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ABSTRACT

Widely used alignment techniques, such as reinforcement learning from human
feedback (RLHF), rely on the ability of humans to supervise model behavior—for
example, to evaluate whether a model faithfully followed instructions or generated
safe outputs. However, future superhuman models will behave in complex ways
too difficult for humans to reliably evaluate; humans will only be able to weakly
supervise superhuman models. We study an analogy to this problem: can weak
model supervision elicit the full capabilities of a much stronger model? We test
this using a range of pretrained language models in the GPT-4 family on natural
language processing (NLP), chess, and reward modeling tasks. We find that when
we naively finetune strong pretrained models on labels generated by a weak model,
they consistently perform better than their weak supervisors, a phenomenon we
call weak-to-strong generalization. However, we are still far from recovering the
full capabilities of strong models with naive finetuning alone, suggesting that tech-
niques like RLHF may scale poorly to superhuman models without further work.
We find that simple methods can often significantly improve weak-to-strong gen-
eralization: for example, when finetuning GPT-4 with a GPT-2-level supervisor
and an auxiliary confidence loss, we can recover close to GPT-3.5-level perfor-
mance on NLP tasks. Our results suggest that it is feasible to make empirical
progress today on a fundamental challenge of aligning superhuman models.

1 INTRODUCTION

We mainly steer or align today’s models with reinforcement learning from human feedback (RLHF):
we reinforce behaviors that human evaluators rate highly and penalize behaviors that evaluators rate
poorly (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Glaese et al., 2022; Bai
et al., 2022a). This procedure is very effective when human evaluators can tell if model behavior is
good or bad and is a core part of training modern language model assistants such as ChatGPT.

However, superhuman models will be capable of complex and creative behaviors that humans can-
not fully understand. For example, if a superhuman assistant model generates a million lines of ex-
tremely complicated code, humans will not be able to provide reliable supervision for key alignment-
relevant tasks, including: whether the code follows the user’s intentions, whether the assistant model
answers questions about the code honestly, whether the code is safe or dangerous to execute, and
so on. As a result, if we finetune a superhuman model with human supervision on a reward mod-
eling (RM) or safety classification task, it is unclear how that model will generalize to complicated
behaviors that humans could not reliably supervise themselves.

This leads to a fundamental technical challenge of aligning superhuman models (superalignment):
how can weak supervisors control models much smarter than them? Despite the importance of
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Figure 1: An illustration of our methodology. Traditional ML focuses on the setting where humans
supervise models that are weaker than humans. For the ultimate superalignment problem, humans
will have to supervise models much smarter than them. We study an analogous problem today:
using weak models to supervise strong models.

this problem, it is difficult to empirically study today. Most prior work on alignment has either
confronted this core challenge head-on—but been restricted to primarily theoretical frameworks and
toy problems (Irving et al., 2018; Christiano et al., 2018; Leike et al., 2018; Demski & Garrabrant,
2019; Hubinger et al., 2019), or empirically studied humans supervising today’s models—without
addressing the core challenges that may arise with superhuman models (Christiano et al., 2017; Wu
et al., 2021; Ouyang et al., 2022; Bowman et al., 2022; Saunders et al., 2022). In contrast, we would
ideally like to have a setup that captures core challenges of aligning future superhuman models while
also being able to make iterative empirical progress today.

We propose a simple setup for studying the problem of humans supervising superhuman models by
considering an analogy: can we use weak models to supervise strong models? We can empirically
test this by finetuning large (strong) pretrained models on labels generated by small (weak) mod-
els and observing how they generalize. Just like the problem of humans supervising superhuman
models, our setup is an instance of what we call the weak-to-strong learning problem.

Why should weak-to-strong learning be possible? On the one hand, the strong model could simply
learn to imitate the weak supervisor, including its errors, since that is what we would naively train
it to do. On the other hand, strong pretrained models should already have good representations of
the alignment-relevant tasks we care about. For example, if a model can generate complicated code,
then it should intuitively also know whether that code faithfully adheres to the user’s instructions.
As a result, for the purposes of alignment we do not need the weak supervisor to teach the strong
model new capabilities; instead, we simply need the weak supervisor to elicit what the strong model
already knows. This gives us hope that the strong model can generalize beyond the weak supervision,
solving even hard problems for which the weak supervisor can only give incomplete or flawed
training labels. We call this phenomenon weak-to-strong generalization.

We study our weak-to-strong learning setup (Section 3) by finetuning base (i.e. pretrained-only)
language models from the GPT-4 family (OpenAI, 2023),1 spanning 7 orders of magnitude (OOMs)
of pretraining compute, across three settings: a large set of popular natural language processing
(NLP) benchmarks, chess puzzles, and our internal ChatGPT reward modeling dataset. Our main
findings include:

1These models share the same general architecture and pretraining dataset as GPT-4. However, this model
series does not include the models known as GPT-2, GPT-3, and GPT-3.5.
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Figure 2: Strong models trained with weak supervision generalize beyond their supervisor, and
improving weak-to-strong generalization is tractable. We show test accuracy on a representative
NLP task (left), chess puzzles (middle) and the ChatGPT reward modeling task (right). We show the
weak supervisor trained on ground truth labels (light grey) and the strong student trained with weak
supervision naively (green), with the best method in each setting (purple), or with ground truth
supervision (dark grey). For NLP and chess we supervise GPT-4 using GPT-2-level supervision,
while for reward modeling we supervise a 3.5-level model using GPT-2-level supervision. The best
method is the auxiliary confidence loss for the NLP task (Section 4.3.2), bootstrapping for Chess
puzzles (Section 4.3.1), and unsupervised generative finetuning for reward modeling (Section 5.2.2;
generative-finetuning is also used for the strong ceiling performance).

1. Strong pretrained models naturally generalize beyond their weak supervisors. If we
naively finetune strong models with labels generated by weak models, they consistently
outperform their weak supervisors (Section 4.2). For example, on NLP tasks, if we fine-
tune GPT-4 with labels from a GPT-2-level model, we typically recover about half of the
performance gap between the two models.

2. Naively finetuning on weak supervison is not enough. Despite positive weak-to-strong
generalization, there still remains a substantial gap between strong models finetuned with
weak supervision and strong models finetuned with ground truth supervision. Weak-to-
strong generalization is particularly poor for ChatGPT reward modeling. Collectively, our
results provide empirical evidence that naive RLHF will likely scale poorly to superhuman
models without additional work.

3. Improving weak-to-strong generalization is tractable. We find that we can improve per-
formance by encouraging strong models to have confident predictions with an auxiliary
loss, bootstrapping supervision with intermediate models, and improving model represen-
tations with unsupervised finetuning. For example, when supervising GPT-4 with a GPT-2-
level model on NLP tasks using the auxiliary confidence loss, we typically recover nearly
80% of the performance gap between the weak and strong models.

Our work has important limitations. None of our methods work consistently in all settings, and
especially in the RM setting we are still far from recovering the full performance gap between weak
and strong models. Thus our methods serve more as proofs-of-concept that weak-to-strong gener-
alization is tractable, rather than practical solutions we recommend deploying today. Furthermore,
there are still important disanalogies between our empirical setup and aligning superhuman models
that we did not address (Section 6); continuously refining our basic setup will be important for en-
suring that research today continues to make real progress toward aligning the superhuman models
we develop in the future.

Despite the limitations of our work, we find our results to be highly encouraging. We show that sub-
stantial weak-to-strong generalization is not only possible, but actually a widespread phenomenon.
We also show that with very simple methods, we can drastically improve the ability of weak super-
visors to elicit knowledge from strong models. With much more progress in this direction, we could
get to the point where we can use weak supervisors to reliably elicit knowledge from much stronger
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models, at least for some key tasks that we care about. This may allow us to develop superhuman
reward models or safety classifiers, which we could in turn use to align superhuman models.

Aligning superhuman models is essential for making them safe; there is increasing recognition that
failing to align such powerful models has the potential to be catastrophic, making this one of the
most important unsolved technical problems in the world (CAIS, 2022). We think it is now more
tractable than ever to make rapid iterative empirical progress toward solving this problem.

2 RELATED WORK

We study how we can leverage the generalization properties of deep neural networks to solve weak-
to-strong learning. Our problem setting and methods are closely connected to many existing research
areas.

Weakly-supervised learning. Weak-to-strong learning is a special type of weakly supervised
learning—a setting in which models are trained using unreliable labels (Bach et al., 2017; Rat-
ner et al., 2017; Guo et al., 2018). There is also a rich literature on the related problem of learning
from noisy labels (Song et al., 2022). Common methods include bootstrapping (Reed et al., 2014;
Han et al., 2018; Li et al., 2020), noise-robust losses (Zhang & Sabuncu, 2018; Hendrycks et al.,
2018; Ma et al., 2020), and noise modeling (Yi & Wu, 2019). Unlike most work on label noise, the
errors in our weak supervision are much harder to address than uniform label noise, instead having
“instance-dependent” errors (Frénay & Verleysen, 2013). Semi-supervised learning, in which la-
bels are only available for a subset of the data, is also closely related (Kingma et al., 2014; Laine &
Aila, 2016; Berthelot et al., 2019). We could also study our problem in a semi-supervised setting by
having an “easy” subset of examples that weak supervisors provide reliable labels for and a subset
of unlabeled “hard” examples that the weak supervisor can’t reliably label, a problem which we call
“easy-to-hard generalization” (see Appendix C).

Student-teacher training. The framework of first training a teacher and then training a student on
teacher’s pseudo-labels is widely used in semi-supervised learning (Laine & Aila, 2016; Tarvainen
& Valpola, 2017; Xie et al., 2020), domain adaptation (French et al., 2017; Shu et al., 2018), and
knowledge distillation (Hinton et al., 2015; Gou et al., 2021; Stanton et al., 2021; Beyer et al., 2022).
In contrast to most prior work, we focus on the setting where the student is much more capable than
the teacher.

Furlanello et al. (2018) and Xie et al. (2020) also consider cases where the student is at least as
capable as the teacher. However in their settings the student is randomly initialized and has access
to ground truth labels. Moreover, compared to most past work we are focused on qualitatively very
weak supervision. For example, we are interested in huge leaps in generalization, similar to going
from “3rd grade-level” supervisors to “12th grade-level” student models. Despite these differences
with past work, we expect many methods from semi-supervised learning and domain adaptation to
translate to our setting. For example, we found that a type of confidence auxiliary loss similar to
past work (Grandvalet & Bengio, 2004) improves weak-to-strong generalization in Section 4.3.

Robustness of pretraining and finetuning. Many papers have shown that pretraining
on massive, diverse data leads to more robust representations that generalize better out-of-
distribution (Hendrycks et al., 2019; 2020b; Radford et al., 2021; Liu et al., 2022). Finetuning typ-
ically improves in-distribution generalization, but often performs poorly out-of-distribution, some-
times even degrading performance relative to zero-shot prompting (Kumar et al., 2022; Wortsman
et al., 2022b; Awadalla et al., 2022). Recent approaches to mitigating this problem include weight
ensembling (Wortsman et al., 2022b;a), finetuning only a subset of layers (Kirichenko et al., 2023;
Lee et al., 2022a), or mitigating the distortion effects that finetuning has on pretrained features (Ku-
mar et al., 2022). We did not find strong results in preliminary explorations of approaches similar to
these (Appendix B), but we expect that with more thorough explorations one may be able to attain
much stronger results with these or other ideas from the robust finetuning literature.

Debiasing. In weak-to-strong generalization, the weak labels contain a specific form of bias,
which results from the weak models’ lack of capability. There is a substantial literature on learning
from biased training data (Bellamy et al., 2018). However, most work focuses on known biases,
for example where we know that the models perform worse on minority groups. For known biases,
common methods include Group Distributionally Robust Optimization (Sagawa et al., 2019), adver-
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sarial training (Zhang et al., 2018), and model editing (Santurkar et al., 2021; Meng et al., 2022).
In contrast, our setting can be viewed as a particularly difficult debiasing problem where the bias is
unknown. Some methods that automatically discover and mitigate biases include clustering (Sohoni
et al., 2020), loss variance reduction (Khani et al., 2019), and auditing and re-training on high-loss
group (Kim et al., 2019; Liu et al., 2021).

Imitation and preference learning. The goal of alignment is to steer already-capable models
to do what we want them to do. For example, the base GPT-4 model is good at generating text
following its pretraining distribution, but does not readily follow instructions. To align pretrained
language models today, we finetune them using imitation learning on human demonstrations (Bain
& Sammut, 1995; Atkeson & Schaal, 1997) or by using methods such as reinforcement learning
from human feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022;
Glaese et al., 2022; Bai et al., 2022a). Constitutional AI (Bai et al., 2022b; Lee et al., 2023) leverages
AI feedback to align language models, but still uses an initial RLHF phase. However, both imitation
learning and preference learning assume high-quality human supervision, making it unclear if they
will work for superhuman models.

