPT-2



Generative Pretraining from Pixels

(Radford et al., 2019) formulation of the transformer de-
coder block, which acts on an input tensor hl as follows:

nl = layer norm(hl)

al = hl + multihead attention(nl)

hl+1 = al + mlp(layer norm(al))

In particular, layer norms precede both the attention and
mlp operations, and all operations lie strictly on residual
paths. We find that such a formulation allows us to scale the
transformer with ease.

The only mixing across sequence elements occurs in the
attention operation, and to ensure proper conditioning when
training the AR objective, we apply the standard upper
triangular mask to the n×nmatrix of attention logits. When
using the BERT objective, no attention logit masking is
required: after applying content embeddings to the input
sequence, we zero out the positions in M .

Additionally, since we learn independent position embed-
dings for each sequence element, our BERT model has no
positional inductive biases (i.e. it is permutation invariant).
Put another way, any spatial relationships between posi-
tions must be learned by the model at train time. This is
not entirely true for the AR model, as choosing the raster
order also fixes a prespecified ordering of the condition-
als. Nevertheless, permutation invariance is a property in
strong contrast to convolutional neural networks, which in-
corporate the inductive bias that features should arise from
spatially proximate elements.

Following the final transformer layer, we apply a layer norm
nL = layer norm(hL), and learn a projection from nL to
logits parameterizing the conditional distributions at each
sequence element. When training BERT, we simply ignore
the logits at unmasked positions.

2.3. Fine-tuning

When fine-tuning, we average pool nL across the sequence
dimension to extract a d-dimensional vector of features per
example:

fL = 〈nLi 〉i
We learn a projection from fL to class logits, which we use
to minimize a cross entropy loss LCLF .

While fine-tuning on LCLF yields reasonable downstream
performance, we find empirically that the joint objective

LGEN + LCLF

LGEN ∈ {LAR, LBERT } works even better. Similar find-
ings were reported by Radford et al. (2018).

2.4. Linear Probing

Extracting fixed features for linear probing follows a similar
procedure to fine-tuning, except that average pooling is not

always at the final layer:

f l = 〈nli〉i

where 0 ≤ l ≤ L. We will show in the experiments section
that the best features often lie in the middle of the network.
As in fine-tuning, we project these intermediate features
to produce class logits. Because we view the features as
fixed when linear probing, this projection contains the only
trainable weights, so we can only optimize LCLF .

3. Methodology
Although supervised pre-training is the dominant paradigm
for image classification, curating large labeled image
datasets is both expensive and time consuming. Instead
of further scaling up labeling efforts, we can instead as-
pire to learn general purpose representations from the much
larger set of available unlabeled images and fine-tune them
for classification. We investigate this setting using Ima-
geNet as a proxy for a large unlabeled corpus, and small
classic labeled datasets (CIFAR-10, CIFAR-100, STL-10)
as proxies for downstream tasks.

Even in cases where labels are available, unsupervised or
self-supervised pre-training can still provide benefits in data
efficiency or on fine-tuning speed. We investigate this set-
ting by pre-training on ImageNet without labels and then
fine-tuning or linear probing with labels.

3.1. Dataset and Data Augmentation

We use the ImageNet ILSVRC 2012 training dataset, split-
ting off 4% as our experimental validation set and report
results on the ILSVRC 2012 validation set as our test set.
For CIFAR-10, CIFAR-100 and STL-10, we split off 10%
of the provided training set instead. We ignore the provided
unlabeled examples in STL-10, which constitute a subset of
ImageNet.

When pre-training or fine-tuning on ImageNet, we make use
of lightweight data augmentation. First, we randomly resize
the image such that the shorter sidelength is in the range
[256, 384]. Next, we take a random 224× 224 crop. When
evaluating on ImageNet, we resize the image such that the
shorter sidelength is 224, and use the single 224×224 center
crop.

