
Weight-sparse transformers have interpretable circuits

Leo Gao 1 Achyuta Rajaram 1 Jacob Coxon 1 Soham V. Govande 1 Bowen Baker 1 Dan Mossing 1

Abstract

Finding human-understandable circuits in lan-
guage models is a central goal of the field of
mechanistic interpretability. We train models to
have more understandable circuits by constrain-
ing most of their weights to be zeros, so that each
neuron only has a few connections. To recover
fine-grained circuits underlying each of several
hand-crafted tasks, we prune the models to isolate
the part responsible for the task. These circuits
often contain neurons and residual channels that
correspond to natural concepts, with a small num-
ber of straightforwardly interpretable connections
between them. We study how these models scale
and find that making weights sparser trades off ca-
pability for interpretability, and scaling model size
improves the capability-interpretability frontier.
However, scaling sparse models beyond tens of
millions of nonzero parameters while preserving
interpretability remains a challenge. In addition to
training weight-sparse models de novo, we show
preliminary results suggesting our method can
also be adapted to explain existing dense models.
Our work produces circuits that achieve an un-
precedented level of human understandability and
validates them with considerable rigor.

1. Introduction
While neural networks, such as large language models, have
rapidly increased in capability in recent years, we still un-
derstand very little about how they work. Mechanistic in-
terpretability seeks to reverse engineer neural networks and
fully understand the algorithms they implement internally.

A major difficulty for interpreting transformers is that the
activations and weights are not directly comprehensible;
for example, neurons activate in unpredictable patterns that
don’t correspond to human-understandable concepts. One
hypothesized cause is superposition (Elhage et al., 2022b),

1OpenAI, San Francisco, California, United States. Correspon-
dence to: Leo Gao <lg@openai.com>.

Train sparse transformer

Find circuit for each task

All pruned nodes are mean ablated

print("Circuit sparsity

�

�

...

")

...

Figure 1. An illustration of our overall setup. We first train weight-
sparse models. Then, for each of a curated suite of simple behav-
iors, we prune the model down to the subset of nodes required
to perform the task. We ablate nodes by pruning to their mean
activation value over the pretraining distribution.

the idea that dense models are an approximation to the
computations of a much larger untangled sparse network.

Existing approaches have made progress on tackling su-
perposition by first learning a basis in which activations
appear sparse, and then attempting to understand the com-
putations of the model within that basis (Marks et al., 2024;
Ameisen et al., 2025). However, these approaches obtain
human-understandable circuits by abstracting away com-
plex computations that are only partially understood. Thus,
the resulting circuits may reflect the chosen abstractions in
addition to the model’s true mechanisms.

Here, we introduce a new paradigm which leads to sub-
stantially simpler and more general circuits that we can
fully understand even at the lowest levels of abstraction. To
do this, we train transformers where the vast majority of
weights are zeros; i.e., the L0 norm of the weights is small.

1

Weight-sparse transformers have interpretable circuits

256 1024 4096 16384 65536
Pruned circuit size (interpretability)

0.002

0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500

Ta
sk

 lo
ss unpruned loss

Dense model
Sparse model
(Loss matched)

Figure 2. Our weight-sparse models learn simpler task-specific
circuits than dense models. We examine a sparse model and a
dense model with the same pretraining loss. We sweep target loss,
and find the size of the minimal circuit in each model that can
achieve that loss, averaged across tasks. Sparse model circuits are
roughly 16-fold smaller at any given loss.

This constraint drastically simplifies model computations.
As each neuron can only read from or write to a few resid-
ual channels, the model is discouraged from distributing
concept representations across multiple residual channels
or using more neurons than strictly needed to represent a
single concept.

We show that the model learns disentangled circuits for
different tasks by isolating the minimal circuit which can
perform each task and showing that it is compact. Within
these circuits, we find that neuron activations often corre-
spond to simple concepts, such as “tokens following a single
quote” or “depth of list nesting”, and the weights encode
connections between concepts that are often intuitive. As a
relatively rigorous validation, we further demonstrate that
our disentangled circuits are necessary and sufficient for the
model’s behavior on these tasks; mean-ablating every neu-
ron except the few that are part of the circuit preserves task
loss, whereas deleting the few nodes in the circuit severely
harms task loss.

Although weight-sparse training has substantial benefits
for interpretability, it has the critical disadvantage that it
requires training new models de novo; these models are
extremely inefficient to train and deploy, and are unlikely to
ever reach frontier capabilities.1

While we believe that training larger interpretable models
would be scientifically valuable, we’d also like to use weight-
sparse training to better understand existing dense models.
We show preliminary results using bridges at each layer to

1See Appendix B for more discussion on the inefficiencies of
sparse training.

