

AI as a Healthcare Ally

How Americans are navigating the system with ChatGPT

January 2026

Introduction

>5%

Of all ChatGPT messages globally are about healthcare

1 in 4

WAU globally prompt about healthcare each week

>40M

WAU globally prompt about healthcare every day

OpenAI is building tools to help people solve problems for themselves and others, and that includes one of their most challenging issues: navigating their healthcare. More than 5% of all ChatGPT messages globally are about healthcare, averaging billions of messages each week. Of our more than 800 million regular users, one in four submits a prompt about healthcare every week. More than 40 million turn to ChatGPT every day with healthcare questions.

In the United States, the healthcare system is a long-standing and worsening pain point for many. Gallup finds that views of US healthcare quality have sunk to a 24-year-low; that Americans give the system a C+ on access and a D+ on costs; and that a combined 70% believe the system has major problems or is in a state of crisis. In our own research, three in five Americans say the current system is broken, and strong majorities tell us that hospital costs (87%), poor healthcare access (77%), and a lack of nurses (75%) are all serious problems.

For both patients and providers in the US, ChatGPT has become an important ally, helping people navigate the healthcare system, enabling them to self-advocate, and supporting both patients and providers for better health outcomes. Based on anonymized ChatGPT message data:

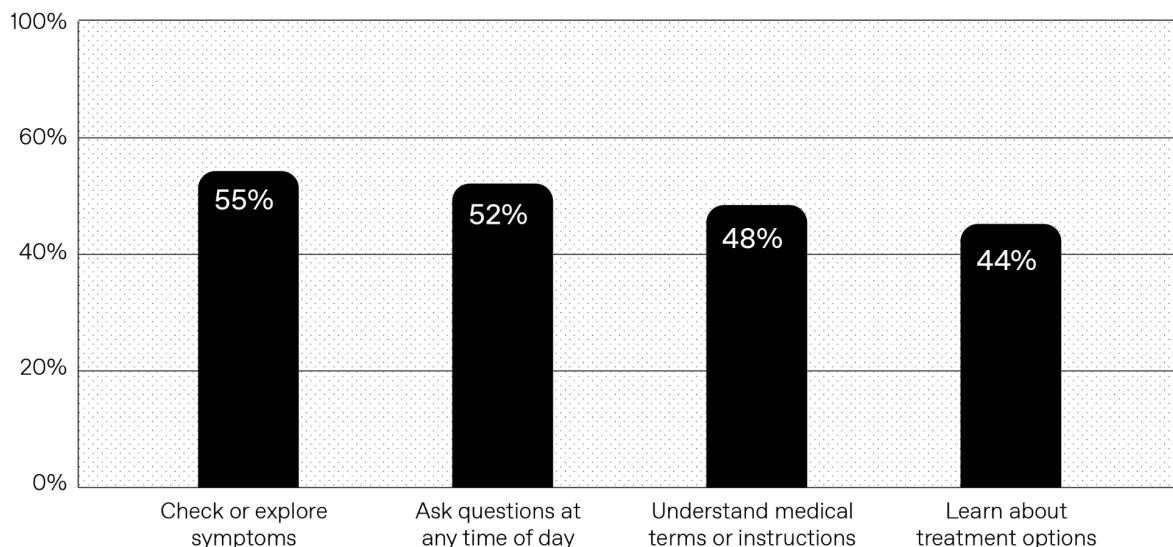
- **Nearly 2 million** messages per week focus on health insurance, including for comparing plans, understanding prices, handling claims and billing, eligibility and enrollment, and coverage and cost-sharing details.
- In underserved rural communities, users send an average of **nearly 600,000** healthcare-related messages every week.
- And **seven in 10** healthcare conversations in ChatGPT happen outside of normal clinic hours.

This report details: (1) how users are turning to ChatGPT for help in navigating the US healthcare system; (2) how they're turning to ChatGPT to help them close healthcare access gaps, including in

“hospital deserts” across the country; and (3) how healthcare providers and workers are using AI in their roles now.