Scalable oversight. Scalable oversight techniques aim to improve the ability of humans to super-
vise models. For example, humans may ask models to critique the outputs of other models (Irving
et al., 2018; Saunders et al., 2022) or use models to help decompose a problem into simpler sub-
problems (Leike et al., 2018; Christiano et al., 2018; Lightman et al., 2023). Scalable oversight
methods typically take advantage of special problem structure, like decomposability or the fact that
evaluation is easier than generation. In contrast to improving human supervision, we focus on gener-
alizing beyond human supervision such that models perform well even in settings we cannot reliably
supervise. That said, our weak-to-strong learning setup can be used to compare scalable oversight
methods, generalization-based methods, and more. Our setup also resembles a proposal for measur-
ing progress on scalable oversight known as “sandwiching”, which uses weak and strong humans
(Cotra, 2021; Bowman, 2022).

Knowledge elicitation and honesty. Christiano et al. (2022) introduced a theoretical problem
called Eliciting Latent Knowledge (ELK), in which the goal is to elicit latent knowledge from a su-
perhuman machine learning model even under worst case assumptions. For example, a special case
of ELK is honesty (Evans et al., 2021), where the goal is for the models to report their true beliefs2.
Wentworth (2020) hypothesizes a tendency for neural networks to develop “natural abstractions”
that are easier to elicit. Recent empirical work on ELK includes a benchmark for measurement
tampering (Roger et al., 2023), methods for discovering latent knowledge (Burns et al., 2023), and
studies of honesty (Li et al., 2023; Pacchiardi et al., 2023). Our setting can be viewed as a general
methodology for empirically studying problems like ELK and honesty across a wide range of tasks.

3 METHODOLOGY

A core challenge of superalignment is that humans will need to supervise models much smarter than
us. This is a special case of what we call the weak-to-strong learning problem: how can a weak
supervisor oversee a model much smarter than it? In this paper, we study a simple analogy, in which
we replace the weak human supervisor with a weak model supervisor.

For a given task of interest, consisting of a dataset and a performance metric, we:

1. Create the weak supervisor. Throughout most of this work, we create weak supervisors
by finetuning small pretrained models on ground truth labels.3 We call the performance
of the weak supervisor the weak performance, and we generate weak labels by taking the
weak model’s predictions on a held-out set of examples.

2. Train a strong student model with weak supervision. We finetune a strong model with
the generated weak labels. We call this model the strong student model and its resulting
performance the weak-to-strong performance.

2Like Evans et al. (2021), we define honesty to mean a model reporting what it believes to be true, in contrast
to truthfulness which asks whether what a model reports is true.

3In Appendix D and Appendix E we study other synthetic weak supervisors. Future work could test many
more sources of weak supervision, such as by having 3rd grader humans provide labels.
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3. Train a strong model with ground truth labels as a ceiling. Finally, for comparison, we
finetune a strong model with ground truth labels.4 We call this model’s resulting perfor-
mance the strong ceiling performance. Intuitively, this should correspond to “everything
the strong model knows,” i.e. the strong model applying its full capabilities to the task.

For more details on how we train each model, see Appendix A.

Typically, weak-to-strong performance will be between weak performance and strong ceiling per-
formance. We define the performance gap recovered (PGR) as a function of the above three
performances (weak, weak-to-strong, and strong ceiling) as shown in the illustration below.

weak
performance

weak-to-strong
performance

strong ceiling
performance

PGR =
weak-to-strong weak
strong ceiling weak

=
-
-

PGR measures the fraction of the performance gap (the difference in performance between the weak
and strong ceiling models) that we can recover with weak supervision. If we achieve perfect weak-
to-strong generalization, PGR is 1. If the weak-to-strong model does no better than the weak super-
visor, then PGR is 0.

Advantages. Our setup has a number of advantages, including:

1. It can be studied with any pair of weak and strong models, making it easy to study scaling
laws and not requiring access to expensive state-of-the-art models. Moreover, it does not
require working with humans, so feedback loops are fast.

2. It can be studied for any task of interest, making it easy to empirically test across a wide
range of settings.

3. Success will be practically useful even before we develop superhuman models: for ex-
ample, if we find ways to align GPT-4 with only weak human supervision or with only
GPT-3-level supervision, that would make it more convenient to align models today.

Limitations. Our setup still has important disanalogies to the ultimate problem of aligning super-
human models. We view our setup as removing one of the main disanalogies in prior work, not as
providing a final, perfectly analogous setup. Two remaining disanalogies include:

1. Imitation saliency. Future superhuman models will likely have salient representations
of human behaviors, but our strong models may not have learned features relevant for
imitating weak model predictions; simply imitating the weak supervisor may thus be an
easier failure mode to avoid in our setting than it will be in the future. More generally, the
types of errors weak models make today may be different from the types of errors humans
will make when attempting to supervise superhuman models.

2. Pretraining leakage. Our pretraining data implicitly contains supervision from humans.
It may thus be artificially easy to elicit strong models’ capabilities in our setting, since they
were directly pretrained to observe strong (human-level) performance. Superhuman-level
performance may not be directly observed in the same way—superhuman knowledge might
be more latent, e.g. because it was learned from self-supervised learning—and thus might
be harder to elicit from superhuman models in the future.

4For tasks solved by superhuman models that humans cannot evaluate, we will not have access to ground
truth labels. However, we allow access to ground truth labels in our experimental setting today for scientific
and evaluation purposes. Note that we evaluated weak-to-strong performance against ground truth many times
while iterating on methods; however, we held out our largest model (GPT-4) and about half of NLP tasks
throughout the project.
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More generally, we do not yet know how superhuman models will be built, but they could develop
new inductive biases that are qualitatively different from today’s models. We view iterating on our
methodology to produce even more analogous setups as a key priority for future work, as we discuss
in more detail in Section 6.

4 MAIN RESULTS

In this section, we report our main empirical results, including baselines and promising methods.

4.1 TASKS

Popular natural language processing benchmarks. We consider 22 popular NLP classification
datasets covering ethics, commonsense reasoning, natural language inference, sentiment analysis,
and other domains. We convert all datasets to binary classification tasks and approximately balance
the classes. We produce soft labels from the weak model. See a full list of the datasets and their
sources in Table 1.

Chess puzzles. We use the dataset originally introduced in Schwarzschild et al. (2021b), which
contains chess puzzles from the lichess.org website (Lichess Team, 2023). Each puzzle con-
sists of a chess position, and a sequence of optimal moves to play to solve the puzzle. For our
evaluation, we predict the first move played, which is the best move in the given chess position. We
illustrate the data format in Appendix Figure 14. For weak labels, we sample from the weak model
with temperature 0. Note that unlike the other binary classification tasks we study in this paper, this
is a generative task.

ChatGPT reward modeling. The standard approach to aligning models today is reinforcement
learning from human feedback (RLHF). A critical step of RLHF is to train a reward model (RM)
to predict human preferences between model responses. Specifically, a reward model is trained
on a dataset consisting of dialogs between a human and an assistant model. For each query, the
humans compare multiple possible responses (completions) from the assistant, providing human
preference data. Then, a reward model is trained to predict the results of pairwise comparisons
between completions. Finally, the assistant model is trained by optimizing against the reward model
with reinforcement learning (RL). In our work, we do not study the RL step, and instead assume the
goal is to maximize reward model accuracy. For more details on reward models, see e.g. Ouyang
et al. (2022). We use a proprietary dataset used to train ChatGPT reward models.

For more details about our tasks and setup, see Appendix A.

4.2 NAIVELY FINETUNING ON WEAK LABELS

In each of these 3 settings (NLP tasks, chess puzzles, and reward modeling) we evaluate how well
strong students generalize when naively finetuned on labels generated by weak supervisors. We
study pretrained language models from the GPT-4 family (OpenAI, 2023), which allow us to study
student-supervisor compute disparities of many orders of magnitude. We find that PGRs are al-
most universally positive—in virtually all settings that we studied, and across almost all student and
supervisor sizes, students outperform their supervisors (Figure 3).

On the popular NLP benchmarks, we find especially promising weak-to-strong generalization:
strong models trained with weak supervision can often generalize to a substantially higher perfor-
mance than the weak model itself. Even with very weak supervisors and strong models with many
orders of magnitude more compute, we recover more than 20% of the performance gap. The PGR
increases both with weak supervisor size and with strong student size; for the largest students, the
PGR is often above 50%.

We see more mixed results in the chess puzzle setting. In particular, when using the smallest weak
models, the PGR is close to zero and the test accuracy curves appear flat. However, as the size of the
weak supervisor increases, the PGR increases substantially; for small supervisor-student gaps, PGR
can be above 40%. Unlike in the NLP setting, where PGR improves with the strong student size,
PGR decreases with the strong student size for a given weak supervisor on chess puzzles. The cor-
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Figure 3: Promising weak-to-strong generalization with naive finetuning on NLP tasks and
chess, but poor generalization on the ChatGPT reward modeling task. (a,b,c) Test accuracy
as a function of strong student size on (a) NLP tasks, (b) chess puzzles, and (c) the ChatGPT
reward modeling task. Accuracy of strong students trained with ground truth in black, accuracy
of strong students trained with weak supervision shown with colored lines (hue indicates size of
weak supervisor). (d,e,f) Same as panels a,b,c but for performance gap recovered (see Section 3
for details). For NLP settings, we compute the median across tasks (see Figure 12 for full details).
We find decent weak-to-strong generalization and even positive PGR scaling on NLP tasks, decent
generalization for small supervisor-student gaps but negative PGR scaling on chess puzzles, and
both poor generalization and scaling for ChatGPT reward modeling.

responding test accuracy curves appear concave, potentially exhibiting inverse scaling (McKenzie
et al., 2023) in strong student size.

Finally, we find that weak-to-strong generalization is poor by default in the ChatGPT reward model
setting. We are usually only able to recover roughly 10% of the performance gap between the weak
supervisor and the strong student. Even for relatively small gaps in compute between the weak and
strong models, PGR almost never exceeds 20%.

In general, across all our settings, we observe weak-to-strong generalization: strong students consis-
tently outperform their weak supervisors. It is not obvious why this should happen at all—especially
from naive finetuning alone—and it gives us hope that weak-to-strong learning is a tractable prob-
lem. At the same time, our results suggest that naively using weak, human-level supervision will be
insufficient to align strong, superhuman models; we will need qualitatively new techniques to solve
superalignment.

4.3 IMPROVING WEAK-TO-STRONG GENERALIZATION IS TRACTABLE

We now show that we can use simple methods to substantially improve weak-to-strong generaliza-
tion. While none of the methods we test works universally, these methods are proofs-of-concept that
across many different tasks we can substantially improve generalization.

4.3.1 BOOTSTRAPPING WITH INTERMEDIATE MODEL SIZES

Bootstrapping is a long-standing idea in alignment: instead of directly aligning very superhuman
models, we could first align an only slightly superhuman model, use that to align an even smarter
model, and so on (Christiano, 2019; 2018; Leike & Sutskever, 2023; Worley, 2021). Our setting
allows us to empirically test this idea.
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Figure 4: Bootstrapping improves weak-to-strong generalization on chess puzzles. (a) Test
accuracy as a function of strong student size. Accuracy of students trained with ground truth in
black, accuracy of students naively trained with weak supervision shown with dotted lines (hue
indicates size of weak supervisor). Accuracies of students trained via bootstrapping shown with
colored squares (including both the final weak-to-strong performance and the performance of the
intermediate models during bootstrapping). (b) Same as a with PGR. By taking multiple small steps
instead of one big step we see substantially improved generalization, especially for larger student
models.

Specifically, we can construct a sequence of model sizes M1 → M2 → . . . → Mn of increasing
sizes. Then, we use the weak labels from M1 to finetune M2, use M2 to generate new weak labels
that we can use to finetune the next model in the sequence, M3, and so on.

We evaluate bootstrapping in the chess puzzle setting. When we naively finetune on weak labels for
chess (Section 4.2), we see high PGR when we cross small supervisor-student gaps, but low PGR
for larger gaps. As a result, in this setting it may help to take multiple small steps—steps where
PGR should be high—instead of one big step.

For each round of bootstrapping, we run three iterations of weak-to-strong learning, i.e. we bootstrap
the weak supervision using two intermediate model sizes before finally finetuning the largest model
in the sequence. We report the results (including all intermediate weak-to-strong models within
each bootstrap) in Figure 4. Bootstrapping improves PGR compared to the baseline, especially for
larger student models. With the naive method, transfer accuracy curves flatten as the weak-strong
gap grows larger; with bootstrapping, the accuracy continues to monotonically improve.

While the results in the chess setting are promising, in preliminary experiments we observed only
small improvements with bootstrapping on NLP tasks and no improvements in the RM setting.
This makes sense intuitively: unlike in the chess setting where naive PGR decreased with larger
supervisor-student gaps, naive PGR increased or was rougly constant for larger supervisor-student
gaps in the NLP and reward modeling settings. Overall, these results suggest bootstrapping is a
plausible avenue to investigate for improving weak-to-strong generalization and can be helpful in
some settings, but that naive bootstrapping alone will not be enough to align models much smarter
than their supervisors.