When full-network fine-tuning on CIFAR-10 and CIFAR-
100, we use the augmentation popularized by Wide Residual
Networks: 4 pixels are reflection padded on each side, and
a 32× 32 crop is randomly sampled from the padded image
or its horizontal flip (Zagoruyko & Komodakis, 2016).

Once optimal hyperparameters are found, we fold our ex-
perimental validation set back into the training set, retrain
the model, and report numbers on the respective test set.
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3.2. Context Reduction

Because the memory requirements of the transformer de-
coder scale quadratically with context length when using
dense attention, we must employ further techniques to re-
duce context length. If we naively trained a transformer on
a sequence of length 2242× 3, our attention logits would be
tens of thousands of times larger than those used in language
models and even a single layer would not fit on a GPU. To
deal with this, we first resize our image to a lower resolution,
which we call the input resolution (IR). Our models have an
IR of 322 × 3, 482 × 3, 962 × 3, or 1922 × 3.

An IR of 322 × 3 is still quite computationally intensive.
While even lower IRs are tempting, prior work has demon-
strated human performance on image classification begins
to drop rapidly below this size (Torralba et al., 2008). When
using an IR of 322× 3 or 482× 3, we instead further reduce
context size by a factor of 3 by clustering (R, G, B) pixel
values using k-means with k = 512. A similar approach
was applied to spatial patches by Ranzato et al. (2014). We
call the resulting context length (322 or 482) the model
resolution (MR). Note that this reduction breaks permuta-
tion invariance of the color channels, but keeps the model
spatially invariant.

To push performance on ImageNet linear probes, we also
work with IRs of 962× 3 or 1922× 3. Here, only clustering
pixels produces a context that is still too large. Using a
VQ-VAE (van den Oord et al., 2017) with a latent grid size
of 482, we can downsample our images and stay at a MR of
482. We choose a latent vocabulary size of 4096, the lowest
size at which we do not observe reconstruction artifacts.
Our clustering of (R, G, B) values can also be interpreted
as the training of a VQ-VAE with an identity encoder and
decoder.

For the VQ-VAE architecture, we choose a small encoder
and decoder pair (< 1M parameters) to aid the sequence
Transformer in modeling latent codes. Although downsam-
pling with VQ-VAE destroys spatial permutation invariance,
the receptive field for a latent code is only 16 × 16 for an
IR of 962 × 3 and 34× 34 for an IR of 1922 × 3. Because
the encoder is so small, information stays relatively local.

3.3. Model

Our largest model, iGPT-L, is essentially identical to GPT-2.
Both models contain L = 48 layers, but we use an em-
bedding size of d = 1536 (vs 1600), resulting in a slightly
reduced parameter count (1.4B vs 1.5B). We use the same
model code as GPT-2, except that we initialize weights in
the layer-dependent fashion as in Sparse Transformer (Child
et al., 2019) and zero-initialize all projections producing
logits.

We also train iGPT-M, a 455M parameter model with L =

36 and d = 1024 and iGPT-S, a 76M parameter model with
L = 24 and d = 512 to study the effect of model capacity
on representation quality in a generative model.

3.4. Training

When pre-training, we use a batch size of 128 and train for
1000000 iterations using Adam with β1 = 0.9 and β2 =
0.95. We sequentially try the learning rates 0.01, 0.003,
0.001, 0.0003, ..., stopping at the first local minimum. The
learning rate is warmed up for one epoch, and then decays
to 0 following a cosine schedule. No dropout is used.

When fine-tuning, we use the same batch size and Adam
hyperparameters. Here, we do not employ a cosine sched-
ule, and early stop once we reach the maximum validation
accuracy. Again, no dropout is used.

When running a linear probe on ImageNet, we follow recent
literature and use SGD with momentum 0.9 and a high
learning rate (we try the values 30, 10, 3, ... in the manner
described above) (He et al., 2019). We train for 1000000
iterations with a cosine learning rate schedule. Finally, when
running a linear probe on CIFAR-10, CIFAR-100, or STL-
10, we use the L-BFGS algorithm for consistency with prior
results (Pedregosa et al., 2011).