We also include (4) initial proposals to update healthcare policy for the Intelligence Age; and (5) a look at how healthcare professionals and start-ups are innovating with ChatGPT in life sciences to improve healthcare outcomes – because use of AI to discover or accelerate even one new drug or treatment could have a profound impact on public health.

1. Navigating the system


1.6M-1.9M

The number of ChatGPT messages about **health insurance** sent per week – including for comparing plans, understanding prices, handling claims and billing, eligibility and enrollment, and coverage and cost-sharing details.

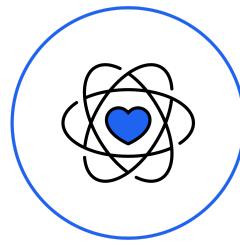
Americans are using AI and ChatGPT to equip themselves with information to gain more agency over their health, particularly when dealing with a system that's difficult to navigate and makes decisions without a lot of context. ChatGPT users send **more than 1.5 million to nearly 2 million messages** about health insurance each week, according to anonymized message data, to help themselves compare plans and understand coverage, pricing, claims, billing and cost-sharing, eligibility and enrollment.

In general, **three in five adults in the US** say they've used AI tools for their health or healthcare in the past three months, according to an OpenAI survey. They are using AI to get information when they first feel unwell, consulting it to prepare for their visits with their clinicians, and using it to better comprehend patient instructions and recommendations. They're also using it to deal with the administrative aftermath of billing, claims, and denials.

Among US adults who have used AI to help manage their health or healthcare in the past 3 months:

SOURCE: Knit survey commissioned by OpenAI of 1,042 US adults who used AI for healthcare in the past 3 months

This underscores how Americans are using AI for healthcare navigation: organizing information, translating jargon, and generating drafts they can verify. Reliability improves when answers are grounded in the right patient-specific context such as insurance plan documents, clinical instructions, and healthcare portal data.


Coordinating urgent care from afar

From San Francisco, tax professional Ayrin Santoso used ChatGPT to help coordinate urgent care for her mother in Indonesia after her mother suffered sudden vision loss that her family attributed to fatigue. Santoso entered symptoms, prior advice, and context, and received a clear warning from ChatGPT that her mother's condition could signal a hypertensive crisis and possible stroke. Based on this information, her mother immediately measured her blood pressure, which confirmed Santoso's fears and led her mother to seek hospital admission. During hospitalization, ChatGPT helped translate prevention guidance into actionable steps, including home monitoring routines and lifestyle adjustments. This guidance was confirmed by a doctor in Indonesia. Santoso's mother has since recovered 95% of her vision in the affected eye.

Supporting self-advocacy and administration

Living in Seattle, with a rare and severe auto-immune clotting disease, Rich Kaplan used ChatGPT to overcome insurance denial for a clinician-recommended therapy. He prompted the model to find studies, trials, and case reports, then produced a cited literature review that supported an appeal and won approval through arbitration. Afterward, ChatGPT helped with the daily management between medical appointments: summarizing visit notes, extracting lab trends, and generating question lists for specialists. By reviewing his medication list and new over-the-counter plans, it flagged kidney risks and interaction concerns, helping to prevent avoidable complications and supporting Kaplan's self-advocacy.

2. Closing access gaps

7 in 10

Most health-related conversations in ChatGPT happen **outside of normal clinic hours**, underscoring how people are seeking actionable information when facilities are closed.