1009 × 10 1 1.1 × 100 1.2 × 100 1.3 × 100

Pretraining loss (capability)

29

210

211

212

Pr
un

ed
 c

irc
ui

t s
ize

 (i
nt

er
pr

et
ab

ilit
y)

better

L0
14.8M
7.4M
3.7M
1.9M
0.9M 107

108

109

To
ta

l p
ar

am
et

er
 c

ou
nt

Figure 3. Scaling the total parameter count of weight-sparse mod-
els improves the capability-interpretability Pareto frontier. Making
models sparser (i.e. decreasing the L0 norm of weights) while
holding total parameter count fixed trades off the two, harming
capability but improving interpretability. We define capability as
pretraining loss; see Section 2.2 for our definition of interpretabil-
ity. Down and to the left is better.

couple a weight-sparse model’s representations to those of
a target dense model, so that our model can then serve as an
interpretable replacement for the original dense model.

To make it easier to replicate our results, we release the
weights and pruned circuits for all sparse models used in
the experiments in this paper, as well as code for visu-
alizing circuits, at https://github.com/openai/
circuit_sparsity/.

2. Methods
We first train weight-sparse models—Transformer mod-
els with most of their parameters set to zero.2 All of our
models are pretrained on a dataset of Python code. We then
examine our models’ behavior on a curated suite of simple,
unambiguous tasks where they are forced to choose between
one of two completions.

To assess the interpretability of our models, we isolate the
small sparse circuits that our models use to perform each
task using a novel pruning method. Since interpretable
models should be easy to untangle, individual behaviors
should be implemented by compact standalone circuits.

Sparse circuits are defined as a set of nodes connected by
edges. Our definition of nodes is maximally granular and
corresponds to rows and columns of weight matrices: we de-

2Not to be confused with sparsity via mixture-of-experts
(Shazeer et al., 2017), which is weight-dense in our terminology,
because its weights are almost all nonzero.

2

https://github.com/openai/circuit_sparsity/
https://github.com/openai/circuit_sparsity/

Weight-sparse transformers have interpretable circuits

rmsnorm

1.56 × × -2.5

83

K.82.1
V.82.0Q.82.1

4.0

Circuits

1.56 -2.5

V.82.0Q.82.1

4.0

×...

softmaxsoftmax

...

+6 +6

K.82.1

')

×

QK

V

QK

V

print

460
205
207
985

("

normalize

-0.15

×-0.23

×

0.18 ×

0.mlp

-0.15 ×

-0.1××-0.2

10.attn

0.mlp.resid_delta.460

2790 863

+0.2 +0.2

rmsnorm normalize

-0.15

×-0.23

×

0.18 ×

-0.15 ×

-0.1××-0.2

2790 863

rmsnorm

83
460

205
207
985

")

10.attn.qk.head82.ch1

10.attn.v.head82.ch0

normalizermsnorm

0.mlp.post_act.2790

0.mlp.post_act.863

10.attn.resid_delta.83

Double quote detector

Single quote detector

Quote type classi�er

Quote type classi�er

Quote detector

How did this string begin?

× ×

×

×

Figure 4. The string closing circuit. We omit no detail, showing all 12 nodes and 9 edges needed to complete the task near perfectly. First,
0.mlp converts the token embeddings into “quote detector” and “quote type classifier” residual channels, which are read by key and value
channels respectively in 10.attn. Subsequent tokens attend to the key and copy the value to predict the corresponding closing quote. In
the diagram, the vertical bundle of lines under each input token is its residual stream. Activations of important nodes on cherry-picked task
examples are shown on the left. Dashed horizontal lines mark layer boundaries. ⊗ denotes scalar multiplication; directly merged lines
denote scalar addition. Black numbers indicate channel or neuron indices. Red and blue numbers mark positive and negative weights (or
biases). This diagram only shows the relevant attention path. Inactive parts of the circuit are greyed out, and irrelevant layers are omitted.

fine a node to mean an individual neuron, attention channel,
residual channel read, or residual channel write. An edge,
then, is a nonzero entry in a weight matrix and connects two
nodes.3

We report the geometric mean number of edges in the cir-
cuit across our hand-curated tasks as our main quantitative
interpretability metric.

3For example, the simplest MLP circuit, consisting of one sin-
gle neuron reading from and writing to one channel, is 3 nodes and
2 edges. MLP neuron nodes correspond to post-GELU activations,
residual read nodes correspond to the rows of c fc, and residual
write nodes correspond to the columns of c proj.

2.1. Sparse Training

Architecture. We use a GPT-2 style decoder-only trans-
former similar to Radford et al. (2019) with some minor
modifications. We enforce sparsity of all weights and biases,
including token embeddings, such that we can increase the
width of the model while holding the number of nonzero
parameters (L0) exactly constant. Our sparsest models have
approximately 1 in 1000 nonzero weights. We also enforce
mild activation sparsity at all node locations, with 1 in 4
nonzero activations.4 See Appendix A.1 for more details
and ablations.