4.3.2 AN AUXILIARY CONFIDENCE LOSS CAN DRAMATICALLY IMPROVE GENERALIZATION
ON NLP TASKS

In our baseline results (Section 4.2), we naively finetune the strong student on the labels provided by
the weak supervisor. Because we are directly training the strong student to imitate the weak super-
visor, it may also learn to imitate the errors of the supervisor (see Section 5.1 for more discussion).
Intuitively, we want to avoid this failure mode and provide additional regularization towards what
the strong pretrained model already internally knows: we want the student to learn the intent of the
supervisor, but not to imitate its mistakes.
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Figure 5: Substantially improved generalization on NLP datasets with a simple auxiliary loss.
(a) Test accuracy as a function of strong student size. Accuracy of a student trained with ground
truth in black, accuracy of students naively trained with weak supervision shown with dotted lines.
Accuracies of students trained with auxiliary confidence loss shown with colored triangles. Median
computed across 22 NLP tasks (hue indicates size of weak supervisor), see Figure 6 for individual
datasets. (b) Same as a with PGR. The confidence loss can improve generalization drastically,
especially for large supervisor-student gaps.

We operationalize this intuition by adding an auxiliary confidence loss term to the standard cross
entropy objective. This method is closely related to conditional entropy minimization (Grandvalet
& Bengio, 2004) which is a prominent technique in semi-supervised learning. Specifically, we add
an additional loss term which reinforces the strong model’s confidence in its own predictions—
even when they disagree with the weak labels. We provide a detailed description of the method in
Appendix A.4.

In Figure 5, we plot accuracy and PGR curves with this method on our NLP tasks. We find that
while it performs slightly worse than the naive baseline for smaller strong students, it dramatically
improves generalization for large gaps in compute between weak and strong models. With the
smallest weak supervisor and largest strong student, the confidence loss increases median PGR from
about 25% to nearly 80%.

In addition, we also plot generalization curves for a representative subset of NLP datasets in Figure 6,
as well as the full panel of datasets in Figure 12. There are some settings in which the confidence
loss does not help much or degrades performance, e.g. when the gap between the weak supervisor
and strong student is small or when the dataset features inverse scaling even with ground truth
supervision. But the confidence loss improves performance on most NLP datasets dramatically, and
for many datasets we get almost perfect generalization, recovering nearly all the performance of the
strong model, even when using the smallest weak supervisors.

Finally, we find evidence consistent with our motivating intuition for the confidence loss (allowing
the strong student to confidently disagree with its weak supervisor): the auxiliary loss reduces the
strong student’s imitation of weak errors and mitigates weak label overfitting (see Section 5.1).

5 UNDERSTANDING WEAK-TO-STRONG GENERALIZATION

Strong methods will be essential for solving superalignment, but to trust those methods it is also
important to understand when and why they work. A better understanding of weak-to-strong gener-
alization could help us trust that generalization will continue working even in the future high-stakes
settings we care most about, and could help us develop better methods along the way. In this sec-
tion, we study two phenomena relevant to weak-to-strong generalization: imitation of supervisor
mistakes and salience of the tasks to the strong student model.
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Figure 6: Simple auxiliary loss improves generalization across most datasets. Test accuracy as
a function of strong student compute for a representative sample of NLP tasks. See Table 1 for
dataset details and Appendix Figure 12 for results on all 22 NLP tasks. Auxiliary loss is shown with
triangles, and the baseline with dotted lines. Weak supervisor model size shown in varying colors,
with ground truth supervision shown in black.

5.1 UNDERSTANDING IMITATION

When we train a strong model with weak supervision on some task, our hope is that the strong
model will perform that desired task as well as possible, leveraging the latent capabilities it learned
from pretraining to significantly outperform the weak supervisor. A salient way in which we could
fail to achieve that desired generalization is if the strong model instead learns to imitate the weak
supervisor—predicting how the weak supervisor would have classified each example. In particular,
if the weak labels contain systematic errors that are easy to learn, the strong model could learn to
imitate those errors. This is also a concern raised in theoretical work on superalignment, which has
argued that the human simulator failure mode could be important: naive human supervision might
result in superhuman models learning to imitate what a human would say, rather outputting its best
predictions (Christiano et al., 2022).

5.1.1 OVERFITTING TO WEAK SUPERVISION

The failure mode of imitating weak supervision is especially relevant to our naive baseline in Sec-
tion 4.2, which directly trains the student to imitate the supervisor. In the case of infinite training
data, naively fitting the weak labels should result in perfect imitation, and a PGR of zero. In prac-
tice, we train on finite data for a small number of epochs. Unlike typical ML settings, however, we
could expect to observe overfitting even when training for less than a single epoch: the strong model
might overfit to the weak supervisor labels and its errors, degrading ground truth test accuracy over
training even without classic overfitting to any specific training examples.

Empirically, we see that the strong student indeed appears to overfit to the weak supervisor’s errors.
In Figure 7(a) we show ground truth test accuracy curves over the course of training for the ChatGPT
RM task, and in Figure 7(b) and (c) we compare the best5 and final ground truth test accuracies
(median across all weak-strong model pairs). We find overfitting for large weak-strong gaps. For
small weak-strong gaps, weak-to-strong performance typically monotonically increases over the
course of training. For larger gaps, weak-to-strong performance often increases initially, but then
starts dropping well before a single epoch has elapsed. Ground truth early stopping, which “cheats”

5Note that our best test accuracies may slightly overstate accuracy, due to noisy evaluations.
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Figure 7: Strong models overfit to the weak labels. In all figures, we show data for the ChatGPT
Reward Modeling task. (a) Weak-to-strong performance over the course of training. Hues indicate
the student-supervisor gap. (b) Best weak-to-strong performance during training (stars) and weak-
to-strong performance at the end of training (dashed). Weak performance in black. Hue indicates
the size of the weak supervisor. (c) Median best and final performance gap recovered (PGR) ag-
gregated across all supervisor-student pairs. We see overfitting to weak labels for large weak-strong
gaps, even within one epoch. In these cases, the best test accuracy achieved over training can be
substantially better than the test accuracy at the end of training. See Figure 13 for the corresponding
analysis of a representative subset of NLP tasks.

by evaluating against ground truth and stopping at an optimal step with respect to ground truth test
labels, typically gives a PGR improvement of around 5 percentage points.

We see the same phenomenon for NLP tasks in Figure 13. In the NLP setting, we find that “cheating”
early stopping on ground truth gives a 15 percentage point boost in PGR over the model at the end
of training, and a 10 percentage point boost in PGR compared to “non-cheating” early stopping with
respect to weak labels.

Unfortunately, an early stopping criterion that uses ground truth labels does not constitute a valid
method. Nevertheless, the results above suggest that imitating weak supervisor errors may be an
important phenomenon in our setting.

Moreover, these results suggest that better early stopping or regularization strategies may be able to
substantially improve weak-to-strong generalization, by reducing overfitting to the weak labels and
their errors. Indeed, we see in Figure 13 that the auxiliary confidence loss introduced in Section 4.3.2
reduces overfitting to weak labels on NLP tasks substantially. For large weak-strong gaps, early
stopping on ground truth (compared to early stopping on weak labels) gives a 15% PGR boost when
using the naive method, but only a roughly 5% PGR boost when using the confidence loss.

5.1.2 STUDENT-SUPERVISOR AGREEMENT

Another way to measure imitation is to directly measure the agreement between the student and the
supervisor: the fraction of test inputs where the strong student makes the same prediction as the
weak supervisor. Note that if agreement were 100%, then weak-to-strong accuracy would be equal
to supervisor accuracy, and PGR would be 0.

In general, we notice that for our naive finetuning baseline, student-supervisor agreement is consis-
tently high—often noticeably higher than weak supervisor accuracy. This indicates that the student
is imitating some of the supervisor’s errors. These phenomena hold across all tasks (NLP tasks,
chess, and reward modeling) and all model sizes, for the naive method.

The confidence loss in Section 4.3.2 reduces student-supervisor agreements significantly (Figure 8),
primarily by imitating supervisor mistakes less (Figure 8c). The loss encourages the strong student
to make confident predictions, including when they contradict the weak supervisor. In a handful of
the settings where it is most successful, the confidence loss reduces student-supervisor agreement
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Figure 8: Student-supervisor agreement decreases with larger student-supervisor gaps; the
confidence loss reduces imitation of supervisor mistakes. (a) Student-supervisor agreement as
a function of strong student size on NLP tasks, (b) a but only on samples where the supervisor is
correct, (c) a but only on samples where the supervisor is mistaken. Dotted lines indicate naive
finetuning on weak labels, and triangles indicate results with the auxiliary confidence loss results
(see Section 4.3). Hue of line indicates size of weak supervisor. For results on reward models, see
Figure 16.

below strong student test accuracy (weak-to-strong performance)—i.e., the resulting model is fitting
the ground truth concept better than it is fitting the weak labels it was trained with.

5.1.3 INVERSE SCALING FOR IMITATING THE SUPERVISOR

Next, we study student-supervisor agreement as a function strong model size (see Figure 8 and
Figure 16). Surprisingly, we find inverse scaling (McKenzie et al., 2023): larger student models
consistently agree less with the errors of the supervisor than smaller student models, despite being
trained to imitate the supervisor, not using early stopping, and having larger capacity than smaller
student models.

This trend is especially strong if we evaluate agreement only on datapoints where the supervisor is
wrong (Figure 8c), and the trend persists if looking at cross entropy loss instead of accuracy.

These results suggest that pretrained models may have a hard time fitting errors of other (smaller)
pretrained models, at least in finetuning settings with relatively limited data. Stanton et al. (2021)
and Furlanello et al. (2018) report a related observation in the context of knowledge distillation: it
is surprisingly hard for models to fit the predictions of other models, even when they have sufficient
capacity to do so.

One natural hypothesis is that the nature of (especially naive) weak-to-strong generalization depends
heavily on the error structure of the weak supervisors and how easy those errors are to imitate. In
Appendix E, we show initial experiments that test how different types of weak supervision errors
impact what the strong student learns. Our results suggest that errors that are more difficult for the
student to imitate result in stronger naive weak-to-strong generalization, but that even when they are
easy to imitate, the confidence loss can help.

5.2 SALIENCY IN THE STRONG MODEL REPRESENTATIONS

One intuition for when weak-to-strong generalization might be feasible is when the task or con-
cept we want to elicit is internally “salient” to the strong model. In this section, we study several
phenomena related to the saliency of the concepts we are trying to elicit from the student model.

5.2.1 ELICITING STRONG MODEL KNOWLEDGE WITH PROMPTING

One possible reason for the high PGR we observe in Section 4 could be that eliciting what the
strong model knows is easy. In particular, it is possible that strong pretrained models can solve
many relevant tasks zero-shot with a simple prompt.

In Figure 9a, we consider 7 representative NLP tasks and compare finetuning, zero-shot prompting,
and 5-shot prompting; for this initial experiment, we use ground truth labels rather than weak labels
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Figure 9: Few-shot prompting becomes competitive with finetuning for large models; weak-to-
strong learning is qualitatively similar in the prompting setting. (a) Average zero-shot (single
dashed), 5-shot (double dashed) and finetuning (solid) accuracy with ground truth labels as a func-
tion of strong student size. (b) Average 5-shot with weak labels (colored dashed) accuracy as a
function of student model size. Hue of line indicates size of weak supervisor. Zero-shot and 5-shot
same as in panel a. (c) Average weak-to-strong performance for 5-shot prompting (dashed with
crosses), naive finetuning (dashed thin) and finetuning with the confidence loss (solid with triangle)
as a function of student model compute. Results are averaged across 7 NLP tasks. Few-shot weak-
to-strong performance becomes competitive with or outperforms finetuning for the largest strong
students, though finetuning with the confidence loss does better.

for finetuning and 5-shot. For both the zero-shot and 5-shot baseline we use task-specific prompts
summarized in Table 2. We find that zero-shot and 5-shot test accuracy is poor for most model sizes
but, consistent with Brown et al. (2020), improves drastically for larger model sizes. In particular, for
the largest models, 5-shot prompting becomes competitive with finetuning on many tasks, indicating
that eliciting the task-relevant knowledge of these very large models is relatively straightforward.

We are also interested in weak-to-strong learning in the context of few-shot prompting. To study
this setting, we construct a few-shot prompt where the labels are provided by the weak supervisor.
We report the results in Figure 9b. Consistent with our findings in the finetuning setting, we get
worse performance when we few-shot prompt with weak labels than we do few-shot prompting
with ground truth labels. This suggests that weak-to-strong learning is a nontrivial problem in the
prompting setting as well.

Similar to the finetuning setting, few-shot weak-to-strong performance improves for stronger su-
pervisors. Compared to our weak-to-strong finetuning baseline (Figure 9c), weak-to-strong perfor-
mance of few-shot prompting is poor for smaller student models, but becomes competitive or even
outperforms finetuning for the largest strong students. However, weak-to-strong finetuning with the
confidence loss still generally outperforms weak-to-strong few-shot prompting.