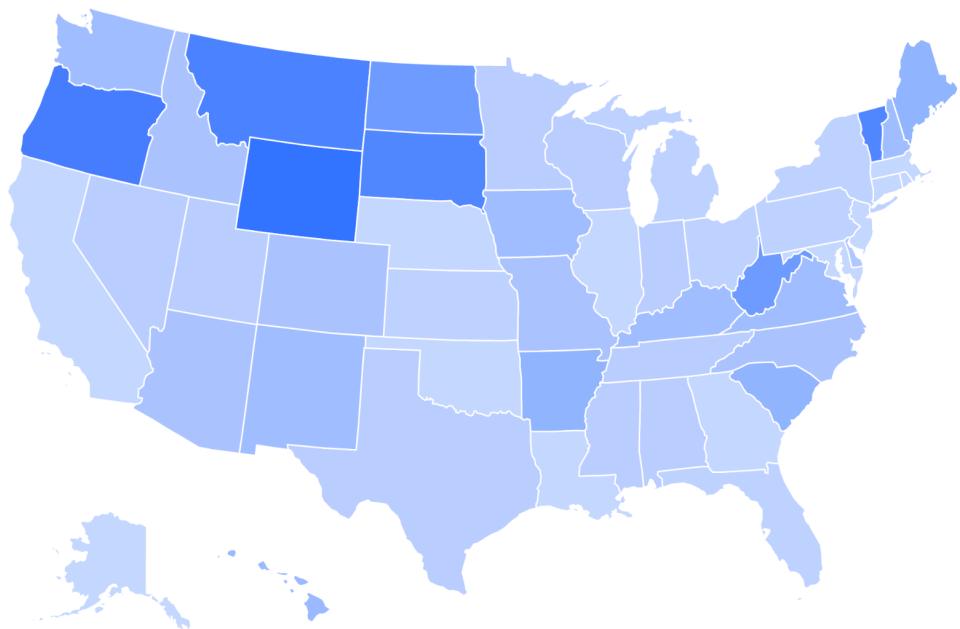
Nearly 600,000

The average number of ChatGPT messages related to healthcare sent each week by users **in underserved rural areas of the US**.

ChatGPT has become an important source of information for people living far from care or just needing health information after-hours. An OpenAI analysis of anonymized ChatGPT user data finds that most health-related conversations in the US actually happen out of typical clinic hours, defined as 8am to 5pm local time.

In the US, about one in five people live in rural areas, where populations skew older and face higher burdens of preventable disease and premature death. Inpatient care has become scarcer in rural communities since 2010, with 10 rural hospitals on average either closing or converting to models without inpatient beds each year.

Financial pressure in these areas is widespread: nearly half (46%) of all rural hospitals operate with negative margins, and more than 400 across 38 states are considered vulnerable to closure, according to independent healthcare advisory and analytics firm [Chartis](#). Even when a facility stays open, fewer services may be offered. Hundreds of rural hospitals have stopped offering critical services such as obstetrics and chemotherapy in the last 15 years.