4Note that this does not directly enforce sparsity of the residual
stream, only of residual reads and writes.

3

Weight-sparse transformers have interpretable circuits

values = [[5, 3
2.attn

2.attn.resid_delta.1249 Q

softmax

K

4.attn

4.attn.resid_delta.1079

2.attn.v.head125.ch12

Open bracket detector

Don't get distracted: [
values =[5, 3, 11, 3, 12]]

extra [tokens in preceding lines cause
the model to output]]

rmsnorm rmsnorm

V

V

(Q = 0, so attention is
uniform average
over V’s in context)

+

(sink logit is very large, so softmax
behaves as a threshold)

Nesting depth

Nested list

Figure 5. A simplified illustration of the circuit for counting nest-
ing depth, using the conventions from Figure 4. A single attention
value channel functions as an “open bracket detector” derived from
the embedding of the token [. The attention head then averages
the value of this detector over the context and writes it to the
residual stream at each token (the “nesting depth”). A subsequent
attention head reads out the nesting depth using a query channel,
and thresholds it to only activate inside nested lists. This circuit
uses 7 nodes and 4 edges. Understanding this algorithm allows us
to adversarially attack the model with “distractors.”

Optimization. We train to minimize cross-entropy loss
using the AdamW optimizer (Loshchilov & Hutter, 2019).
To enforce the L0 weight sparsity constraint, we zero out all
but the largest magnitude entries in each weight matrix after
applying AdamW within each training step, such that every
matrix has the same fraction of nonzero elements.5 We
anneal the L0 from fully dense to the target L0 throughout
training. See Appendix A.2 for more details and ablations
regarding techniques used to ensure optimization stability.

2.2. Measuring interpretability

Task distribution. We manually construct a set of 20 sim-
ple Python next-token binary prediction tasks. For example,
one task (single double quote) is to predict whether
to close a string with a single or double quote, where the only
difference in the context is whether the opening quote token
has a single or double quote. Another (set or string)
measures the model’s ability to track the type of a variable,
by asking whether a variable name should be followed by
.add, or +=, where examples differ only in the variable’s
initialization. See Table 1 for a description of all tasks.

5We keep gradients and Adam moments dense, not modifying
them from the standard implementation.

 current = set()

 for neighbor, cost in graph[node].items():

 if neighbor not in seen:

 heappush(queue, (cost, neighbor))

 current .add

current4.attn.h73
QK (3)

V (8)

set()

6.attn.h26
QK (2, 5, 14)

V (1, 11)

Figure 6. A rough schematic of the circuit for tracking the type of
a variable. The model uses a two-hop algorithm with 2 attention
heads, using 4 query/key channels and 3 value channels in total.
First, it copies the variable name current into the set()
token. It then uses this as a key, allowing the model to copy the
value of the set() token into the final token position, where
it reads out the correct answer.

Pruning. For each task, we prune the model to obtain
the smallest circuit which achieves a target loss on the task
distribution. The target loss is 0.15 everywhere unless oth-
erwise specified. We prune by deleting some subset of
nodes across all token positions, similar to Cao et al. (2021).
Deleted nodes are mean-ablated — that is, their activation
is frozen at the mean activation over the pretraining distri-
bution. See Appendix E for a discussion of the implications
of various ablation methods. We present a novel structured
pruning algorithm. We learn a set of masks τi (indexed by
node) which we use to gate the respective node locations
xi 7→ xi⊙σ(τi), where σ is the Heaviside step function. We
train the mask parameters τi by using a sigmoid-derivative
surrogate gradient to backpropagate through the Heaviside
step function (analogous to the Straight-Through Estimator
(Bengio et al., 2013)), minimizing a joint objective of task
loss and circuit size. See Appendix A.5 for more details.

2.3. Bridges

In Section 3.3, we extend our methods to understanding be-
haviors of already-trained dense models. We train a weight-
sparse model alongside a series of bridges mapping between
the dense and sparse model’s activations once per sublayer,
i.e. before each attention and each MLP. Each bridge con-
sists of an encoder which maps from the dense to sparse
model activations, and a decoder that maps back.6

Loss terms. We want the weight-sparse model to match
the dense model’s computations, with the bridges accurately
translating between the sparse and dense activations. To ac-

6Each encoder is a linear map and activation function (Ab-
sTopK), and the decoder is linear. In other words, each bridge can
be viewed as a sparse autoencoder where the latent space is the
sparse model’s residual activations.

4

Weight-sparse transformers have interpretable circuits

complish this, we use multiple bridge loss terms in addition
to normal pretraining loss (Figure 7). We use a normalized
MSE term that trains the bridge encoder to accurately pre-
dict sparse activations from dense ones (and vice versa for
the bridge decoder). We also run hybrid forward passes of
the sparse and dense models, using the bridges to convert
one kind of activations to the other at various single loca-
tions. We train the sparse model weights such that these
hybrid forward passes have low KL to the original dense
model. See Appendix A.3 for a more precise statement of
our setup.