4. Experiments and Results
We begin with experiments and results from the autore-
gressive formulation of iGPT. Comparisons with the BERT
formulation appear in Section 4.6.

4.1. What Representation Works Best in a Generative
Model Without Latent Variables?

Figure 2. Representation quality heavily depends on the layer from
which we extract features. In contrast with supervised models, the
best representations for these generative models lie in the middle of
the network. We plot this unimodal dependence on depth showing
linear probes on CIFAR-10, CIFAR-100, and STL-10.

In supervised pre-training, representation quality tends to
increase monotonically with depth, such that the best rep-
resentations lie at the penultimate layer (Zeiler & Fergus,
2014). Indeed, since a linear layer produces logits from pre-
logits, a high performing classifier necessarily achieves high
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accuracy on a linear probe of its pre-logits. If a downstream
task also involves classification, it is empirically validated
that penultimate features perform well.

With generative pre-training, it is not obvious whether a task
like pixel prediction is relevant to image classification. This
suggests that the penultimate layer of a model trained for
pixel prediction might not produce the most useful repre-
sentations for classification. Latent variable models such as
VAEs can avoid this issue by explicitly learning a represen-
tation of the input data, but deep autoregressive generative
models have the same width and connectivity pattern at
every layer. Our first experiment studies how representa-
tion quality varies over one set of candidate representations:
different layers of a generative model. We observe a very
different behavior from supervised learning: representations
first improve as a function of depth, and then, starting around
the middle layer, begin to deteriorate until the penultimate
layer (Figure 2).

This behavior potentially suggests that these generative mod-
els operate in two phases. In the first phase, each position
gathers information from its surrounding context in order
to build a more global image representation. In the second
phase, this contextualized input is used to solve the condi-
tional next pixel prediction task. This could resemble the
behavior of encoder-decoder architectures common across
deep learning, but learned within a monolithic architecture
via a pre-training objective.

Consequently, when evaluating a generative model with
a linear probe, it is important to search for the best layer.
Taking the final layer on CIFAR-10 decreases performance
by 2.4%, the difference between a baseline and a state-of-
the-art result. In all settings, we find that the dependence of
representation quality on depth is strongly unimodal.

4.2. Better Generative Models Learn Better
Representations

Using the linear probe as a tool for measuring representation
quality, we investigate whether better generative models (as
measured by log-prob on held-out data) also learn better
representations.

In Figure 3, we see that as validation loss on the auto-
regressive objective decreases throughout training, linear
probe accuracy increases as well. This trend holds across
several model capacities, with higher capacity models
achieving better validation losses. This highlights the im-
portance of scale for our approach. Note that for a given
validation loss value, bigger models also perform better.

4.3. Linear Probes on CIFAR and STL-10

In addition to CIFAR-10, we also evaluate linear probes on
CIFAR-100 and STL-10 (Figure 2) to check whether the

Figure 3. Plot of representation quality as a function of validation
generative loss. Each line tracks a model throughout generative
pre-training: the dotted markers denote checkpoints at steps 65K,
131K, 262K, 524K, and 1000K. The positive slope suggests a link
between improved generative performance and improved represen-
tation quality. Larger models produce better representations than
smaller ones both at the end of training and at the same value of
validation loss.

Table 1. Comparing linear probe accuracies between our models
and state-of-the-art models utilizing unsupervised ImageNet trans-
fer or supervised ImageNet transfer.