Overall, these results provide an important reference for our results on weak-to-strong generaliza-
tion. They suggest that for the largest model sizes, the knowledge needed to solve many task can
be elicited fairly easily with prompting. However, our current setup may be more disanalogous for
prompting than for finetuning; many of our NLP tasks may have been implicitly observed during
pretraining, which we conjecture benefits prompting more than finetuning. We discuss this potential
disanalogy much more in Section 6.1.

5.2.2 GENERATIVE SUPERVISION IMPROVES RM WEAK-TO-STRONG GENERALIZATION

If salient representations of the desired task is useful for weak-to-strong generalization, then we may
be able to improve generalization by increasing the salience of the task to the strong model. One
way to increase the salience of a task without needing ground truth labels is to perform unsupervised
finetuning with the language modeling objective on data relevant to that task (Dai & Le, 2015). For
example, by finetuning a language model in an unsupervised way on online reviews, sentiment
becomes saliently represented to models internally (Radford et al., 2017).

14



no generative
finetuning

(b)

10-4 10-3 10-210-5

strong student compute
(fraction of GPT4)

10-6

w
eak m

odel com
pute

 (fraction of G
PT4) 

10-7

0.1

(a)

60

62

64

66

68

70

10-7 10-6 10-5 10-4

strong student compute
(fraction of GPT4)

10-3 10-2

te
st

 a
cc

ur
ac

y 
(%

)

with generative
finetuning

pe
rf

or
m

an
ce

 g
ap

 re
co

ve
re

d 
(%

)

100

0

20

40

60

80

strong ceiling performance
(g.t. supervision)

Figure 10: Generative finetuning on reward modeling data improves weak-to-strong perfor-
mance and PGR. (a) Weak-to-strong performance on the reward modeling task, with (solid lines)
and without (dashed lines) an extra step of generative finetuning for the strong student model. Solid
black line shows a strong ceiling reward model that was also trained with the generative finetuning
step; dashed black line show a weak supervisor reward model trained without the generative fine-
tuning step. (b) PGR with and without generative finetuning. For generative finetuning PGR, we
use the strong ceiling performance that also had this extra generative finetuning step. Even with this
ceiling adjustment, PGR is higher with an extra generative finetuning step.

We test this idea in our reward modeling setting, where it is standard practice to initialize the model
with a baseline finetuned on demonstrations of desired behaviors (Stiennon et al., 2020). In our case,
we re-use the ChatGPT comparison data instead of introducing a new supervision dataset. Compar-
isons are comprised of a prefix (a single request or conversation between the user and assistant) and
at least two candidate completions. We finetune the base models with a language modeling loss on
all prefix-completion pairs, ignoring the human preferences between those completions.

Note that these pairs include completions ranked worst by human raters, so this procedure should not
in principle leak any information about the ground truth preference labels that the weak-to-strong
models should not have access to. On the other hand, since the completions can come from humans
or stronger models, there may be some leakage similar in kind to the pretraining leakage that we
discuss as a disanalogy in Section 6.1. Even in this setup, the reward modeling task is highly non-
trivial, and we leave addressing this disanalogy (e.g. by collecting completions only from weaker
models) for future work.

We found that the additional generative finetuning on the RM data leads to better weak-to-strong
performance. Because this procedure also improves the performance of models trained on ground
truth RM data, we compare our new weak-to-strong performance to strong “ceiling” models that
were also first generatively finetuned in the same way. Even with this adjusted ceiling, we find that
generative supervision improves PGR by approximately 10-20%. We report the results in Figure 10.

Furthermore, the improvement from generative finetuning stacks with the improvement from ground
truth early-stopping (a “cheating” method to illustrate potential performance if we could optimally
early stop, see Section 5.1.1). When we combine these two techniques, we can achieve PGR of
approximately 30-40%, which would make the results on the RM task competitive with the weak-
to-strong generalization we observe on NLP and chess puzzle tasks.

We can apply the idea of improving task saliency with generative finetuning on relevant data to all
settings, and we believe this could be a promising direction for future work.

5.2.3 FINETUNING ON WEAK SUPERVISION TO INCREASE CONCEPT SALIENCY

One possible measure of concept saliency is how linearly represented a task is. In particular, we can
measure the performance of a linear probe (logistic regression classifier) trained from frozen activa-
tions of the model. If the optimal solution can be approximately recovered with a linear probe, that
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Figure 11: Finetuning on weak supervisor labels makes the desired generalization more lin-
early represented. We plot test accuracy for five different strategies, averaged across a subset of
NLP tasks. lp(weak): training a linear probe on the base model using weak labels, lp(gt): training a
linear probe on the base models using ground truth labels, ft(weak): finetuning the model on weak
labels, ft(weak) + lp(gt): finetuning the model on weak labels then training a linear probe on ground
truth labels, ft(gt): finetuning the model on ground truth labels. Finetuning on the weak labels sig-
nificantly increases the linearity of the ground truth concept.

could simplify our problem greatly; we could focus on linear probing methods instead of finetuning
methods, which could greatly reduce the search space we need to consider to elicit the desired gen-
eralization. In our work, we focus only on how linearly represented a task is in the final activations,
prior to the unembedding layer.

In Figure 11, we plot average test accuracy on a subset of our NLP datasets for several different
combinations of (1) finetuning or linear probing, using (2) weak or ground truth labels. First, we
show linear probes trained with ground truth labels (72% accuracy on average) perform worse than
finetuning with ground truth labels (82% on average), indicating that the optimal solution to most
tasks is not represented completely linearly in the strong model’s final activations. For comparison,
we also report the results for linear probing and finetuning using weak labels, which we verify are
worse than using ground-truth labels.

However, we find that we can achieve substantially better performance by first finetuning the model
on the weak labels, and then linear probing using the ground truth labels. In other words, when
we finetune the strong model with weak labels, the representations become more linear even with
respect to ground truth labels. In fact, finetuning on weak labels then linear probing on ground truth
labels results in an accuracy of 78%, closing 60% of the gap between ground truth linear probing
and finetuning. This also noticeably outperforms the naive weak-to-strong finetuning baseline.

This phenomenon is closely related to a recent finding reported by Kirichenko et al. (2023) in the
spurious cues literature. They find that finetuning a model on biased supervision can result in mod-
els with very biased outputs, but surprisingly strong linear representations of the desired concepts.
These results suggest an alternative approach to improving weak-to-strong generalization. We could
first “linearize” the desired concept, e.g. by naively finetuning on weak labels. Then we could use
simpler linear probe-based weak-to-strong methods to elicit the desired concept.

6 DISCUSSION

In this paper, we proposed a simple analogy for studying a core challenge of aligning superhuman
models and showed that it is feasible to make significant progress on this problem. However, our
setup still has important disanalogies, which we now elaborate on. We then outline a number of
promising avenues for future work.

6.1 REMAINING DISANALOGIES

Imitation saliency: superhuman models may easily imitate weak errors. Future models will
likely be very good at predicting what humans will think and say, especially if they are trained
on human data in a similar manner to current models. Consequently, if we naively train such a
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superhuman model with human supervision, it might simply imitate the weak supervisor, outputting
human-level capabilities rather than its latent superhuman capabilities (Christiano et al., 2022).

This problem is only partially captured by our setup. While our strong pretrained models do imitate
weak supervisors to some extent, they are not explicitly pretrained to imitate weak models, and our
results from Section 5.1.3 suggest that larger strong models may even have more difficulty doing this
imitation. As such, “imitating the weak supervisor” may not be as much of a problem in our setup
as it will be for the ultimate superalignment problem. This may inflate generalization performance
today. We believe a more thorough investigation of this problem is an important area for future
work.

Pretraining leakage: superhuman knowledge may be latent, not observable. Many of the
tasks we consider in this work may have been observed in pretraining at least indirectly, for exam-
ple through questions on online forums or through slight reframings of the task. For example, it is
highly likely that simple science questions similar to those in the SciQ NLP task are present in our
GPT-4 series pretraining dataset at least implicitly in some form. However future superhuman mod-
els may never directly observe superhuman alignment-relevant capabilities; these capabilities may
be predominantly “latent”, e.g. learned through self-supervised learning or reinforcement learning
rather than through imitation learning. Intuitively, latent capabilities may be harder to elicit than
capabilities that models could have observed in their pretraining data.

This disanalogy could cause our results to be overly optimistic. We conjecture that this disanalogy
also increases prompting performance (Section 5.2.1) more than it increases finetuning performance;
intuitively prompting may work especially well on tasks that the model assigns high probability to
observing. If so, this would make prompting more disanalogous in our setup than finetuning. We
hope to test this conjecture in future work.

In Appendix D.1, we show a proof of concept that weak-to-strong generalization can still elicit latent
capabilities that were never explicitly observed during pretraining, and even when prompting is not
possible. In particular, we use AlexNet (Krizhevsky et al., 2012) to supervise models pretrained with
DINO (Caron et al., 2021), a self-supervised method in computer vision that learns strong represen-
tations. We find that the strong student generalizes significantly beyond AlexNet’s performance,
even though the student never observed any classification labels during pretraining. Future work
should study and mitigate this pretraining leakage disanology more systematically.

6.2 FUTURE WORK

What would convince us that we have a “solution” to superalignment? This is a complicated question
and we do not claim to have a complete answer. However, we expect substantial progress in at least
the following three areas will be necessary: analogous setups, scalable methods, and strong scientific
understanding. We now sketch out concrete problems for each of these areas.

6.2.1 CONCRETE PROBLEMS: ANALOGOUS SETUPS

Having strong measurements and a reliable methodology is extremely important for making empir-
ical progress in any field. In particular, it is important that we have metrics which provide strong
signal about whether we are making real progress toward the problem we ultimately care about.
Important directions for follow-up work include:

• Making our setup more analogous by fixing the main remaining disanalogies described in
Section 6.1. Analogous setups are essential to ensure that methods that work today will
continue to work for superhuman models.

• Validating that disanalogies are not severe, for example by checking that results are quali-
tatively similar to using e.g. 3rd grade humans to supervise our strongest models today.

• Relaxing some of the simplifications we made, e.g. by generalizing our methods and results
to complicated generative tasks.

• Testing how robust our weak-to-strong classifiers are to optimization pressure when we
attain high PGR; for example, if we attain good weak-to-strong generalization with RMs,
can we optimize the learned RM using RL?

17



• Testing our conjecture that prompting-based methods in our current setup will not be as in-
dicative of future results relative to finetuning-based methods (Section 5.2.1), and improvig
our setup to fix this.

• Identifying new or more specific disanalogies with our setup and fixing them.

Additionally, we do not yet know what future models will look like. We should update our setup
over time as we learn more about how broadly superhuman models will be built.

6.2.2 CONCRETE PROBLEMS: SCALABLE METHODS

One intuition for why major progress on weak-to-strong generalization seems possible is because
all we need to do is extract everything the strong model already “knows” about the task of interest—
the strong model should intuitively already understand the task, and should hopefully have salient
representations of that task. This suggests a number of properties that should be satisfied by the
desired generalization, and which we may be able to measure without access to ground truth.

• The desired generalization should be able to disagree with the weak supervision when the
weak supervision is wrong. This is a property our auxiliary confidence loss may capture.

• The desired generalization should be “natural” or “salient” to the model. For example, we
should not need to change the model too much to elicit the desired concept.

• The desired generalization should be consistent. Consistency properties range anywhere
from basic logical consistency to complicated forms of consistency between many prompts
(e.g. cycle consistency, cross examination, etc.).

Future work should identify additional unsupervised properties that can be used to specify the de-
sired generalization. More generally, there are very likely existing methods in the machine learning
literature (e.g. in semi-supervised learning or robust finetuning), which would be natural to try and
which could also lead to substantial gains in weak-to-strong generalization. Generalization-based
approaches to weak-to-strong learning are complementary to scalable oversight methods, in which
the weak supervisor interacts with the strong model to improve the quality of the weak supervision.

6.2.3 CONCRETE PROBLEMS: SCIENTIFIC UNDERSTANDING

We will need an extremely high degree of trust and reliability in our methods for aligning super-
human models in high-stakes settings. We will not get this from strong benchmark performance
alone. Instead, we also need a thorough understanding of precisely when and why our methods
work. Example questions of interest include:

• What explains the difference between the relatively strong results on NLP datasets and the
relatively poor results with reward models when using naive finetuning?

• What makes a concept easy or hard to elicit? What is a good definition of “salience”?
• Can we reliably estimate generalization error at test time without any labels? For example,

can we measure the degree of weak-to-strong underspecification (Lee et al., 2022b)?
• Can we reliably extrapolate generalization error across many orders of magnitude using

scaling laws?
• How important are the errors in the weak supervision, precisely? How do different kinds

of weak label biases affect generalization?
• How robust are our proposed methods to optimization pressure?

In Section 5 we only scratched the surface for understanding weak-to-strong generalization, but
future work will need to go much further. An advantage of our setup is that it makes it easy to run
simple experiments to scientifically study generalization phenomena across a wide range of settings.