3. Results
3.1. Weight sparsity improves interpretability

First, we measure whether sparsity allows models to learn
smaller circuits. We compute minimal circuits in a dense
model and a sparse model of comparable pretraining loss
for each of our tasks, and average the circuit size across
tasks (Figure 2). We show that pruning our weight-sparse
models yields roughly 16-fold smaller circuits on our tasks
than pruning dense models of comparable pretraining loss.
We are also able to construct arbitrarily accurate circuits
at the cost of more edges. This shows that circuits for
simple behaviors are substantially more disentangled and
localizable in weight-sparse models than dense models.

To further validate the faithfulness of our circuits, we also
show that they are not only sufficient but necessary for our
tasks. When we ablate the tiny fraction of nodes that are
part of our circuits, leaving the rest of the network intact,
performance is severely impaired (Figure 32).

We also find that our method improves with model scale.
When we increase the hidden dimension of the model,
holding the number of layers constant, we improve the
interpretability-capability frontier (Figure 3). Changing
L0 moves along the frontier, trading off between capability
and interpretability. Finally, if we hold L0 fixed, and use a
larger model, we find that both capability and interpretabil-
ity improve. The larger model with the same L0 is strictly
more expressive, and has fewer nonzero weights per neuron
or residual channel.7

Another aspect of interpretability is feature quality, which
empirically seems closely related to activation sparsity. We
find that increasing weight sparsity naturally increases spar-
sity of residual stream activations (Figure 10).8

7Increasing the size of the model with fixed L0 gives us more
degrees of freedom; the number of bits to specify which parameters
of the model are nonzero is approximately O(L0 logN), where
N is the total number of parameters.

8The residual stream is rarely exactly zero, so we measure
sparsity in terms of kurtosis (Hurley & Rickard, 2009).

bridge
dense model sparse model

Loss

bridge

bridge

bridge

Figure 7. Starting with an existing dense model, we can train the
weight-sparse model jointly with bridges—a series of linear maps
that allow us to convert between the sparse and dense model
representations—such that all paths through a mix of sparse and
dense layers still perform well on pretraining.

3.2. Qualitative circuit investigations

Our ultimate goal is to fully understand the computations
of a model mechanistically. While we find small circuits on
our tasks, and verify with mean ablation that they faithfully
implement the model’s underlying computations, circuit size
is only a proxy for interpretability. To verify that the model
implements human-understandable algorithms, we manually
interpreted the pruned circuits for three different tasks across
two models (chosen for their apparent simplicity). For each
circuit, we spent roughly a researcher-day of work. This
included manually removing extraneous nodes,9 as well as
verifying our natural language descriptions of nodes with
manual activation patching experiments.

A unique promise of sparse circuits is that we could aspire
to interpret them in the absence of any task-specific data or
assumptions. Optimistically, after relating nodes to natural
concepts,10 we could extract relevant circuits by directly
inspecting their edges. To this end, for the following circuits
we report how numerous are the components’ total edges
relative to the interpreted subset, in each circuit. Generally,
if components have fewer total edges, we expect that it will
be easier to trace their circuits, and their edges may be more
interpretable.

9Our pruning algorithm is imperfect and leaves a small number
of nodes with negligible impact on task loss.

10We believe this to be generally possible; randomly selected
nodes seem to be somewhat interpretable.

5

Weight-sparse transformers have interpretable circuits

0 10 20 30 40 50 60 70
Number of elements in list

0.2

0.4

0.6

0.8

p(
co

rre
ct

)

incorrect completion threshold

0 10 20 30 40 50 60 70
Number of elements in list

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Ac
tiv

at
io

n
2.

at
tn

.re
sid

_d
el

ta
[1

24
9]

Figure 8. A surprising adversarial example to our bracket-counting circuit found using our circuit. Because our model uses stronger and
weaker activations of the same feature to represent different bracket nesting depths, and also takes the mean of this feature over the context,
it should be possible to trick the model by putting more tokens in context. We find that our model (even when unpruned) experiences
significant “context dilution”, failing to predict the correct completion of]] on longer lists. This is a natural consequence of the circuit
as understood in Section 3.2.2; the activation reduces in magnitude (proportional to 1

n ctx) as the average is taken over more tokens.

3.2.1. CLOSING STRINGS

We begin with a simple task (single double quote),
where the input contains a string opening with either a single
or double quote, which must close with a quote of the cor-
responding type. We find that the circuit for this task uses
two steps, involving two neurons in one MLP layer and one
attention head (using one QK channel and one V channel).
We are confident that the following mechanism reflects how
the model closes strings on our task distribution.