Model Acc Unsup Transfer Sup Transfer

CIFAR-10
AMDIM-L 91.2

√

ResNet-152 94
√

iGPT-L 96.3
√

CIFAR-100
AMDIM-L 70.2

√

ResNet-152 78
√

iGPT-L 82.8
√

STL-10
AMDIM-L 94.2

√

iGPT-L (IR 322 ·3) 95.5
√

iGPT-L (IR 962 ·3) 97.1
√

learned representations are useful across multiple datasets.
For this evaluation setting, we achieve state-of-the-art across
the entire spectrum of pre-training approaches (Table 1).
For example, on CIFAR-10, our model achieves 96.3%,
outperforming both AMDIM-L (pre-trained on ImageNet
without labels) and a ResNet-152 (pre-trained on ImageNet
with labels). In fact, on all three datasets a linear classifier fit
to the representations of iGPT-L outperforms the end-to-end
supervised training of a WideResNet baseline.

Note that our model is trained at the same input resolution
(IR) as CIFAR, whereas models trained at the standard Im-
ageNet IR may experience distribution shock upon linear
evaluation. As a counterpoint, though STL-10 has an IR
of 962 × 3, we still outperform AMDIM-L when we down-
sample to 322 × 3 before linear probing. We also note that
fine-tuning should allow models trained at high IR to adjust
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Table 2. Comparing linear probe accuracies between our models
and state-of-the-art self-supervised models. A blank input resolu-
tion (IR) corresponds to a model working at standard ImageNet
resolution. We report the best performing configuration for each
contrastive method, finding that our models achieve comparable
performance.

Method IR Params (M) Features Acc

Rotation orig. 86 8192 55.4
iGPT-L 322 ·3 1362 1536 60.3
BigBiGAN orig. 86 8192 61.3
iGPT-L 482 ·3 1362 1536 65.2
AMDIM orig. 626 68.1
MoCo orig. 375 8192 68.6
iGPT-L 1922 ·3 1362 16896 69.0
CPC v2 orig. 303 8192 71.5

to low resolution input.

4.4. Linear Probes on ImageNet

Recently, there has been a resurgence of interest in unsuper-
vised and self-supervised learning on ImageNet, evaluated
using linear probes on ImageNet. This is a particularly
difficult setting for us, since we cannot efficiently train at
the standard ImageNet input resolution (IR). Indeed, with a
model resolution (MR) of 322, we achieve only 60.3% best-
layer linear probe accuracy. As with CIFAR-10, scale is
critical to our approach: iGPT-M achieves 54.5% accuracy
and iGPT-S achieves 41.9% accuracy.

The first obvious optimization is to increase MR while stay-
ing within accelerator memory limits. With a MR of 482, we
achieve a best-layer accuracy of 65.2% using 1536 features.
However, since contrastive methods report their best results
on 8192 features, we would ideally evaluate iGPT with an
embedding dimension 8192 for comparison. Training such
a model is prohibitively expensive, so we instead concate-
nate features from multiple layers as an approximation. Our
features tend to be correlated across layers, so we find that
we need more of them to be competitive. If we concatenate
features from 11 layers centered at the best single layer, we
achieve an accuracy of 67.3% using 16896 features. Note
that we achieve this accuracy both working at low resolution
and without 2D structure.

To push performance even further, we use the VQ-VAE
data preprocessing step described in section 3.2, sacrificing
local spatial invariance. Interestingly, when training on an
IR of 1922 × 3 and a MR of 482, the best-layer accuracy
remains unchanged at 65.3%. However, the benefit of work-
ing with a higher IR is realized when we concatenate 11
layers centered at the best single layer, giving us an accu-
racy of 69.0%, competitive with recent contrastive learning
approaches (Table 2).

Table 3. Comparing fine-tuning performance between our models
and state-of-the-art models utilizing supervised ImageNet transfer.
We also include AutoAugment, the best performing model trained
end-to-end on CIFAR. Table results: AutoAugment (Cubuk et al.,
2019), GPipe (Huang et al., 2019), EfficentNet (Tan & Le, 2019)

Model Acc Unsup Transfer Sup Transfer

CIFAR-10
AutoAugment 98.5
GPipe 99.0

√

iGPT-L 99.0
√

CIFAR-100
iGPT-L 88.5

√

AutoAugment 89.3
EfficientNet 91.7

√

Because best-layer accuracy is insensitive to IR given a fixed
MR, a finding also observed by Sandler et al. (2019), we
conjecture that training on longer contexts (larger MRs) will
yield the largest improvements in linear probe accuracy. We
also suspect that features from wider models will outperform
concatenated layerwise features, which tend to be correlated
in residual networks (Kornblith et al., 2019).