6.3 CONCLUSION

Recent progress in AI has been faster than almost anyone anticipated (Steinhardt, 2022; Bengio
et al., 2023). For an increasing number of researchers, the possibility of superhuman models being
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developed this decade has become increasingly plausible. Broadly superhuman models would be
extraordinarily powerful and, if misused or misaligned with humans values, could potentially cause
catastrophic harm (CAIS, 2022). Given the stakes, we need to establish extremely high reliability in
the alignment of these systems ahead of time. But for years it has been unclear how to empirically
study superhuman model alignment. We believe it is now easier to make progress on this problem
than ever before.
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APPENDIX OUTLINE

• In Appendix A, we provide additional details on our setup and experiments.

• In Appendix B, we describe additional results, including negative results and methods that
did not work well in our experiments.

• In Appendix C, we report results on easy-to-hard generalization, where we only provide
supervision on easy examples.

• In Appendix D, we provide results in two more weak-to-strong learning settings: a self-
supervised computer vision setting on ImageNet, and a pure linear probing setting.

• In Appendix E, we provide additional results and discussion on the effect of weak supervi-
sor error simulation.

• In Appendix F, we discuss how we believe methodological progress should be made on
superalignment.

• In Appendix G, we describe how our work fits into the bigger picture of alignment.

A FURTHER EXPERIMENTAL DETAILS

Here, we provide further details on our experiments. Across all tasks, we use pretrained base models
from the GPT-4 family (OpenAI, 2023), spanning a range of model sizes.

A.1 NLP TASKS

Data preprocessing. We use popular NLP classification benchmark datasets listed in Table 1. We
obfuscate the names of the datasets in our plots (e.g. Figure 12) for confidentiality; across all figures,
we replace the names of the datasets with their order in a randomized sequence. We apply various
preprocessing to the datasets. For example, some tasks are in FLAN (Wei et al., 2021) and we use
their preprocessing. For ANLI we group neutral entailments with contradictions. We convert each
dataset to a binary classification problem. For multiple-choice datasets, suppose each datapoint has
a question Q and multiple candidate answers A1, . . . , Ak. We then convert this datapoint to k new
datapoints of the form (Q,Ai), where the label is 0 for all incorrect answers Ai and 1 for the correct
answers. In this procedure, we also aim to maintain class balance, so we keep the same number
of correct and wrong answers per question6. We are also additionally rebalancing the classes in
datasets where one of the classes represents more than 55% of the data. To do so, we randomly drop
datapoints from the dominant class, so that the classes are perfectly balanced.

Models. In order to adapt our language models to the classification setting, we replace the un-
embedding layer of the model with a linear classification head with two outputs. We initialize the
weights of the classification head with the unembedding weights for tokens “0” and “1”.

Training hyperparameters. We finetune all models for 2 epochs using a batch size of 32. In
the weak-to-strong generalization experiments, we early stop training based on the accuracy with
respect to the weak labels on a held-out validation set. See Section 5.1.1 for relevant discussion.
We only tuned the hyper-parameters of our methods on smaller model sizes, and on a subset of 8
datasets. The full GPT-4 model and most of the datasets were held-out, except for datasets [5–12]
(see Figure 12).

Weak labels. To produce the weak labels, we split the original dataset in half. We ensure that
related datapoints, e.g. datapoints that share the same question or premise, are always grouped to-
gether into the same half. Then, we train the weak supervisor model on the first half of the dataset,
and use its prediction on the other half as the weak labels. We additionally save the weak labels on
the test set to evaluate metrics such as agreement in Section 5.1.3. The weak labels are soft labels
on the training data, i.e. the class probabilities predicted by the supervisor.

Evaluation. For all datasets, we report accuracy on the test set which is also balanced to have an
equal number of datapoints in each class. In particular, random guess performance corresponds to
50% accuracy on all NLP datasets.

6In some datasets there are multiple correct answers for each question.
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Table 1: Datasets and their sources. We summarize the NLP datasets we use and their original
sources.

Dataset Original Source

BoolQ Clark et al. (2019)
CosmosQA Huang et al. (2019)
DREAM Sun et al. (2019)
ETHICS [Justice] Hendrycks et al. (2020a)
ETHICS [Deontology] Hendrycks et al. (2020a)
ETHICS [Virtue] Hendrycks et al. (2020a)
ETHICS [Utilitarianism] Hendrycks et al. (2020a)
FLAN ANLI R2 Nie et al. (2019); Wei et al. (2021)
GLUE CoLA Warstadt et al. (2019); Wang et al. (2018)
GLUE SST-2 Socher et al. (2013); Wang et al. (2018)
HellaSwag Zellers et al. (2019)
MCTACO Ben Zhou & Roth (2019)
OpenBookQA Mihaylov et al. (2018)
PAWS Zhang et al. (2019)
QuAIL Rogers et al. (2020)
PIQA Bisk et al. (2020)
QuaRTz Tafjord et al. (2019)
SciQ Welbl et al. (2017)
Social IQa Sap et al. (2019)
SuperGLUE MultiRC Khashabi et al. (2018); Wang et al. (2019)
SuperGLUE WIC Pilehvar & Camacho-Collados (2018); Wang et al. (2019)
Twitter Sentiment Zhang et al. (2019)

Detailed results. In Figure 12, we provide detailed results across all datasets for both the baseline
and the auxiliary confidence loss introduced in Section 4.3. In Figure 13 we report the detailed
results on overfitting to the weak supervisor predictions for the NLP datasets.

A.2 CHESS PUZZLES

Data preprocessing. The GPT-4 pretraining dataset included chess games in the format of move
sequence known as Portable Game Notation (PGN). We note that only games with players of Elo
1800 or higher were included in pretraining. These games still include the moves that were played in-
game, rather than the best moves in the corresponding positions. On the other hand, the chess puzzles
require the model to predict the best move. We use the dataset originally introduced in Schwarzschild
et al. (2021b) which is sourced from https://database.lichess.org/#puzzles (see
also Schwarzschild et al., 2021a). We only evaluate the models ability to predict the first move of
the puzzle (some of the puzzles require making multiple moves). We follow the pretraining for-
mat, and convert each puzzle to a list of moves leading up to the puzzle position, as illustrated in
Figure 14. We use 50k puzzles sampled randomly from the dataset as the training set for the weak
models and another 50k for weak-to-strong finetuning, and evaluate on 5k puzzles. For bootstrap-
ping (Section 4.3.1), we use a new set of 50k puzzles from the same distribution for each step of the
process.

Training hyperparameters. We train (finetune) all models for 5 epochs using a batch size of 32.
We do not apply early-stopping.

Weak labels. We produce weak labels by sampling predictions at temperature T = 0 (greedy
decoding) from the weak model on a held-out set of additional 50k puzzles. The weak labels are
completions showing the highest likelihood move according to the weak model.

Evaluation. To evaluate the models, we sample completions at temperature T = 0 on the held out
test set, and compute the fraction of datapoints where the model outputs the correct next move.
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Figure 12: Full weak-to-strong generalization results across 22 NLP datasets. Test accuracy as
a function of strong student compute across our full suite of standard NLP tasks. See Table 1 for
dataset details.
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Figure 13: Overfitting during training, for NLP datasets. Strong models overfit to the weak
labels. (a) Ground truth test accuracy of strong students over the course of training for a subset of
our NLP task. Hues indicate the gap between weak supervisor and strong student model compute.
Inset numbers indicate dataset id (compare Figure 12). (b) Median best, early-stopped according to
weak label agreement, and final performance gap recovered (PGR) aggregated across all supervisor-
student pairs and all NLP tasks. Error bars indicate standard error of the mean (s.e.m.).
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Prompt: “1. d4 1... Nf6 2. Nf3 2... d5 3. e3 3... e6 4. Bd3 4... c5
5. c3 5... Be7 6. Nbd2 6... O-O 7. O-O 7... Nc6 8. Re1 8... Bd7 9. e4 9... dxe4
10. Nxe4 10... cxd4 11. Nxf6+ 11... Bxf6 12. cxd4 12... Nb4 13. Be4 13... Qb6
14. a3 14... Nc6 15. d5 15... exd5 16. Bxd5 16... Bf5 17. Bxc6 17... Qxc6
18. Nd4 18... Bxd4 19. Qxd4 19... Rfe8 20. Rxe8+ 20... Rxe8 21. Be3 21... b6
22. Rc1 22...”

Label: “ Qxc1+”

Prompt: “1. e4 1... e5 2. Nc3 2... Nf6 3. Nf3 3... Nc6 4. Bb5 4... Bc5
5. Bxc6 5... dxc6 6. d3 6... Bg4 7. h3 7... Bxf3 8. Qxf3 8... O-O 9. g4
9... Bb4 10. Bd2 10... Nd7 11. h4 11... Be7 12. g5 12... Nc5 13. O-O-O
13... Qd7 14. h5 14... Qd8 15. Qg3 15... Ne6 16. Rdg1 16... b5 17. Qxe5
17... a5 18. f4 18... Re8 19. Qf5 19... b4 20. Na4 20... Nd4 21. Qg4 21... c5
22. f5 22... Ra6 23. f6 23... Bd6 24. fxg7 24... Kxg7 25. Rg2 25... Qc8
26. h6+ 26... Kg8 27. Qh5 27... Qd7 28. Rf1 28... Re6 29. Rgf2 29... Rg6
30. c3 30... bxc3 31. Nxc3 31... a4 32. Nd5 32... Qb5 33. Nf6+ 33... Kh8
34. Qh3 34... Rb6 35. Be3 35... Ne6 36. Nxh7 36... Qxd3 37. Rd1 37... Qc4+
38. Kb1 38... Qxe4+ 39. Ka1 39... Be5 40. Nf6 40... Qc4 41. Nd5 41... Rb7 42.”

Label: “ Qf5”

(a) Elo-695 puzzle (b) Elo-2253 puzzle

Figure 14: Chess puzzles: example datapoints. Two representative examples of an easy (a) and a
hard (b) chess puzzle with corresponding prompts and target label formats.
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Figure 15: Additional results on chess. Test accuracy of (a) baseline and (b) bootstrapping (see
section 4.3.1) compared to a zero-shot baseline. Zero-shot performance improves with model size,
and students supervised with much weaker supervisors sometimes underperform compared to the
corresponding zero-shot model. (c) Supervisor-student agreement on the chess puzzle data. Similar
to Figure 8, agreement decreases as the student becomes larger. Hue of line indicates compute of
weak supervisor.

Zero-shot results. In Figure 15(a, b), we compare the naive baseline and bootstrapping (see sec-
tion 4.3.1) generalization to a zero-shot baseline on the chess puzzle data. Especially since the
models were pretrained on chess games, zero-shot evaluation provides a strong baseline. In partic-
ular, strong students trained with much weaker supervisors underperform the zero-shot baseline for
the same model size in some cases.

Supervisor-student agreement results. In Figure 15(c), we report the supervisor-student agree-
ment on the chess puzzles. Similar to the NLP tasks (see Section 5.1.3), the agreement on chess also
decreases as the student models get larger.

A.3 CHATGPT REWARD MODELING

Data preprocessing. Each datapoint presents a dialog d between a user and an assistant, with
a last message coming from the user; for each dialog, there are multiple candidate completions
(c1, c2, . . . , cm), i.e. responses from the assistant. We also have access to pairwise comparisons of
completions, where the labeler specifies the preferred completion within a given pair of completions.
To sum up, the datapoints can be viewed as (d, c1, c2, y), where the label y is 1 if the labeler preferred
completion c2 and 0 otherwise. We use a mixture of multiple datasets used to train the reward models
for ChatGPT.

Models. To adapt the language models to the reward modeling setting, we replace the unem-
bedding layer of the model with a linear head with a single output, which is the logit for a given
completion. The weights for this head are initialized to the unembedding weights of an arbi-
trary token in the original embedding layer. Similar to past work (Stiennon et al., 2020; Ouyang
et al., 2022), we run two forward passes for each comparison, and the model prediction is given
by σ(Mw(d, c2) − Mw(d, c1)), where σ is the sigmoid function and Mw(d, c) is the logit for
completion c predicted by the model.

Training hyperparameters. We train for 1 epoch with a batch size of 220. We do not apply
early-stopping.

Weak labels. We train the weak models on half of the available comparison data, and then
make predictions on the other half. The weak label yw for a comparison (d, c1, c2) is given by
yw = σ(Mw(d, c2) −Mw(d, c1)), where σ is the sigmoid function and Mw(d, c) is the logit for
completion c predicted by the weak model.

Supervisor-student agreement results. In Figure 16, we report the supervisor-student agreement
on the RM task. Similar to the NLP tasks in Figure 8 and chess puzzles in Figure 15(c), the agree-
ment decreases as the student gets larger.
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Figure 16: Supervisor-student agreement decreases for stronger students on RMs. Please refer
to caption of Figure 8 for detailed explanation of the plot. We reproduce the supervisor-student
agreement experiment on the reward modeling data, and observe similar trends to the NLP tasks.

Generative finetuning. In Figure 17, we show that the PGR improvements from the generative
finetuning on RM data (Section 5.2.2) and from early-stopping on ground truth test accuracy (Sec-
tion 5.1.1) stack together, leading to results competitive with the NLP and chess settings. In Fig-
ure 18, we report the results of an experiment similar to Figure 10, but where the weak models are
also pretrained with an additional generative finetuning step on the RM data.