In the first step, the earliest MLP layer (0.mlp) combines
the embeddings for (" and (' into a “quote detector”
neuron (channel 985, which is positive on both (" and
('), and a “quote type classifier” neuron (channel 460,

which is positive on (" and negative on ('). In the sec-
ond step, a layer 10 attention head (10.attn.head82)
uses the “quote detector” as a key (channel 1), and the
“quote type classifier” as a value (channel 0). As the last to-
ken has a constant positive-valued query, the attention head
output successfully closes the string. A detailed schematic
of this circuit is in Figure 4.

We also check whether the nodes we find have the same
interpretation on the entire pretraining distribution. We
find that some but not all nodes are exactly monosemantic
even on the pretraining distribution—see Figure 39 for an
example.

Together, the four components described (two MLP neurons,
a QK channel, and a V channel) have 41 total edges con-
necting them to the rest of the network, of which 9 are used

by this circuit— based on this, we are optimistic it would
be possible to understand this circuit without task-specific
data.

3.2.2. COUNTING NESTING DEPTH

Next, we examine a more complex task, probing whether
a model11 can appropriately close a flat or a nested list
with] or]] , respectively (bracket counting). We
manually extract a minimal circuit for this task.12 We are
reasonably confident the model counts nesting depth of lists
on our task distribution with the following three steps:

Embedding. The token embedding of the final token is
ignored. The token embedding of [writes to residual chan-
nels 759, 826, and 1711. These channels become “bracket
detectors” for the [token.

Counting. Given these bracket detector activations, the
model then counts the brackets using a single value channel
in layer 2. The model sums the embedding channels into a
value channel (head 125 channel 12) which functions as an
“open bracket detector” active at each open bracket token.

11Note that this model uses attention sinks, unlike the model in
the previous section.

12In a small number of cases, we manually remove redundant
components and rescale nodes to compensate. This effectively
makes use of an additional operation that our pruning algorithm
doesn’t have access to, which is lumping together apparently re-
dundant nodes and treating them as a single (scaled) node. Doing
this requires caution, as it can hide superposition; in this case, it
seems likely to be harmless redundancy. See Appendix F.2.

6

Weight-sparse transformers have interpretable circuits

Attention head 125 has nearly-zero query and constant keys
across the sequence, meaning that the softmax attention
operation amounts to averaging over the context. Head 125
then writes the resulting averaged open bracket detector
value to residual channel 1249. Residual channel 1249
encodes the “list depth” with its magnitude.

Thresholding. However, to determine whether we want
to output]] , we need to threshold our list depth to a
binary output. A second attention head in layer 4 (head 80)
accomplishes this by using a strong attention sink, using
list depth as a query channel activation (channel 4). The
attention softmax acts as a threshold; tokens in flat lists
and outside lists have q · k ≪ sink, while nested lists have
q · k ≫ sink. Thus, head 80 outputs a positive value to
residual stream channel 1079 (“nested list close”) only on
nested lists (where the query is large enough), and outputs
]] .

Our mechanistic understanding of bracket counting
can be used to accurately predict how the model will perform
on unseen, related inputs. The circuit relies on a simple aver-
age over tokens previously seen in the context, which would
fail in the presence of “distractor” unmatched open brackets
preceding the list. Using an adversarial code comment, we
can successfully fool the model into predicting a double
bracket completion on a flat list. This attack, alongside a
circuit schematic, is presented in Figure 5. Furthermore, we
know that the attention circuit uses the activation magnitude
of residual channel 1249 to represent different bracket nest-
ing depths, and also takes the mean of this feature over the
context length. It’s thus possible to make the (unpruned)
model incorrectly predict] on nested lists by making the
list very long, “diluting” the context. This effect correlates
exactly with the activation magnitude of residual channel
1249 (see Figure 8 for more details).

This circuit uses 6 channels total, with 283 edges connecting
them to the rest of the network. An additional 11 layer 3
attention channels and 48 layer 7 MLP neurons elided from
the above contribute an additional 1217 edges. It would
likely be difficult to make progress on tracing this circuit
without task-specific data.

3.2.3. TRACKING THE TYPE OF A VARIABLE

Even when the circuit describing a model’s behavior is
not perfectly disentangled into a small number of in-
dividually interpretable activations, our models tend to
learn partially interpretable computation graphs. On
set or string fixedvarname, from inspecting the
circuit, we believe that the model uses the following
two-step algorithm for tracking whether a variable called
current is a set or string. First, given an input
current = set() or current = "", a head in layer

4 which attends to recent tokens (head 73) copies the em-
bedding of current into the set() or "" token
via value channel 8. Then, when the model is required to
recall the value of variable “current” later in the sequence, a
head in layer 6 (head 26) uses the embedding of “current”
as a query and key activation. Thus, the head copies the
information to complete the task from the set() or
"" token to the final token. This algorithm is outlined in

a schematic in Figure 6.

The circuit described uses 4 QK channels and 3 V chan-
nels across two attention heads in successive layers. These
channels have 100 total edges connecting them to the rest
of the network. It may be difficult to understand this circuit
without task-specific data.