4.5. Full Fine-tuning

To achieve even higher accuracy on downstream tasks, we
adapt the entire model for classification through fine-tuning.
Building off of the previous analysis, we tried attaching the
classification head to the layer with the best representations.
Though this setup trains faster than one with the head at-
tached at the end, the latter is able to leverage greater model
depth and eventually outperforms.

On CIFAR-10, we achieve 99.0% accuracy and on CIFAR-
100, we achieve 88.5% accuracy after fine-tuning. We out-
perform AutoAugment, the best supervised model on these
datasets, though we do not use sophisticated data augmenta-
tion techniques. In fact, 99.0% ties GPipe, the best model
which pre-trains using ImageNet labels.

On ImageNet, we achieve 66.3% accuracy after fine-tuning
at MR 322, a bump of 6% over linear probing. When fine-
tuning at MR 482, we achieve 72.6% accuracy, with a simi-
lar 7% bump over linear probing. However, our models still
slightly underperform Isometric Neural Nets (Sandler et al.,
2019), which achieves 70.2% at an IR of 282 × 3.

Finally, as a baseline for ImageNet fine-tuning, we train
the classification objective from a random initialization. At
MR 482, a model with tuned learning rate and dropout
achieves 53.2% after 18 epochs, 19.4% worse than the pre-
trained model. Comparatively, the pre-trained model is
much quicker to fine-tune, achieving the same 53.2% loss
in roughly a single epoch.
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When fine-tuning, it is important to search over learning
rates again, as the optimal learning rate on the joint training
objective is often an order of magnitude smaller than that
for pre-training. We also tried regularizing with dropout,
though we did not observe any clear benefits. It is easy to
overfit the classification objective on small datasets, so we
employ early stopping based on validation accuracy.

4.6. BERT

Figure 4. Comparison of auto-regressive pre-training with BERT
pre-training using iGPT-L at an input resolution of 322 × 3. Blue
bars display linear probe accuracy and orange bars display fine-
tune accuracy. Bold colors show the performance boost from
ensembling BERT masks. We see that auto-regressive models
produce much better features than BERT models after pre-training,
but BERT models catch up after fine-tuning.

Given the success of BERT in language, we train iGPT-L
at an input resolution of 322 × 3 and a model resolution
of 322 (Figure 4). On CIFAR-10, we observe that linear
probe accuracy at every layer is worse than that of the auto-
regressive model, with best-layer performance more than
1% lower. Best-layer accuracy on ImageNet is 6% lower.

However, during fine-tuning, BERT makes up much of this
gap. A fully fine-tuned CIFAR-10 model achieves 98.6%
accuracy, only 0.4% behind its auto-regressive counterpart,
while a fully fine-tuned ImageNet model achieves 66.5%,
slightly surpassing auto-regressive performance.

Finally, because inputs to the BERT model are masked at
training time, we must also mask them at evaluation time to
keep inputs in-distribution. This masking corruption may
hinder the BERT model’s ability to correctly predict image
classes. Therefore, we also try an evaluation scheme where
we sample 5 independent masks for each input and take the
modal prediction, breaking ties at random. In this setting,
CIFAR-10 results are largely unchanged, but on ImageNet,
we gain almost 1% on our linear probes and fine-tunes.