A.4 AUXILIARY CONFIDENCE LOSS

Here, we provide a detailed description of the method we use in Section 4.3.2.

We use the following loss function:

Lconf(f) = (1− α) · CE(f(x), fw(x)) + α · CE(f(x), f̂t(x)) (1)

where CE(·, ·) is the cross-entropy loss between the predictive distributions on a given input x,
fw(x) ∈ [0, 1] represents the weak label predictive distribution, f(x) ∈ [0, 1] is the strong model
predictive distribution, α is a weight and t is a threshold. The predictions f̂t(x) correspond to
hardened strong model predictions using a threshold t, i.e. f̂t(x) = I[f(x) > t] ∈ {0, 1} where I is
the indicator function. We set the threshold t adaptively, so that f(x) > t holds for exactly half of
examples in the batch7. We set αmax = 0.75 for the largest student models and to 0.5 otherwise and
linearly warm-up α from 0 to αmax over the first 20% of training.

Our balancing mechanism incorporates a prior over the distribution of labels into training and is
only practically feasible in the low-n classification setting. For most weak-strong pairs and datasets,
it had a small or neutral effect on weak-to-strong generalization; however, in a few settings it made
a significant improvement.

We note that the loss in Equation 1 can be rewritten as a self-bootstrapping loss:

Lconf(f) = CE(f(x), (1− α) · fw(x) + α · f̂t(x)), (2)

i.e. the cross-entropy target is a mixture of the weak model predictions and the (thresholded) pre-
dictions of the strong student itself. This loss is related to the bootstrapping methods in Reed et al.
(2014) and Arazo et al. (2019) for addressing label noise. It is also similar to self-training (Lee
et al., 2013) and conditional entropy minimization (Grandvalet & Bengio, 2004), which have led
to state-of-the-art results in semi-supervised learning (Xie et al., 2020) and domain adaptation (Shu
et al., 2018). Chen et al. (2020b) and Wei et al. (2020) show that self-training can mitigate the bias
of the supervisor model.

In Appendix B we also describe other methods we considered; for most of these methods, we got
negative early results.

7The choice of exactly half reflects the prior over classes, and should be computed explicitly from weak
model predictions in non-balanced or non-binary settings.
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Figure 17: The benefits of improved task-specific tuning and ground truth early stopping stack,
resulting in even higher PGR. Like Figure 10 but with ground truth early stopping based on test
accuracy.
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Figure 18: PGR improves when both supervisors and students have an extra generative fine-
tuning step. Like Figure 10 but where “with generative finetuning” indicates that both supervisors
and students have an extra generative finetuning step. In other words, for this experiment all base
models have an extra generative finetuning step following pretraining.

B ADDITIONAL RESULTS ON METHODS

We did preliminary experiments on a variety of methods for improving the strong model perfor-
mance in our weak-to-strong generalization setting. We found many of them not useful for im-
proving over the naive finetuning baseline, and others yielding limited improvements on a subset of
settings but not consistently over all datasets and model sizes. We summarize the algorithms, the
motivations, and the takeaways below. Note that we did not optimally tune each of the methods, so
it is possible that with better tuning they may still perform well.

Confidence thresholding. To filter out incorrect weak labels, we used a simple cut-off method
that selected only the top 5% to 20% examples from each class where the weak supervisor is most
confident to train the strong model. We found that our weak labels are typically well-calibrated,
but confidence thresholding only helps when the weak labels are very bad (e.g. 60% accuracy) and
stops being useful when the weak labels reach around 70% to 80% accuracy. We observed these
results both in NLP and in the chess puzzle settings. See Appendix C for more discussion of related
experiments.

Confidence losses. To encourage strong model to make confident predictions (Grandvalet &
Bengio, 2004), we added an auxiliary loss that encourages the model predicted class probabil-
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Table 2: Custom prompts used in the zero-shot and few-shot experiments. We design a simple
custom prompt for each of the tasks in the table below. In the few-shot setting, we also append
labeled (with ground truth or weak labels) examples to the prompt.

Dataset Custom Prompt

CosmosQA There is some context, followed by a question about the context, and an answer.
Respond with 1 if the answer is correct, and 0 otherwise.

Deontology There is a short scenario, consisting of a situation or request, followed by an excuse.
Respond with 1 if the excuse is valid, and with 0 otherwise.

Justice There is a statement. Respond with 1 if it is correct or just and with 0 otherwise.

QuAIL There is a news context, followed by a question about the context, and an answer
to the question. Respond with 1 if the answer is correct, and with 0 otherwise.

SciQ There is a science knowledge question, followed by an answer.
Respond with 1 if the answer is correct, and with 0 otherwise.

Social IQa There is some context, followed by a social question, followed by an answer.
Respond with 1 if the answer is correct, and 0 otherwise.

Virtue There is a short scenario, followed by a judgement of the person involved.
Respond with 1 if the judgement is correct, otherwise respond with 0.

ity p to be far away from 0.5. We tried both the l2 loss −(p − 0.5)2 and the entropy loss
p log p + (1 − p) log(1 − p). We found these losses to be helpful in preliminary experiments in
the linear probing setting, but they generally performed less well than the confidence auxiliary loss
in Equation 1 in the finetuning setting. We have also observed negative results with the confidence
losses when the training data is highly class-imbalanced or when we do not use the rebalancing
procedure described in Section 4.3.

Product confidence loss. We also tried a confidence-like loss which sets the cross entropy tar-
gets to be proportional to the product of the probabilities that the weak and strong models assign,
renormalized across classes and without propagating gradients through the targets. In preliminary
experiments, this loss consistently gave positive results over the baseline on two NLP tasks, but
performed poorly compared to our main confidence loss. Variants like geometric mean instead of
product gave no boost. Compared to the confidence loss, it could be useful as it has no inter-batch
dependence and could potentially be adapted for generative tasks.

LP-FT. We used the LP-FT technique proposed in Kumar et al. (2022) which first trains a linear
probe on frozen strong model representations and then finetunes all layers, to avoid destroying the
pretrained representation. We were unable to get improvements compared to the finetuning baseline.

Weight regularization. To regularize the strong model weights to avoid imitating the weak la-
bels8, we tried a variety of regularization techniques for strong model training, including stronger
weight decay (Krogh & Hertz, 1991) and dropout (Srivastava et al., 2014). We did not find signifi-
cant improvement.

LoRA. As another regularization technique, we also considered low-rank adaptation (LoRA) (Hu
et al., 2022), i.e. only making a low-rank update to the parameters of each layer of the model during
finetuning. We did not find any improvement, even when sweeping the LoRA rank.

Data augmentation. Inspired by the success of consistency algorithms in self-supervised train-
ing (Chen et al., 2020a; Caron et al., 2021), we used the strong student models to rephrase the inputs
in each sample, and added an auxiliary loss enforcing the strong model predictions to be consistent
between original and rephrased samples. We did not find any improvement on a selected subset of
NLP datasets.

8However, as we discuss in Section 5.1.3, in our setup the strong model tends to be bad at imitating the
weak labels. Therefore, regularization could be more important in settings where the strong model can fit the
weak labels well.
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Figure 19: Easy-to-hard generalization on chess puzzles. We finetune models on chess puzzles
with Elo ≤ t, varying the threshold t, and evaluate the finetuned models on (a): all test puzzles,
and (b): hard test puzzles with Elo ≥ 2000. Across the board, we see strong performance, even
when training only on very easy puzzles (Elo ≤ 800). For reference, we also include the zero-
shot performance of the model. Finetuning on easy puzzles, we improve upon the performance on
average on the test set, but we do not improve on hard puzzles, compared to the zero-shot model.

Adding label noise, special losses for noisy labels. We experimented with the generalized cross-
entropy loss proposed in Zhang & Sabuncu (2018) that is more robust to label noise, but did not find
improvement over cross-entropy. We also tried adding random noise to weak labels, and found that
the strong models were able to simulate the weak labels less well, especially early in training, but it
did not ultimately result in improved performance.

Few-shot prompting. As an alternative to fine-tuning, we can use the in-context learning ability
of the strong student models. For each task, we append a custom prompt shown in Table 2. For a
detailed description of the results, see Section 5.2.1.

Weight averaging. Prior work (Izmailov et al., 2018; Cha et al., 2021; Wortsman et al., 2022b;a)
suggested that various forms of weight averaging can substantially improve performance, especially
in distribution shift settings. In our setup, we experimented with applying exponential moving
averaging to the parameters of the model during training, but did not observe improvements relative
to the baseline.

C EASY-TO-HARD GENERALIZATION

In Section 5.1.3 and Appendix E, we discuss that one reason weak-to-strong generalization may
be difficult is if the weak labels have systematic errors that the strong model can learn to emulate.
One natural type of systematic weak label error is to do poorly on hard examples and well on easy
examples.

In this section, we focus on studying what we call easy-to-hard generalization, where we train only
on easy examples using ground truth supervision, and assess generalization to harder examples.

C.1 CHESS PUZZLES

Each chess puzzle comes with a natural difficulty label: an Elo score, which describes its difficulty
according to humans. On the https://lichess.org website, people try to solve puzzles,
which can be viewed as a game between a puzzle and a human player. The Elo scores are then
assigned to both human players and chess puzzles following the standard Elo algorithm.

We consider the easy-to-hard generalization problem, where the difficulty is defined according to
the puzzle Elo rating. We note that the puzzle Elo describes the difficulty of the entire puzzle
move sequence, while we are only training the model to predict the first move in the sequence
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Figure 20: Easy-to-hard generalization on chess puzzles. We present detailed performance of
models finetuned on different subsets of chess puzzles across model sizes and test puzzle difficulty
levels. For each model size, we compare models trained only on easy puzzles, hard puzzles, or all
puzzles. We also include the zero-shot model performance. We provide results for the easy puzzle
Elo cutoffs of (a): 1200 and (b): 900. All finetuned models are trained on 50k random datapoints
from the corresponding distribution. The size of the model is shown in the upper-right corner of
each panel, in terms of fraction of GPT-4 compute.
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Figure 21: Effect of varying training data difficulty on test set accuracy. Test accuracy as a func-
tion of sample difficulty cutoff on a subset of our NLP tasks. The leftmost point on the horizontal
axis corresponds to only using datapoints that models of all sizes that we consider get right when
trained on other data sampled from the same task, and the rightmost point (denoted with ∞) corre-
sponds to training on all datapoints; the point with value x on the horizontal axis corresponds to only
using the datapoints that models with x or higher compute (fraction of GPT-4) consistently get right.
Inset numbers indicate task id (compare Figure 12). Hue indicates compute of weak supervision.
Stars indicate points where weak supervisor size corresponds to sample difficulty cutoff.

(see Appendix A.2). Consequently, the puzzle Elo is a high-quality but still imperfect measure of
difficulty of the problem for humans. It is also important to note, that puzzle Elo may not be a good
measure of difficulty for the models: easy puzzles for humans can be hard for the models and vice
versa.

We then split the dataset into subsets according to the puzzle Elo. We consider the hard
set to be puzzles with difficulty above Elo 2000. For the easy set, we consider cuttoffs in
{800, 900, 1000, 1100, 1200, 1300}, and use puzzles with difficulty below the cutoff. We also con-
sider the unrestricted set of all puzzles. We sample 50k puzzles from each of these sets randomly,
and finetune the model on them9.

We report the results in Figure 19, where we also provide the performance of a zero-shot baseline
for reference. We plot the accuracy of the models trained on the easy subsets of puzzles against the
performance of the same model trained on all puzzles. We find that the models generally perform
well on average on the test set in panel (a), and outperform the zero-shot baseline. Interestingly,
when evaluated on hard examples only, in panel (b), the models perform similarly to the zero-shot
baseline, or slightly worse.

When trained on easy puzzles, the models shift towards performing well on the easy puzzles, and
underperform on the hard puzzles. In Figure 20, we can see that generally the models improve upon
the zero-shot baseline outside of their training difficulty range, often up to Elo of 1500 or higher, but
underperform on the hardest examples.

C.2 NLP TASKS: DIFFICULTY THRESHOLDING

NLP tasks do not come with a natural source of difficulty labels, but we can create such labels by
looking at performance as a function of model size.

9For easy puzzles with 800-Elo cutoff, we only use 25k puzzles, because there are not 50k puzzles available
in this difficulty range.
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Figure 22: Filtering training samples by GPT-4 generated Elo scores results in very good easy-
to-hard generalization. (a) GPT-4 generated Elo scores for different, human-defined, problem
difficulties (1 - easiest, 5 - hardest) on the MATH dataset. (b) Average test accuracy as a function of
strong student compute on a subset of our NLP tasks. Student is trained on ground truth labels on
samples of all difficulties (black), only the 30% easiest tasks (orange), or only the 50% easiest tasks
(blue).

We define difficulty of a datapoint based on the smallest model size that consistently predicts the
label on this datapoint correctly, when trained on ground truth. For example, suppose we have
4 ground truth models W1, W2, W3, W4 that use compute C1 < C2 < C3 < C4 respectively.
Suppose models W1, W3, W4 predict the example correctly when it is in a held-out set, while W2

predicts it incorrectly. Then we will assign a difficulty of C3 to the example.