3.3. Using bridges to extract circuits from existing
models

So far, all of our results are from weight-sparse models
trained de novo. However, it would be valuable if we could
also use our methods to understand behaviors of already-
trained models. Dense models are vastly more computation-
ally efficient than sparse models, and it would be valuable
to gain confidence that sparse models have circuits that are
mechanistically analogous to the ones in dense models.13

We do a preliminary exploration in this direction, by training
a weight-sparse model whose computations correspond with
a dense model’s computations at the same layer (Figure 7).
Then, “interpretable” perturbations of the weight-sparse
model’s activations can be mapped to corresponding pertur-
bations of the dense model’s activations to achieve a desired
change in behavior.

Using pruning, we identify the minimal sparse circuit that
can perform well on a specific task, as described in Sec-
tion 2.2. We manually choose a node from this circuit which
seems to (1) be important for the task based on ablations and
(2) encode some feature of interest. We perturb these nodes
in the sparse model, and linearly map the perturbation to the
original dense model using bridges (see Appendix A.4).

As shown in Figure 9, this procedure allows us to construct
perturbations of the dense model’s activations consistent
with altering a feature of interest.

In the first case, we study the single double quote
task in a 4-layer dense model and bridged 4-layer sparse
model. This sparse model’s circuit qualitatively resembles
the one described in Figure 4. We perturb a residual chan-
nel at the input to the sparse model’s final attention layer
which acts as a “quote type classifier” (activations shown

13As some evidence for this, we find that the tokens that are
hard/easy for dense models are largely the same as the ones that
are hard/easy for our weight-sparse models (Figure 33).

7

Weight-sparse transformers have interpretable circuits

0.0 0.2 0.4 0.6 0.8 1.0
Steering strength (toward single quote)

10 2

10 1

100

P(
sin

gl
e

qu
ot

e)

no
 st

ee
rin

g

random

0.0 0.2 0.4 0.6 0.8 1.0
Steering strength (toward `while True`)

10 4

10 3

10 2

10 1

100

P(
 :

)

no
 st

ee
rin

g

random

Figure 9. Using sparse models and bridges to edit representations of an existing dense model. We perform “interpretable perturbations”
on dense model activations in two tasks (single double quote and while return true) to test whether a bridged sparse model
is faithful to a dense model. On the left, we attempt to edit the dense model’s “quote type classifier” representation to induce the model to
behave as if it were prompted to complete a single- rather than a double-quoted string using bridges. On the right, we attempt to edit the
dense model’s representation of whether the current line began with if , while , or except , to induce the model to behave as if

it were prompted with return True rather than while True . The dense model’s behavior is consistent with at least partially
successful editing in both cases.

in Figure 40). We prompt the model with a double-quoted
string, and steer this channel so that its activation resembles
that of a single-quoted string to construct an interpretable
perturbation. After applying the bridge to this perturbation,
this causes a steep increase in the dense model’s probability
of outputting a single quote. This is consistent with editing
the model’s representation of the quote type as stored in the
quote token.

In the second case, we study a different task,
while return true, in which the model is ex-
pected to output a : token after while True but
a newline after return True . For this task, we
examine a second bridged 4-layer sparse model coupled
to the same dense model, and manipulate a channel at
the input to the final MLP layer. The channel’s activation
is highly negative throughout lines that begin with if ,
while , or except (any of which should end in a

colon; activations shown in Figure 41). We prompt the
model with code ending in return True and steer
this channel toward its counterfactual while True
activation. After applying the bridge to this perturbation,
this increases the dense model’s probability of outputting a
colon rather than a newline (though not as steeply as the
previous task). This is consistent with partially editing the
dense model’s representation of whether the current line
should end in a colon based on the first token.

4. Discussion
Due to fundamental constraints, unstructured weight-sparse
neural networks are unlikely to ever approach the efficiency
of dense networks (see Appendix B). Therefore, it will be in-
feasible to use our method to fully interpret frontier models,
or to train interpretable frontier models de novo. We need to
overcome this barrier to help us improve our understanding
of frontier models. There are two main avenues that we’re
excited about.

First, we could scale our methods to create a series of in-
terpretable model organisms up to the capability level of
GPT-3. It seems plausible that transformers learn universal
circuit motifs that appear in both sparse and dense models
across scales.14 If so, then studying the circuit motifs of
these model organisms would give us a sense of what motifs
to look for in frontier models and help us better target our
investigations.

In particular, if we created model organisms whose computa-
tions were coupled to dense models via bridges, comparing
their computations could be valuable for studying phenom-
ena such as superposition and interference weights in dense
models (Olah et al., 2025).