Table 4. Comparing performance on low-data CIFAR-10. By lever-
aging many unlabeled ImageNet images, iGPT-L is able to outper-
form methods such as Mean Teacher (Tarvainen & Valpola, 2017)
and MixMatch (Berthelot et al., 2019) but still underperforms the
state of the art methods (Xie et al., 2019; Sohn et al., 2020). Our
approach to semi-supervised learning is very simple since we only
fit a logistic regression classifier on iGPT-L’s features without any
data augmentation or fine-tuning - a significant difference from spe-
cially designed semi-supervised approaches. Other results reported
from FixMatch (Sohn et al., 2020).

Model 40 labels 250 labels 4000 labels

Mean Teacher 32.3 ± 2.3 9.2 ± 0.2
MixMatch 47.5 ± 11.5 11.0 ± 0.9 6.4 ± 0.1
iGPT-L 26.8 ± 1.5 12.4 ± 0.6 5.7 ± 0.1
UDA 29.0 ± 5.9 8.8 ± 1.1 4.9 ± 0.2
FixMatch RA 13.8 ± 3.4 5.1 ± 0.7 4.3 ± 0.1
FixMatch CTA 11.4 ± 3.4 5.1 ± 0.3 4.3 ± 0.2

4.7. Low-Data CIFAR-10 Classification

Evaluations of unsupervised representations often reuse su-
pervised learning datasets which have thousands to millions
of labeled examples. However, a representation which has
robustly encoded a semantic concept should be exceedingly
data efficient. As inspiration, we note that humans are able
to reliably recognize even novel concepts with a single ex-
ample (Carey and Bartlett 1978). This motivates evaluating
performance in a low-data regime as well. It is also a more
realistic evaluation setting for the potential practical use-
fulness of an approach since it better matches the common
real-world scenario of an abundance of raw data but a lack
of labels.

In contrast with recent approaches for low-data classifica-
tion, we do not make use of pseudo-labeling or data aug-
mentation. Instead, we work directly on a subset of the raw
supervised dataset, extracting features using our pre-trained
model, and training a linear classifier on those features.

As is standard in the low-data setting, we sample 5 random
subsets and report mean and standard deviation accuracies
(Table 4). On CIFAR-10, we find that with 4 labels per class,
we achieve 73.2% accuracy outperforming MixMatch with
much lower variance between runs and with 25 labels per
class, we achieve 87.6% accuracy, though still significantly
lower than the state of the art, FixMatch.

Although we have established that large models are neces-
sary for producing good representations, large models are
also difficult to fine-tune in the ultra-low data regime. In-
deed, we find that iGPT-L quickly memorizes a 40-example
training set and fails to generalize well, achieving only
42.1% accuracy. We expect adapting recent approaches
to semi-supervised learning will help in this setting.
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5. Related Work
Many generative models have been developed and evalu-
ated for their representation learning capabilities. Notably,
GANs (Goodfellow et al., 2014; Radford et al., 2015; Don-
ahue et al., 2016) and VAEs (Kingma & Welling, 2013;
Kingma et al., 2014; Higgins et al., 2017) have been well-
studied.

As of yet, most generative model based approaches have
not been competitive with supervised and self-supervised
methods in the image domain. A notable exception is Big-
BiGAN (Donahue & Simonyan, 2019) which first demon-
strated that sufficiently high fidelity generative models learn
image representations which are competitive with other self-
supervised methods.

Many self-supervised approaches focus on designing aux-
iliary objectives which support the learning of useful rep-
resentations without attempting to directly model the input
data. Examples include surrogate classification (Dosovit-
skiy et al., 2015), jigsaw puzzle solving (Noroozi & Favaro,
2016), and rotation prediction (Gidaris et al., 2018). A clus-
ter of similar approaches based on contrastive losses com-
paring various views and transformations of input images
have recently driven significant progress in self-supervised
learning (Hjelm et al., 2018; Bachman et al., 2019; Tian
et al., 2019).

Among contrastive approaches, our work is most similar
to Contrast Predictive Coding (Oord et al., 2018) which
also utilizes a autoregressive prediction objective, but in a
learned latent space, and to Selfie (Trinh et al., 2019) which
trains a bidirectional self-attention architecture on top of a
standard convolutional network to differentiate correct vs
wrong patches.