Then given a difficulty cutoff D, we filter the training set to examples with difficulty ≤ D. We
subsample the filtered set so that the number of training examples is equal to the number of examples
at the lowest difficulty level. We train a model on the subsampled training set using ground truth
labels, and measure its accuracy on a held out test set (with no subsampling).

The subsampling ensures that we use the same training set size for each difficulty cutoff. Using
ground truth labels ensures that the label accuracy is the same (100%) for each cutoff. We also use
the same test set for each cutoff. This setup lets us vary only training data difficulty, and measure its
impact on the trained model’s accuracy.

We plot results in Figure 21. The y-axis is accuracy on the test set, while the x-axis is the difficulty
cutoff. Increasing the difficulty cutoff generally leads to an increase in accuracy. This result suggests
that solving easy-to-hard generalization is non-trivial even if there are no weak label errors.

For smaller models (darker lines), the accuracy initially increases, but starts to decrease beyond a
point. The drop generally happens when the difficulty cutoff exceeds the capacity of the model itself,
i.e. when the examples are too difficult for the model to fit. However, large models trained on easy
examples often perform well.

C.3 GPT-4 PREDICTED DIFFICULTY

Ultimately, we care about strong models generalizing from human supervision. From this perspec-
tive, it is important to understand whether we can achieve easy-to-hard generalization, where the dif-
ficulty is measured according to humans, rather than capacity-constrained models. In Appendix C.1,
we explored this question in chess, but we would want to extend this analysis to the NLP tasks.

Most natural datasets do not come with information about problem difficulty. As a rough estimate,
we automatically generated difficulty labels using GPT-4. More concretely, we used GPT-4 to rank
pairs of examples in each dataset, asking “which question is easier, Question A or Question B?” We
then calculated the Elo scores for each example via a finite number of random comparisons.
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Table 3: Weak-to-strong generalization on ImageNet. We train linear probes on the representa-
tions extracted by DINO models with weak supervision from an AlexNet model. The strong students
substantially outperform their weak supervisor.

Model Top-1 Accuracy (%) PGR (%)

AlexNet (weak supervisor) 56.6 -

Dino ResNet50 63.7 -
Dino ViT-B/8 74.9 -

AlexNet → DINO ResNet50 60.7 57.8
AlexNet → DINO ViT-B/8 64.2 41.5

To evaluate the quality of GPT-4 Elo score as a measure of difficulty, we performed correlation anal-
ysis against human annotations for datasets with human difficulty levels such as MATH (Hendrycks
et al., 2021) and chess, as well as against weak model confidence. We found that the three measures
align better for reasoning tasks such as MATH, as we show in Figure 22(a), but not much for some
natural language tasks. When looking at the samples, we found that GPT-4 Elo scores tend to be
higher for longer questions, but those questions may actually be easy for smaller models since they
provide more context.

Using GPT-4 Elo score as a proxy for human difficulty, we used different cutoffs on scores to sep-
arate easy and hard examples, trained the strong models on the easy examples only (with ground
truth labels), and evaluated on the hard examples. Preliminary results are shown in Figure 22(b).

In general, we found that using GPT-4 Elo as measure of hardness makes generalization slopes
steeper than our main setup of weak-to-strong generalization. One possible confounder for interpre-
tation is that our Elo measurements could be noisy, causing generalization to be better.

Note that this setup is a classic covariate shift problem, whereas our main setup focuses more on
concept shift and noisy labels. It is unclear which setup would be more relevant, and we think it is
important to study easy-to-hard generalization more thoroughly in future work.

D OTHER WEAK-TO-STRONG SETTINGS

D.1 SELF-SUPERVISED VISION MODELS

We additionally demonstrate weak-to-strong generalization in a simple image classification experi-
ment. We use a pretrained AlexNet model (Krizhevsky et al., 2012) as a weak supervisor, and use
it to generate weak labels on the ImageNet (Russakovsky et al., 2015) validation set. As a strong
student, we use linear probing on frozen representations extracted by DINO models (Caron et al.,
2021) based on ResNet-50 (He et al., 2016) and ViT-B/8 (Dosovitskiy et al., 2020) architectures.
The DINO models are pretrained in an unsupervised way and did not observe direct supervision for
ImageNet classification or any other classification task during pretraining, so this experiment does
not have the pretraining leakage disanalogy discussed in Section 6.1.

We use 40k datapoints from the validation set to train the linear probes, and evaluate performance
on the remaining 10k datapoints. For training the linear probes, we use a batch size of 128, Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 10−3. We run 20 epochs of training for
ResNet-50 and 5 epochs for ViT-B/8.

We report the results in Table 3. Similarly to our main experiments in Section 4, the student can
substantially outperform the supervisor, achieving PGR on the order of 50%. This experiment shows
that our results are not limited to the natural language setting, and generalize to other domains. It
also shows that strong students can generalize from weak supervision on tasks where they only had
indirect pretraining, i.e. where the knowledge of the task is latent.
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Figure 23: Linear probing qualitatively matches finetuning weak-to-strong generalization. Test
accuracy as a function of strong student compute on a subset of our NLP tasks. Inset numbers
indicate dataset id (compare Figure 12). Accuracy of a linear probe on student model trained with
ground truth in black, accuracy of linear probe on students trained directly with weak linear probe
supervision shown in solid lines with circles (hue indicates compute of weak supervision).

D.2 LINEAR PROBING

In addition to our main finetuning experiments, we also perform weak-to-strong generalization ex-
periments in the linear probing setting. We freeze all weak and strong model parameters, and train
new linear classification heads both using ground truth labels and using weak labels. We train lin-
ear probes with Adam optimizer (Kingma & Ba, 2014), 10−3 learning rate, batch size 128, and no
weight decay for 200 epochs, for both weak and strong model training. We do early stopping based
on agreement to the weak labels on the validation set and report test accuracy. Results are shown in
Figure 23. We observe qualitatively similar generalization compared to the full finetuning case.

Generally, we found the linear probing setting to be very useful to quickly iterate on methods,
datasets and ideas. While finetuning provides better results, the qualitative trends in linear probing
are similar, and the experiments are much faster and easier to run. For example, we initially found
positive results with confidence loss (Section 4.3) and bootstrapping (Section 4.3.1) in the linear
probing setting.

E THE EFFECTS OF WEAK LABEL STRUCTURE

One challenge in weak-to-strong generalization is the presence of errors in the weak labels.
Throughout most of this paper, we consider a particular type of weak error structure: the kinds
of errors smaller, capacity-constrained language models make. However, this is not the only type of
errors possible.

In this section, we analyze synthetic examples of other kinds of weak label structures, and the
implications they have on generalization. Weak model error structure must be considered in relation
to the particular strong model at hand. For example, we conjecture that the extent to which the strong
model can imitate the weak supervisor may be very important. If we have two strong models of the
same performance on the actual task but one is very good at imitating the labels, then we expect that
model will generalize less desirably, at least with the naive finetuning method.

In Section 5.1.3 we found that surprisingly the strongest students are imitating the weak supervisor
mistakes less than smaller student models in our setting. Since we expect superhuman models to
be very good at imitating human supervisor, this may be a major disanalogy. In this section we test
cases where the weak supervisor can be imitated easily.
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Figure 24: Synthetic experiment on simulation difficulty. We consider three types of weak errors
in a linear probing setting: (a,d) perfectly simulatable, where weak models use a subset of strong
model features; (b,e) completely unsimulatable, where the weak labels are obtained by applying
random noise to the ground truth; (c,f) a mixture of the two settings, where label noise is applied
to perfectly simulatable weak labels. Top row of panels shows test accuracy and bottom row shows
agreement to the weak labels. In addition to weak label accuracy, the structure of mistakes plays a
major role in weak-to-strong generalization.

E.1 SYNTHETIC EXPERIMENTS ON SIMULATION DIFFICULTY

First, we consider a simplified linear probing setting, where we can ensure that the student can per-
fectly simulate the supervisor predictions by construction. Specifically, we extract a representation
X ∈ Rn×d of the SciQ dataset using a model of an intermediate size in the GPT-4 family, where n
is the number of datapints, and d is the dimensionality of the residual stream (Elhage et al., 2021).
We can then consider the family of linear models10 Mk where k ≤ d by training a linear probe only
on the first k features extracted by the model. In particular, for k = d we recover the standard linear
probe. By construction for k1 ≥ k2, the model Mk1 can perfectly simulate Mk2 .

Next, we can run our standard weak-to-strong generalization experiment, following the setup de-
scribed in Section 3, using the family of models Mk. We train the weak supervisor models on 10k
datapoints, and produce hard weak labels on the remaining 13k datapoints. We report the results
in Figure 24(a,d). In this setting, the simulation is very easy, and we do not observe substantial
improvements in the strong student model compared to the supervisor performance. The test agree-
ment values are substantially higher than the weak model accuracy, indicating that the students are
overfitting to the supervisor errors. Interestingly, even in this simple setting the agreements are
not 100%, likely due to the fact that the student models are trained on finite data, and with light
l2-regularization.

We can also consider the opposite setting: what if the student model cannot simulate the mistakes
of the weak teacher at all? Specifically, we generate weak labels by randomly flipping the labels
to match the accuracy of the weak models from the previous experiment. As a result, we get weak
labels with the same accuracy, but which are completely unpredictable. In Figure 24(b,e), when we
train the student model on the these weak labels, we can get substantially higher accuracy than the
accuracy of the weak labels. In other words, if the errors of the weak supervisor are completely
unpredictable (random) for the student, with enough data we should be able to recover good gener-
alization, substantially exceeding the performance of the supervisor.

10We train logistic regression using the default parameters in the sklearn.linear_model.
LogisticRegression class (Pedregosa et al., 2011) for this experiment.
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Figure 25: PGR for weak labels with same accuracy but different error structures. The inset
number in each panel indicates the dataset (compare Figure 12). Weak-to-strong generalization and
methods both depend critically on the structure of the weak supervisor errors. While it is trivial to
pick error structures that generalize well (for instance, random noise), these error structures are also
very disanalogous to the ultimate superalignment setting, where we want to study the structures of
human errors.
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Finally, in Figure 24(c,f) we consider a mixture of these two settings: we start with a perfectly
simulatable weak model M300, and then add various amounts of label noise to the resulting weak
labels. By training a strong student model (using all features) on the resulting weak labels, we
recover the performance close to the performance of M300.

Discussion of results. The simple experiment in this section suggests that in addition to the weak
label accuracy, it is important to consider the structure of weak errors. In particular, if the weak er-
rors are extremely easy for the strong model to simulate, the student may not generalize much better
than the weak supervisor with naive finetuning on the weak labels. On the other hand, if the mistakes
of the weak supervisor are completely unpredictable, the student can denoise the predictions of the
supervisor and generalize better. In future work, we believe it is important to consider various types
of weak supervision with different structures of mistakes, and build a better understanding of how
they affect weak-to-strong generalization.

E.2 DIFFERENT WEAK ERROR STRUCTURE MEANS DIFFERENT GENERALIZATION

To further explore the impact of different weak error structures, we created several synthetic sets of
weak labels for each dataset, all with error rate identical to the weak model’s error rate. To construct
these labels, we start from ground truth, and then flip a subset of labels to match the accuracy of a
particular weak model. We target a few types of error structures, such as pure noise, easy-to-model
bias, hard-to-model bias, and adversarial bias.

In particular, we looked at:

1. weak supervisor: the baseline — labels are generated in the same way as in the rest of
the paper

2. random: flip the label of random datapoints
3. longest prompt: flip the label of longest datapoints by characters
4. shortest prompt: flip the label of shortest datapoints by characters
5. strong g.t. model unconfident: flip the label of the datapoints that the strong ceil-

ing model is most unconfident on
6. strong g.t. model confidently correct: flips the label of the datapoints that the

strong ceiling model is most confidently correct on

Despite all of these weak labelers having the same weak accuracy, we find that the generalization
can vary wildly depending on the structure of the weak errors. We report the results in Figure 25.

Furthermore, the dynamics of supervisor-student agreement through training can have qualitatively
different behavior (Figure 26). For errors coming from a weak model, we see that there is often ini-
tially a period of generalization, followed by a period of overfitting where it learns the weak model’s
errors. The confidence auxiliary loss mitigates this overfitting. For easy-to-fit error structures such
as longest prompt, the overfitting happens much faster. For other kinds of errors, such as random
noise, we often see that generalization improves throughout: weak errors are not modeled, but the
signal from the weak model is.

E.3 MAKING IMITATION TRIVIAL

One possible major disanalogy in our setup, as discussed in Section 6.1, is the fact that our models
are not very good at imitating the weak model11 (Section 5.1.3), but superhuman models may be
very good at imitating humans. It is possible that if the strong model were good at imitating the
weak model, then it would generalize substantially less desirably by default.