Second, although understanding a frontier model across its
entire pretraining distribution is prohibitively expensive, we
could save on compute by seeking to understand less. In
particular, we could train a sparse bridged model on a narrow

14Some preliminary evidence that sparse and dense models
behave somewhat similarly is in Figure 33

8

Weight-sparse transformers have interpretable circuits

but important task distribution (e.g., deception, refusal, goal-
seeking). Although this might not enable ambitious reverse
engineering of a frontier model’s behavior, this could be a
valuable tool for safety cases.

We are also excited about using sparse circuits to support
automated interpretability. Sparse circuits, like dictionary
learning approaches, provide new primitives for understand-
ing model computations—a new language in which compu-
tations are simpler to express. We suspect that automated
interpretability is bottlenecked on these kinds of primitives,
making sparse circuits a natural complement to automation.

5. Limitations and Future Work
We believe many improvements can be made to our method.

Compute (in)efficiency. Sparse models require vastly
(100–1000x) more training and inference compute than
dense models of comparable capability. There is consid-
erable room for improvements to both optimization and sys-
tems. For example, our current optimization procedure leads
to many dead neurons, which reduces training efficiency.
We’re excited about better reinitialization techniques for
fixing this. We also believe that our current method does
not maximally efficiently explore different sparsity masks.
There is also room for systems improvements, in particular
by using sparse kernels, though this is nontrivial from an
optimization perspective because we would need to sparsify
the gradient computation for the weights and Adam mo-
ments(Appendix B for more discussion). Furthermore, we
are excited about weight-sparse mixture-of-experts models
(Shazeer et al., 2017), for both systems and interpretability
reasons (Chaudhari et al., 2025).

Polysemantic features. Our circuits, especially for more
complex tasks, do not consist entirely of monosemantic
nodes or edges; often concepts are still smeared across a
number of nodes which also perform other tasks (albeit to
a much lesser extent than dense models). One possibility
is it might be fundamentally advantageous for models to
use a small amount of superposition across groups of a few
nodes, instead of fully monosemantic nodes. It may also be
that scaling the width of our sparse models to be nearer to
typical SAEs (whose hidden dimensions are in the millions
rather than in the thousands) would resolve this.

Non-binary-valued features. Our features are not all bi-
narizable, meaning that they sometimes carry information
in their magnitude beyond whether they are on or off. If a
feature can’t be discretized, it means that to fully explain it,
we need to explain not just its activity pattern but also its
magnitude. See Appendix C for more discussion.

Defining faithfulness. Mean ablation is not a perfect mea-
sure of faithfulness. Ultimately, some variant of causal
scrubbing (Chan et al., 2022) is necessary to gain full con-
fidence in the faithfulness of our circuits. See Appendix E
for more discussion.

Defining interpretability. The notion of “interpretabil-
ity” we use (having compact task-specific circuits) does not
fully capture intuitive notions of interpretability. Our qual-
itative investigations point at a stronger notion of human-
understandability, which we could attempt to codify in an
improved interpretability metric.

Other interpretable inductive biases. More broadly,
weight sparsity might not be the only inductive bias we
need to fully disentangle superposition, and further con-
ceptual progress may be necessary. For example, expert
sparsity could help not just by improving efficiency but also
by providing an important inductive bias. We find weight
sparsity allows us to use a larger activation L0 without col-
lapsing into polysemantic features (Figure 37). In a similar
way we can think of expert sparsity as allowing us to use a
larger weight L0 without collapsing into computation in su-
perposition, by not using every parameter on every forward
pass.

Better pruning. Our pruning method focuses on prun-
ing nodes due to computational simplicity, but it would be
ideal to prune edges directly. Also, we find that our prun-
ing algorithm often does not fully eliminate all prunable
nodes, necessitating additional manual pruning to obtain
clean circuits.

Scaling beyond small models and simple tasks. We have
started by explaining narrowly-trained models on simple
tasks, and it is uncertain how our method would scale. Even
under optimistic assumptions, our technique would produce
extremely large and complicated circuits when explaining
complex behaviors in more capable models, due to the gran-
ularity of our explanations. It may be necessary to rely
on automated interpretability to make sense of such cir-
cuits. Pessimistically, it is also possible that more capa-
ble language models perform complex tasks in ways that
fundamentally defy simple description. This would limit
the promise of ambitious mechanistic interpretability as a
whole.

6. Related Work
SAEs and circuits. In recent years, many works have
explored and refined the use of SAEs in finding interpretable
concepts in transformer language models (Sharkey et al.,
2022; Bricken et al., 2023; Templeton et al., 2024; Gao et al.,
2024; Rajamanoharan et al., 2024; Lindsey et al., 2025).

9

Weight-sparse transformers have interpretable circuits

Olah et al. (2017) first found circuits in image models. A
number of works have also attempted to find circuits using
SAEs (Marks et al., 2025; Ameisen et al., 2025; Lai, 2025),
Transcoders (Dunefsky et al., 2024), and using dense models
directly (Wang et al., 2022; Conmy et al., 2023; Lieberum
et al., 2023). Elhage et al. (2022a) trains interpretable-
by-design models with activation sparsity using a softmax
activation function. Braun et al. (2024) trains SAEs end-to-
end on downstream KL.