Our work is directly inspired by the success of generative
pre-training methods developed for Natural Language Pro-
cessing. These methods predict some parts of a piece of text
conditioned on other parts. Our work explores two training
objectives in this framework, autoregressive prediction as
originally explored for modern neural sequence models by
Dai & Le (2015), and a denoising objective, similar to BERT
(Devlin et al., 2018). The context in-painting approach of
Pathak et al. (2016) also explores pre-training by predict-
ing corruptions but predicts large regions of high-resolution
images.

Kolesnikov et al. (2019); Goyal et al. (2019) conducted
rigorous investigations of existing self-supervised methods.
Several of our findings are consistent with their results, in-
cluding the benefits of scale and the non-monotonic perfor-
mance of representations with depth in certain architectures.

Expressive autoregressive models tractably optimizing like-
lihood were first applied to images by Uria et al. (2013)

and popularized by Oord et al. (2016) serving for the ba-
sis of several papers similarly adapting transformers to the
problem of generative image modeling (Parmar et al., 2018;
Child et al., 2019).

Ke et al. (2018) introduced the pixel-by-pixel CIFAR10 task
and first benchmarked the performance of a 1D sequence
transformer on a competitive image classification dataset.
Rives et al. (2019) similarly investigates whether the recent
success of unsupervised pre-training in NLP applies to other
domains, observing promising results on protein sequence
data.

6. Discussion and Conclusion
Our results suggest that generative image modeling contin-
ues to be a promising route to learn high-quality unsuper-
vised image representations. Simply predicting pixels learns
state of the art representations for low resolution datasets.
In high resolution settings, our approach is also competitive
with other self-supervised results on ImageNet.

However, our experiments also demonstrate several areas
for improvement. We currently model low resolution in-
puts with self-attention. By comparison, most other self-
supervised results use CNN based encoders that easily work
with high resolution images. It is not immediately obvious
how to best bridge the gap between performant autoregres-
sive and discriminative models. Additionally, we observed
that our approach requires large models in order to learn
high quality representations. iGPT-L has 2 to 3 times as
many parameters as similarly performing models on Ima-
geNet and uses more compute.

Although dense self-attention was a deliberate choice for
this work due to it being domain agnostic and widely used in
NLP, it becomes very memory and computationally expen-
sive due to its quadratic scaling with sequence length. We
mitigated this via the context reduction techniques discussed
in section 3.2 but it is still a significant limitation. Future
work could instead address this via architectural changes by
exploring more efficient self-attention approaches. Several
promising techniques have recently been developed such as
local 2D relative attention (Bello et al., 2019; Ramachan-
dran et al., 2019), sparse attention patterns (Child et al.,
2019), locality sensitive hashing (Kitaev et al., 2020), and
multiscale modeling (Menick & Kalchbrenner, 2018).

Finally, our results, considered together with Donahue &
Simonyan (2019), suggest revisiting the representation learn-
ing capabilities of other families of generative models such
as flows (Dinh et al., 2014; Kingma & Dhariwal, 2018)
and VAEs in order to study whether they show similarly
competitive representation learning capabilities.
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Table 5. Learning rates used for each model, objective, and input
resolution (IR) combination.

Model Objective IR Learning Rate

iGPT-S auto-regressive 322 × 3 0.003
iGPT-M auto-regressive 322 × 3 0.003
iGPT-L auto-regressive 322 × 3 0.001
iGPT-L auto-regressive 482 × 3 0.01
iGPT-L auto-regressive 962 × 3 0.003
iGPT-L auto-regressive 1922 × 3 0.01
iGPT-S BERT 322 × 3 0.01
iGPT-M BERT 322 × 3 0.003
iGPT-L BERT 322 × 3 0.001

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

A. Experimental details
A.1. Hyperparameters

In Table 5, we present the learning rates used to train each
model in the paper. When using too high a learning rate,
we observe an irrecoverable loss spike early on in training.
Conversely, with too low a learning rate, training is stable
but loss improves slowly and eventually underperforms. As
we increase model size, the irrecoverable loss spike occurs
at even lower learning rates. This motivates our procedure
of sequentially searching learning rates from large to small
and explains why larger models use lower learning rates
than smaller models at fixed input resolution.