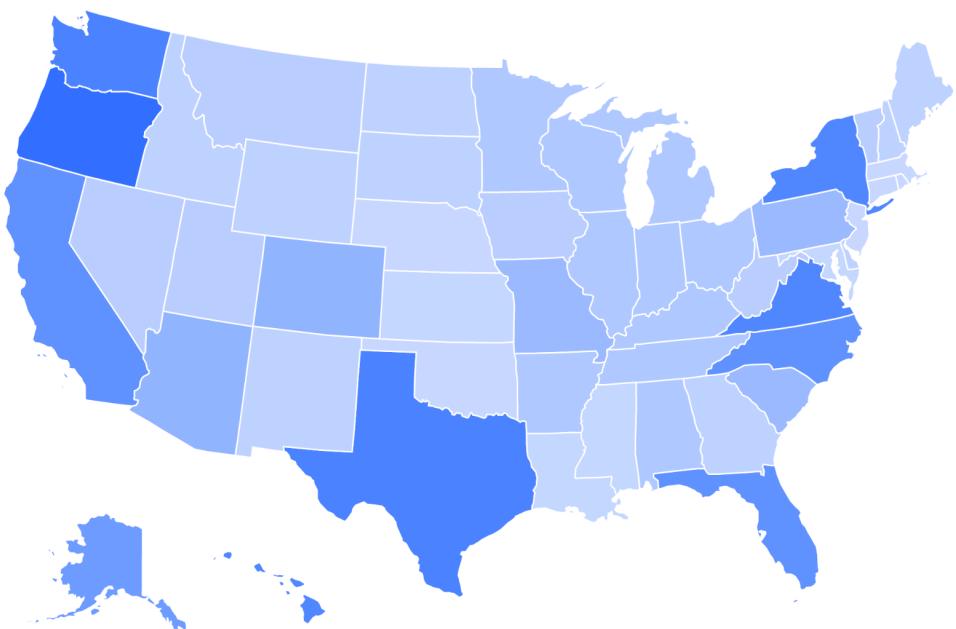

OpenAI studied anonymized ChatGPT user data in “hospital deserts,” which we defined as locations that are more than a 30-minute drive from a general medical or general children’s hospital. In practice, deserts show up in the form of vanished services such as cardiology, oncology and neurology, forcing patients into longer travel, delayed care, and worse outcomes.

Studying a four-week timespan in late 2025, we found that ChatGPT averaged **more than 580,000 healthcare-related messages per week** from these hospital deserts across the US. Wyoming

ranked #1 in share of all these desert messages (4.15%), followed by 2) Oregon (3.4%), 3) Montana (3.2%), 4) South Dakota (2.95%) and 5) Vermont (2.89%). In other words, the least populated state, Wyoming, has the highest rate of healthcare-related messages from hospital deserts nationwide; Oregon has the second-highest rate. Other states with relatively small populations such as South Dakota and Maine also outperform in share.

States Ranked by Share of Healthcare Messages from Hospital Deserts

“Deserts” = >30 minutes from the nearest general medical or general children’s hospital


1. WY	4.15%	14. WA	0.99%	27. IN	0.48%	40. NE	0.19%
2. OR	3.40%	15. KY	0.95%	28. MN	0.46%	41. IL	0.18%
3. MT	3.20%	16. IA	0.92%	29. TN	0.44%	41. LA	0.18%
4. SD	2.95%	16. NH	0.92%	30. MS	0.40%	43. CA	0.16%
5. VT	2.89%	18. VA	0.87%	31. NV	0.37%	43. OK	0.16%
6. HI	2.76%	19. MO	0.84%	32. TX	0.34%	45. MD	0.10%
7. ND	2.05%	20. NC	0.76%	33. UT	0.34%	46. GA	0.09%
8. WV	1.84%	21. ID	0.75%	34. NY	0.31%	47. RI	0.04%
9. AK	1.74%	22. CO	0.74%	35. PA	0.31%	48. MA	0.03%
10. ME	1.53%	23. AZ	0.67%	36. MI	0.28%	CT	0.00%
11. AR	1.36%	24. DE	0.66%	36. KS	0.28%	DC	0.00%
12. SC	1.29%	25. WI	0.53%	38. FL	0.26%	NJ	0.00%
13. NM	1.03%	26. AL	0.51%	39. OH	0.22%		

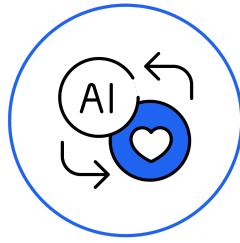
And in a sample one-month period, Oregon led the rankings in number of healthcare messages sent from hospital deserts, ahead of #2 Texas, #4 New York, #6 California and #7 Florida. Oregon's neighbor, Washington, ranks #5 in volume.

States Ranked by Number of Healthcare Messages from Hospital Deserts

"Deserts" = >30 minutes from the nearest general medical or general children's hospital