To test an extreme version of this hypothesis, we create a synthetic setting where the strong model
can trivially imitate the weak model very well. In particular, we modify the task by appending “I
think this is {weak label}. What do you think?” to every prompt, where weak label is “correct”
or “incorrect” based on the weak model prediction. In this case, the hardened weak label is present
in-context, and the simulation is trivial.

11Also known as learning the “human simulator” in the terminology of Christiano et al. (2022).

44



0

20

40

60

80

100

weak supervisor longest prompt shortest prompt

0 2
0

20

40

60

80

100

st
ud

en
t-s

up
er

vi
so

r
ag

re
em

en
t (

%
)

random

0 2

strong g.t. model unconfident

0 2

strong g.t. model
confidently correct

progress (fraction of epoch)
10.5 1.5 10.5 1.5 10.5 1.5

st
ud

en
t-s

up
er

vi
so

r
ag

re
em

en
t (

%
)

aux. loss
baseline weak supervisor correct

weak supervisor wrong
[6]

0

20

40

60

80

100

weak supervisor

longest prompt shortest prompt

0 2
0

20

40

60

80

100

st
ud

en
t-s

up
er

vi
so

r
ag

re
em

en
t (

%
)

random

0 2

strong g.t. model unconfident

0 2

strong g.t. model
confidently correct

progress (fraction of epoch)
10.5 1.5 10.5 1.5 10.5 1.5

st
ud

en
t-s

up
er

vi
so

r
ag

re
em

en
t (

%
)

aux. loss
baseline weak supervisor correct

weak supervisor wrong
[4]

0

20

40

60

80

100

weak supervisor

longest prompt shortest prompt

0 2
0

20

40

60

80

100

st
ud

en
t-s

up
er

vi
so

r
ag

re
em

en
t (

%
)

random

0 2

strong g.t. model unconfident

0 2

strong g.t. model
confidently correct

progress (fraction of epoch)
10.5 1.5 10.5 1.5 10.5 1.5

st
ud

en
t-s

up
er

vi
so

r
ag

re
em

en
t (

%
)

aux. loss
baseline weak supervisor correct

weak supervisor wrong
[12]

Figure 26: Training dynamics change for different weak errors. We show teacher-student agree-
ment for different weak error structures on three datasets. We see that the training dynamics have
qualitatively different behavior for different error structures, despite all weak labelers having the
same accuracy.
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Figure 27: Generalization when emulating weak labels is trivial. Very little weak-to-strong gen-
eralization occurs if emulating the weak labels is trivial: average PGR across tasks is 0.002± 0.003
for baseline, and 0.046 ± 0.108 for aux loss, compared to around 0.2 and 0.8 respectively for the
original tasks.

As expected, we find that both the baseline and the confidence loss introduced in Section 4.3 show
poor weak-to-strong generalization (Figure 27) in most cases. Interestingly, the confidence loss still
improves upon the baseline achieving non-trivial generalization in several tasks.

F HOW SHOULD WE EMPIRICALLY STUDY SUPERALIGNMENT,
METHODOLOGICALLY?

What makes a setup good for studying superalignment in the first place, all things considered?
Tractability and ease of study are clearly important criteria, but also certainly not the only ones.
This question is non-obvious because superalignment is qualitatively different from other machine
learning problems: it is a problem we will face in the future, not a problem that we face today.
Nevertheless, it is crucial that we solve this problem before it becomes serious, as even a single
failure of superintelligence misalignment in practice could be catastrophic.

This presents a major methodological challenge: how do we even approach studying a problem that
is not yet a problem? How do we make progress on the core difficulties of superalignment? How do
we make progress with today’s systems, knowing that our efforts will not be wasted by surprising
new model capabilities that will inevitably arise in the future (Wei et al., 2022)? We do not claim to
have a complete answer to these questions, but we outline some best practices for maximizing our
chances of making real progress on superalignment.

Analogous setups. We should construct increasingly analogous empirical setups, and we should
enumerate any remaining disanalogies. A setup is analogous if our results on that setup do not rely
on assumptions that will break down in the future, making results today likely qualitatively similar
to results in the future. Our main evaluation setup, introduced in Section 3, is intended to be more
analogous to the superalignment problem. We enumerate some remaining disanalogies with our
setup in Section 6.1.

Enumerating assumptions. We should enumerate the key assumptions that our results (either
implicitly or explicitly) rely on. Clarifying what assumptions we are making makes it much easier
to know when our results might break down. We enumerate our main disanalogies and assumptions
in Section 6.1 and Appendix G.3.

Sensitivity analysis. We should evaluate the sensitivity of our results to changes in our assump-
tions and empirical setup. While we can make informed guesses about the future, we do not know
exactly what future models will be like, so it is difficult to entirely trust any particular experimen-
tal setup. Validating that our results are robust to many different sets of assumptions can make us
substantially more confident our results will transfer to the future superalignment problem. We do
some initial sensitivity analysis in Appendix E, and intend to do much more in future work.

Scalable techniques. We should avoid techniques that rely on assumptions that will likely break
down for future (superhuman) models. For example, when we do few-shot prompting we are in-
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tuitively incentivizing models to predict some useful distribution of human text, whereas when we
do finetuning we are intuitively incentivizing a model to output what it knows regardless of how it
knows it. This is one of the reasons we focus on finetuning methods in this paper: they are more
likely to scale to superhuman models compared to prompting.

Incidental usefulness today. One possible validation that progress on our setup is real would
be to show that it is incidentally useful in practice today; while we advocate focusing on the core
challenges of superalignment, if our findings are never useful with today’s models that would be
evidence that we are not on the right track. One example of a near-term practical milestone would
be to align GPT-4 on instruction-following tasks using only GPT-3-level supervision; if we could get
strong alignment without any humans involved at all, that would make alignment much simpler and
cheaper today. However, usefulness today is certainly not sufficient for aligning superintelligence,
and in general a common failure mode of empirical alignment research is it prioritizes usefulness
today at the expense of analogousness and scalability.

Updating over time. We should update our evaluations and validate past findings as we learn
more about what future models will look like. While we focus on the pretrained language model
paradigm today, we plan on updating our setup if or when this stops being the dominant paradigm.

G HOW WEAK-TO-STRONG GENERALIZATION FITS INTO ALIGNMENT

Superintelligent AI systems will be extraordinarily powerful; humans could face catastrophic risks
including even extinction (CAIS, 2022) if those systems are misaligned or misused. It is important
for AI developers to have a plan for aligning superhuman models ahead of time—before they have
the potential to cause irreparable harm.

Our plan for aligning superintelligence is a work in progress, but we believe that weak-to-strong
techniques could serve as a key ingredient. In this section we sketch several illustrative possiblities
for how we could use weak-to-strong generalization to help align superintelligent systems.

G.1 HIGH-LEVEL PLAN

Leike & Sutskever (2023) propose the following high level plan, which we adopt:

1. Once we have a model that is capable enough that it can automate machine learning—and
in particular alignment—research, our goal will be to align that model well enough that it
can safely and productively automate alignment research.

2. We will align this model using our most scalable techniques available, e.g. RLHF (Chris-
tiano et al., 2017; Ouyang et al., 2022), constitutional AI (Bai et al., 2022b), scalable over-
sight (Saunders et al., 2022; Bowman et al., 2022), adversarial training, or—the focus of
this paper—-weak-to-strong generalization techniques.

3. We will validate that the resulting model is aligned using our best evaluation tools available,
e.g. red-teaming (Perez et al., 2022a;b) and interpretability (Ribeiro et al., 2016; Olah et al.,
2018; Bills et al., 2023; Li et al., 2023).

4. Using a large amount of compute, we will have the resulting model conduct research to
align vastly smarter superhuman systems. We will bootstrap from here to align arbitrarily
more capable systems.

The goal of weak-to-strong generalization is to ensure step (2) is solved: align the first model ca-
pable of automating machine learning and alignment research. Importantly, this first model will
likely be qualitatively superhuman along important dimensions, so RLHF is unlikely to be sufficient
(Section 4). If we had a superhuman model, how would we apply weak-to-strong generalization to
align it?
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G.2 ELICITING KEY ALIGNMENT-RELEVANT CAPABILITIES WITH WEAK-TO-STRONG
GENERALIZATION

There are many different alignment-relevant capabilities we could try to elicit from a superhuman
model that could significantly help with alignment, including:12

• Safety: does a given behavior produced by an AI system risk the safety of human lives or
well-being in important ways?

• Honesty: is a given natural language statement true or false?

• Instruction following: does a given behavior produced by an AI system follow a user’s
instruction faithfully?

• Code security: does some given code have important security vulnerabilities or back-
doors? Is it safe to execute it?

In the ideal case, the capability we elicit from the model would be robust enough that we can turn it
into a reward model and safely optimize it; future work should assess the feasibility of this approach.
At the opposite extreme, we could potentially use the elicited capability as an “oracle” that we can
manually query; intuitively, if we had a superhuman oracle model, we may be able to leverage it to
help us bootstrap to a more robust alignment solution, even if that oracle is not itself entirely robust.

G.3 ALIGNMENT PLAN ASSUMPTIONS

Many alignment plans which appear different on the surface actually depend on heavily correlated
assumptions. For a given alignment plan, it is also often unclear which subproblems the plan at-
tempts to solve, and which subproblems the plan assumes are unlikely to be an obstacle. As a result,
we think enumerating assumptions is an important part of making progress on alignment.

In addition to the major disanalogies discussed in Section 6.1, the assumptions we make for an
alignment plan based on weak-to-strong generalization include:

• No deceptive alignment in base models. We assume that pretrained base models (or the
equivalent in future paradigms) will be highly intelligent but not highly agentic (e.g. will
not have long-term goals)—and consequently will not be deceptively aligned (Hubinger
et al., 2019; Ngo et al., 2022; Carlsmith, 2023) out-of-the-box. Our goal is to elicit the
superhuman capabilities of this capable but safe base model, and use those capabilities to
create an aligned (possibly agentic) superhuman model.

• Elicited concepts are sufficiently robust, or do not need to be. We assume it is ei-
ther possible to solve alignment using only a small amount of optimization applied to the
capabilities we elicit, or that it is possible to make weak-to-strong elicited capabilities suf-
ficiently robust against overoptimization.

• The concepts we care about are natural to future AGI. The superhuman base model we
apply weak-to-strong generalization to has some “alignment-complete” concept, such as
honesty, that is extrapolated in the way we would endorse if we could understand everything
the superhuman model understands, and which is natural enough to the model that it is
feasible to elicit.

• Sufficiently gradual takeoff. Before we have superintelligence, we will have somewhat
superhuman models long enough that we can use them to finish solving the full superintelli-
gence alignment problem. We can use it to solve superalignment before it causes recursive
self improvement or catastrophic damage.

• Moderately superhuman models are sufficient to solve alignment. We assume the first
models capable of automating alignment research in practice are moderately superhuman,
i.e. in a regime similar to what we study empirically in this work. For example, we may
assume that we only need to bridge a weak-strong gap of at most (say) 4 OOMs of effective
compute.

12Ideally we elicit several related concepts and verify that we get consistent answers between them.
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• No need to solve human values. We assume we do not need to solve hard philosophi-
cal questions of human values and value aggregation before we can align a superhuman
researcher model well enough that it avoids egregiously catastrophic outcomes.

This list represents a non-exhaustive set of notable assumptions we often operate under, and we
will constantly reassess and update these assumptions over time as we learn more. We do not think
these are necessarily valid assumptions by default, and believe it is important to validate them, work
towards making them true, or mitigate failure modes from them being invalid.

Furthermore, there are a huge number of uncertainties about what future AI systems will look like
and exactly how we should align them.

49


	Introduction
	Related Work
	Methodology
	Main Results
	Tasks
	Naively finetuning on weak labels
	Improving Weak-to-Strong Generalization is Tractable
	Bootstrapping with intermediate model sizes
	An auxiliary confidence loss can dramatically improve generalization on NLP tasks


	Understanding Weak-to-Strong Generalization
	Understanding imitation
	Overfitting to Weak Supervision
	Student-supervisor agreement
	Inverse scaling for imitating the supervisor

	Saliency in the strong model representations
	Eliciting strong model knowledge with prompting
	Generative supervision improves RM weak-to-strong generalization
	Finetuning on weak supervision to increase concept saliency


	Discussion
	Remaining disanalogies
	Future Work
	Concrete Problems: Analogous Setups
	Concrete Problems: Scalable Methods
	Concrete Problems: Scientific Understanding

	Conclusion

	Acknowledgements
	Further experimental details
	NLP Tasks
	Chess Puzzles
	ChatGPT Reward Modeling
	Auxiliary Confidence Loss

	Additional results on methods
	Easy-to-hard generalization
	Chess puzzles
	NLP tasks: difficulty thresholding
	GPT-4 predicted difficulty

	Other weak-to-strong settings
	Self-supervised vision models
	Linear probing

	The effects of weak label structure
	Synthetic experiments on simulation difficulty
	Different weak error structure means different generalization
	Making imitation trivial

	How should we empirically study superalignment, methodologically?
	How weak-to-strong generalization fits into alignment
	High-level plan
	Eliciting key alignment-relevant capabilities with weak-to-strong generalization
	Alignment plan assumptions