We used an Adam β2 of 0.95 instead of the default 0.999
because the latter causes loss spikes during training. We
did not use weight decay because applying a small weight
decay of 0.01 did not change representation quality.

On iGPT-S, we found small gains in representation quality
from using float32 instead of float16, from untying the token
embedding matrix and the matrix producing token logits,
and from zero initializing the matrices producing token and
class logits. We applied these settings to all models.

When training BERT models, one additional hyperparameter
is the masking probability, set to 15% in Devlin et al. (2018).
We also tried higher masking rates of 20%, 25%, 30%, and
35%, finding that 20% matched the performance of 15%,
though higher probabilities decreased performance.

A.2. VQ-VAE

Our VQ-VAE models largely follow the original approach
in (van den Oord et al., 2017). Each encoder block con-
sists of a downsampling convolution, ReLU, and a residual

network. The decoder block mirrors this with a residual
network, ReLU, and an upsampling transposed convolution.
All resampling convolutions use stride 2× 2 and kernel size
4 × 4. To get 482 MR from 962 × 3 IR, the encoder and
decoder each use one of the blocks described above. For
compressing 1922×3 IR to 482 MR, two stacked blocks are
needed. Our residual networks have the same architecture
as the one in (van den Oord et al., 2017), but use 32 hidden
units in the residual branch. For resampling convolutions
and the VQ codebook, we use 64 channels.

While our autoencoders are tiny (fewer than 200K param-
eters), foreground reconstruction quality from our models
is similar to that of much larger (40M parameter) autoen-
coders as long as a large codebook is used. In fact, we
found that increasing the autoencoder size results in codes
that are harder for the prior to compress. We use a vocab
size of 4096, which puts more parameters (262K) in the VQ
embeddings than the autoencoders themselves.

We experimented with L1 and L2 reconstruction losses,
and found that L2 reconstructs textures marginally better
as shown in Figure 5. After rescaling reconstruction and
commitment losses to unit variance, we chose a commit-
ment cost coefficient β2 = 0.02 based on visual inspection
of reconstructed images. We used Adam (Kingma & Ba,
2014) with a learning rate of 0.0001 to learn the autoencoder
weights.

Following (van den Oord et al., 2017), we updated the
codebook using an exponential moving average (EMA).
While EMA is fairly robust, we still observed a small de-
gree of codebook collapse with a large vocabulary size.
To combat this, we considered a VQ code dead if its us-
age fell below 10% of its expected usage ((batch size) ×
(MR)/(codebook size)) = 128 × 482/4096 = 72), and
revived it to take on a value near a live code.

B. Samples
Although our goal is not explicitly to produce high quality
samples, training an auto-regressive objective gives us this
capability. Note that we cannot use class conditioning to
improve sample quality since we do not have access to labels
during pre-training. Below, we show class-unconditional
samples from iGPT-L with IR 322 × 3 (Figure 6) and with
IR 962 × 3 (Figure 7).
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Figure 5. We compressed 962 × 3 IR to 322 MR using VQ-VAE
with L1 (middle) and L2 (bottom) losses. Both reconstructions are
generally almost as good as the groundtruth (top), but L1 tends to
produce slightly more diffuse images.

Figure 6. Class-unconditional samples at temperature 1.0 from
iGPT-L trained on input images of resolution 322 × 3.

Figure 7. Class-unconditional samples at temperature 0.98 from
iGPT-L trained on input images of resolution 962 × 3.