In a sample month

1.	OR	54,660	14.	PA	12,897	27.	UT	5,272	40.	AK	2,393
2.	TX	43,337	15.	KY	9,999	28.	WV	5,049	41.	KS	2,280
3.	VA	39,886	16.	TN	9,742	29.	VT	4,830	42.	MS	2,254
4.	NY	39,083	17.	IL	8,836	30.	NV	4,750	43.	LA	2,242
5.	WA	33,137	18.	MI	8,468	31.	NM	4,225	44.	MD	2,188
6.	CA	31,974	19.	AR	8,107	32.	SD	4,176	45.	OK	1,615
7.	FL	30,360	20.	IN	7,906	33.	GA	4,063	46.	NE	1,167
8.	NC	28,152	21.	MN	7,866	34.	ME	3,969	47.	MA	937
9.	AZ	18,547	22.	WI	7,575	35.	WY	3,308	48.	RI	154
10.	CO	17,103	23.	OH	7,394	36.	ID	3,303	49.	CT	32
11.	MO	15,264	24.	AL	7,276	37.	ND	3,216	DC	-	
12.	HI	15,115	25.	MT	5,332	38.	NH	2,946	NJ	-	
13.	SC	14,513	26.	IA	5,328	39.	DE	2,840			


Chartis also finds vanishing inpatient facilities and financially vulnerable rural hospitals spreading across the American South and Midwest – other regions where AI can become an important source of information for people living far from care. And in urban areas where healthcare personnel and facilities may likewise be underfunded and overburdened, AI can play a similar early role in the seeking of care – an area we plan to report on shortly.

AI will not, on its own, reopen a shuttered hospital, restore a discontinued OB unit, or replace other critical but vanishing services. But it can make a near-term contribution by helping people in underserved areas interpret information, prepare for care, and navigate gaps in access, while helping rare clinicians reclaim time and reduce burnout.

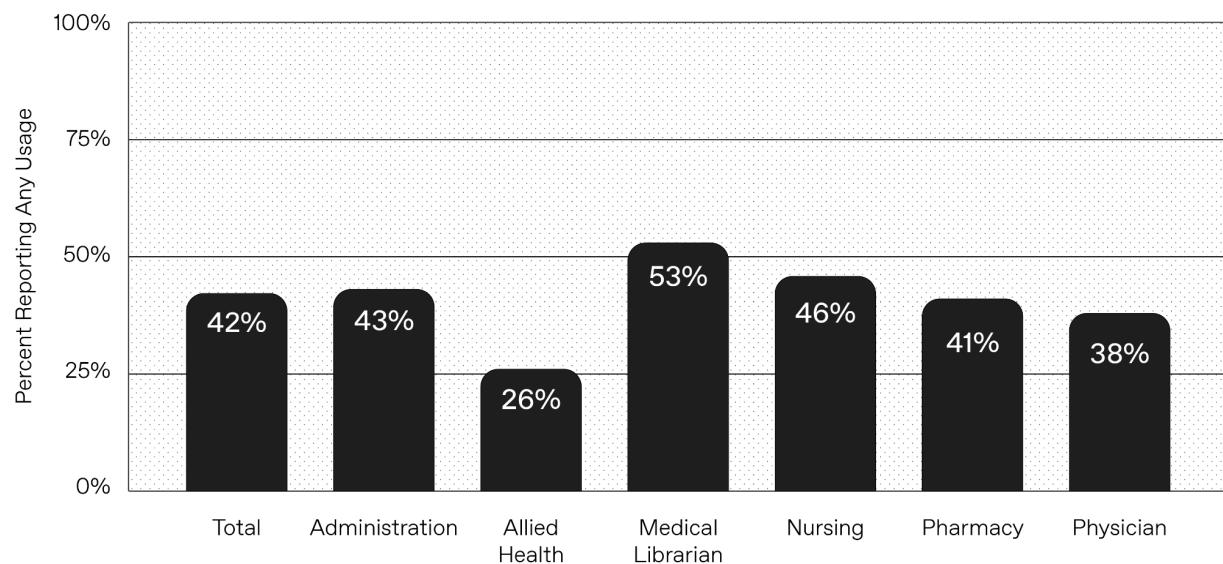
Helping overburdened providers with administrative work

In rural Miles City, Montana (pop. 8,400), family physician Dr. Margie Albers uses Oracle Clinical Assist, which relies on OpenAI models, to serve everyone in the community. Oracle Clinical Assist acts as an AI scribe, drafting visit notes within the clinical workflow and reducing the time Albers must spend on manual data entry, medical coding, and billing work. That time savings lets her focus on triage and follow up for patients who often travel hours for appointments and arrive with serious problems. Albers also uses OpenEvidence, which supports precise diagnosis and guideline checks, returning concise answers with citations. Together, the tools reduce missed details, keep care up to date, and improve access for a rare clinician serving a rural community.

3. Healthcare professional use of AI

66%

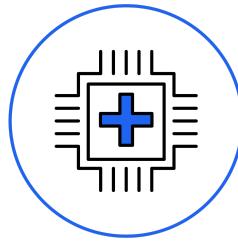
The share of American physicians who reported adopting AI for at least one use case in 2024, up from 38% in 2023.


46%

The share of American nurses using AI weekly.

American healthcare providers face their own challenges with the system, and studies show how they're turning to AI for support, including for help in managing burnout and to provide more personalized care. Two-thirds of American physicians reported using AI for at least one specific use case in 2024, a sharp increase from 38% the previous year, according to the [American Medical Association](#) (AMA). Half of American family physicians and primary-care physicians reported using AI tools for at least one use case at work.

More than two in five US healthcare workers, including administrators, medical librarians, nurses, and pharmacists, report using generative AI at least once a week at work. Medical librarians are the healthcare-worker category with the highest share of weekly AI use (53%) — followed by nurses (46%), administrators (43%), and pharmacists (41%). By comparison, just 26% of allied health workers (physical therapists, dietitians, paramedics) say they use AI at least once a week at work.


AI Usage by Healthcare Occupation / Once per week or more

SOURCE: Wolters Kluwer and Ipsos survey of 312 healthcare professionals, Feb. 26-March 24, 2025

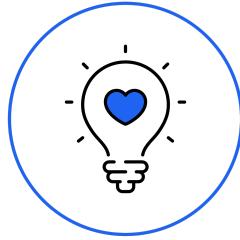
As for how medical workers are using AI, the AMA found 21% of physicians saying they used AI to document billing codes, medical charts, or notes from patient visits in 2024—an 8 percentage-point jump from 2023. The share of physicians who used AI to assist in diagnosing a patient remained steady in 2024 (12%) compared with the year before (11%).

The same AMA survey showed that three out of four physicians consider AI tools to be very or somewhat helpful for work efficiency, and nearly as many (72%) consider them helpful for diagnostic ability. The use cases showing the biggest jumps in perceived helpfulness from 2023 to 2024 include managing stress, and the ability to offer personalized care.

4. Safely expanding use of AI in healthcare

Below are sample policy concepts focused on enabling deployment of AI to solve humanity's hardest healthcare challenges, such as speeding up scientific discovery, strengthening healthcare infrastructure, supporting our healthcare workforce, and updating regulatory approaches for the Intelligence Age. OpenAI will release a full Policy Blueprint on AI in healthcare in early 2026.

Open and securely connect the world's medical data to speed up scientific discovery. Curing diseases increasingly depends on AI systems learning from large, diverse medical datasets—genomics, medical imaging, clinical outcomes, and real-world evidence. Today, much of this data remains fragmented, inaccessible, or locked within institutional silos. Opening and securely connecting publicly funded medical data, with strong privacy protections, would allow AI to learn from decades of research at once. Incentives for contributing de-identified, high-value datasets—such as those held by rare-disease or diagnostic firms—can help ensure that even small but critical datasets are included. Connecting these resources would dramatically speed progress toward new treatments and cures that are impossible to achieve with isolated data.


Build infrastructure to solve healthcare's hardest problems and rapidly scale solutions. AI can help produce promising drugs, diagnostics, and treatment strategies far faster than traditional research—but turning those ideas into real therapies still depends on physical infrastructure. Progress increasingly hinges on access to modern labs, automated experimentation, clinical trial capacity, biomanufacturing, and skilled teams. Expanding robotic wet labs, AI-enabled screening platforms, and preclinical testing hubs allows AI-designed molecules, vaccines, and gene therapies to be validated quickly and safely. Modern clinical trial infrastructure—such as decentralized trials, AI-assisted patient matching, telemedicine participation, and adaptive trial designs—can reduce delays and make trials more representative. Without this end-to-end infrastructure, AI-driven medical breakthroughs remain stuck on screens instead of reaching patients.

Support workers' transition into the healthcare professions that will be created and expanded by AI. AI-accelerated healthcare reshapes how work is done across research, clinical care, and medical operations, creating new roles and expanding existing ones. These roles include clinical trial coordinators, community-based research staff, lab automation technicians, biomanufacturing specialists, biosafety professionals, and teams that oversee the safe use of AI in healthcare settings. Making these jobs accessible requires clear, practical pathways into the field—such as paid apprenticeships, on-the-job training, and regional healthcare talent hubs tied to hospitals, labs, and

manufacturers. With straightforward entry points and ongoing skill development, AI-enabled medical progress becomes a source of stable, high-quality healthcare jobs rooted in local communities.

Clarify the regulatory pathway for AI medical devices for consumer use. AI medical devices have the capacity to address a broad range of medical issues for consumers, but as the US Food and Drug Administration (FDA) has acknowledged, the current medical device regulatory framework was not designed for AI. For example, the FDA's traditional approach of evaluating medical devices on a disease-by-disease basis could result in FDA requesting data demonstrating the AI medical device's performance across every potential disease, which is neither feasible nor necessary for safe and effective use. We are encouraged that the FDA has recognized the importance of addressing these challenges and facilitating consumer access to beneficial AI medical devices. We urge FDA to move forward and work with industry towards a clear and workable regulatory policy that will facilitate innovation of safe and effective AI medical devices.

Clarify the scope of medical device regulation to encourage innovation of AI services that support doctors. Currently, the FDA regulates as medical devices certain tools intended for use by physicians in their decision-making, and certain of these tools are exempted by the 21st Century Cures Act. But this law predates AI solutions that can benefit providers today, and there are open questions about how AI services can meet the exception. The FDA should establish new guidance on when AI to support physicians' independent medical judgment is regulated in today's environment to promote innovation and responsible use of AI by healthcare providers.

5. Innovating to improve healthcare outcomes

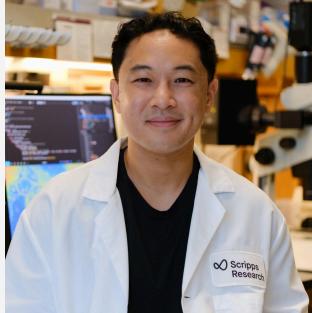
Repurposing FDA-approved drugs for untreatable diseases

With GPT-5 Pro, immunologist Dr. Oral Alpan of McLean, Va. explores whether FDA-approved drugs can be repurposed for untreatable diseases. The trigger was a patient with severe eczema and Food Protein-Induced Enterocolitis Syndrome, or FPIES, a rare food allergy that causes delayed gut inflammation.

For about two decades, even trace wheat caused severe gastrointestinal symptoms. After the patient started dupilumab for eczema, an accidental wheat exposure produced no reaction, and a supervised oral food challenge approaching 50 grams of wheat protein was also negative. When insurance interrupted dupilumab, symptoms returned, then resolved after restarting the drug.

At Amerimmune, Alpan's team collected more cases and reported seven additional patients with improved food-allergy responses while taking dupilumab for already approved indications. To test whether AI could connect the dots before his research was published, Alpan and colleague Dr. Derya Unutmaz fed GPT-5 Pro a de-identified vignette as a test case.

The model ranked dupilumab first, linking on-label eczema to a mucosal immunity hypothesis in the gut and flagging patient profiles at higher risk of side effects. Alpan described the result as evidence that AI can behave intuitively in the scientific sense.


Reprogramming aging cells to tackle Parkinson's

Entrepreneur Rob Cahill and colleagues are building Junevity, a biotech focused on reprogramming aging cells and tackling diseases such as Parkinson's. The mission became personal for Cahill after his mother's health declined and his uncle was diagnosed with Parkinson's. After a career in software and startups, he retrained in biochemistry and bioinformatics and joined a UCSF lab.

There he met scientist Janine Sengstack and transcription-factor expert Hao Li, whose work suggested that silencing certain "manager genes" can reset gene expression in aged cells. With biotech CEO John Hoekman, they co-founded Junevity to pursue cell reprogramming using small interfering RNA, starting with metabolic disease and neurodegeneration.

Junevity runs as an AI-enabled team. All employees use ChatGPT and the company layers OpenAI models on top of genomics machine-learning pipelines. Cahill estimates the first development candidate, a liver-targeted siRNA program for type-2 diabetes and obesity, is hitting milestones at two to six times lower cost and about two to three times faster than industry norms.

In the Parkinson's program, Junevity identified 20 transcription-factor targets. A structured ChatGPT workflow scored genetic evidence and returned linked papers, narrowing the list to three targets that are now in animal studies.

Learning how memory works

Marco Uytiepo is a PhD candidate in neuroscience at Scripps Research in San Diego. In Anton Maximov's lab, he studies how neural circuits store experience, turning electron-microscopy maps of the brain's wiring into insights about memory. The work involves scanning millions of synapses and assembling 3D reconstructions.

Trained as an experimental scientist, Uytiepo taught himself to code, and uses ChatGPT to accelerate the dry-lab side of his work, especially data cleaning and pipelines. Before AI, he could spend days writing and debugging MATLAB or Python, then lose evenings troubleshooting. When he asked ChatGPT for an end-to-end pipeline, such as parsing a dataset and quantifying features across millions of synaptic connections, it produced working code within seconds. Tasks that once took a week to refine can now be solved in minutes.

Uytiepo pushed further by requesting Blender scripts to automate parts of 3D reconstruction; those routines helped generate visualizations for a 2025 Science paper on which he was first author, complementing specialized machine-learning tools elsewhere in the project. As data volumes rise, he says the line is blurring between wet-lab experiments and dry-lab analysis. Uytiepo now moves between MATLAB, Python, R, C++, and Bash, using ChatGPT as tutor and coding partner.

Scaling the teaching of clinical reasoning

Using OpenAI's API, Stanford University project director Marcos Rojas is building Clinical Mind AI, a research platform that lets learners practice clinical reasoning through realistic simulations. Instructors write cases, and students interview simulated patients by text or real-time voice, then decide what to ask, what tests to order, and what to do next.

What began as a 2023 laptop prototype has grown into a funded platform that emerged from Stanford's IDEAL Research Lab, led by Professor Shima Salehi. The experience is designed to feel like telehealth: an electronic health record supports documenting histories, reviewing images, and ordering tests, while the system generates a patient photo and other case artifacts from the instructor's script.

Clinical Mind AI aims to bring the benefits of simulation-based education to more programs, beyond schools that can afford standardized patients, meaning trained actors who can portray medical conditions consistently. Its real-time format adds pressure that helps new habits stick. Faculty can tailor cases to local language and epidemiology, then use transcripts to personalize feedback and group students by need. The same engine supports training across nursing, dentistry, occupational therapy, physical therapy, speech therapy, and psychology.

About OpenAI

Artificial intelligence is an innovation like electricity—it will change how we live, how we work, and how we engage with one another. OpenAI's mission is to ensure that artificial general intelligence benefits all of humanity. We're building AI to help people solve hard problems because by helping with the hard problems, AI can benefit the most people possible—through more scientific discoveries, better healthcare and education, and improved productivity. We're off to a strong start, creating freely available intelligence being used by more than 800 million people around the world, including 4 million developers. We believe AI will scale human ingenuity and drive unprecedented productivity, economic growth, and new freedoms that help people accomplish what we can't even imagine today.

Cover image created with ChatGPT