Conmy et al. (2023) creates circuits out of very coarse units
such as entire attention heads using an iterative algorithm.
Cao et al. (2021) applies a gradient-based pruning algorithm
to dense models to directly find circuits, but such circuits
are too large to be directly interpreted. Marks et al. (2025)
builds circuits out of SAE features, but can only explain
model behavior with circuits of thousands of nodes and hun-
dreds of thousands of edges. Ameisen et al. (2025) yields
circuits on production models across a variety of behaviors
by using linear “attribution graphs” between cross-layer
transcoder features. However, it fails to fully explain at-
tention patterns within attention heads, and suffers from
quite noisy “global weights” between features, such that
per-prompt attribution is required to get clean circuits. Ka-
math et al. (2025) builds on this work and makes progress
on explaining attention patterns by computing attribution
scores through query-key interactions; but the dense “head
loadings” do not usually result in simple attention circuits
due to superposition across heads.

Alternatives to activation sparsity. A number of works
have explored arguments for constraints other than acti-
vation sparsity (Hänni et al., 2024; Chughtai & Bushnaq,
2025). APD (Braun et al., 2025) and SPD (Bushnaq et al.,
2025) decompose weights into a sum of simple compo-
nents, attempting to sparsify causal attributions. Farnik
et al. (2025) encourages sparsity of computation by training
SAEs such that the Jacobian of features is sparse. Wong
et al. (2021) trains the final layer to have sparse weights for
interpretability. Friedman et al. (2023) learns RASP-like
(Weiss et al., 2021) circuits.

Sparse weight training. Sparse training is a problem that
is well-studied in the literature (Mocanu et al., 2018; Lee
et al., 2019; Evci et al., 2020; Louizos et al., 2018; Dettmers
& Zettlemoyer, 2019). Evci et al. (2021) is similar to our
method but uses a slightly different drop criterion. Jayaku-
mar et al. (2021) retains a full set of dense weights on the
CPU, rather than zeroing out weights outside the top-k. Zhu
& Gupta (2017) trains weight-sparse models by annealing
from an initial dense model.

Pruning. Pruning is also a well studied problem (Han
et al., 2016; Frankle & Carbin, 2019; Blalock et al., 2020;

Frantar & Alistarh, 2023; Sun et al., 2024). The classic
second order approaches to pruning (LeCun et al., 1990;
Hassibi & Stork, 1993; Frantar et al., 2023) are expensive
to compute or rely on approximations. Attribution patching
(Syed et al., 2023; Kramár et al., 2024) uses a first order
Bhaskar et al. (2025) prunes networks for interpretability by
pruning edges rather than nodes. Michaud et al. (2025) ex-
plores pruning as a method to localize model skills. Conmy
et al. (2023) applied structure pruning to minimize a similar
”specific task loss” objective, iteratively pruning edges. Cao
et al. (2021) decides to learn fine-grained masks via gradi-
ent descent instead of iteration, choosing to use an smooth
estimator of the step function.

Acknowledgements
We thank Joshua Batson, Trenton Bricken, Lucius Bushnaq,
Will Depue, Elias Frantar, Gabriel Goh, Johannes Heidecke,
Jack Lindsey, Samuel Marks, Jake Mendel, Eric Michaud,
Neel Nanda, Chris Olah, Asher Parker-Sartori, Alec Rad-
ford, Logan Riggs, Shibani Santurkar, Lee Sharkey, Rajan
Troll, Jeff Wu, Yolanda Xie, and Rowechen Zhong for valu-
able discussions and feedback. We thank Ryan Kaufman
for assistance with task creation.

References
Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes

Gurnee, Nicholas L. Turner, Brian Chen, Craig
Citro, David Abrahams, Shan Carter, Basil Hosmer,
Jonathan Marcus, Michael Sklar, Adly Templeton,
Trenton Bricken, Callum McDougall, Hoagy Cun-
ningham, Thomas Henighan, Adam Jermyn, Andy
Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson,
Sam Zimmerman, Kelley Rivoire, Thomas Conerly,
Chris Olah, and Joshua Batson. Circuit tracing:
Revealing computational graphs in language models.
https://transformer-circuits.pub/2025/
attribution-graphs/methods.html, 2025.
Accessed July 2025.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd: Compressed
optimisation for non-convex problems, 2018. URL
https://arxiv.org/abs/1802.04434.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and
Danqi Chen. Finding transformer circuits with edge
pruning, 2025. URL https://arxiv.org/abs/
2406.16778.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2406.16778
https://arxiv.org/abs/2406.16778

Weight-sparse transformers have interpretable circuits

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. What is the state of
neural network pruning? In I. Dhillon, D. Papail-
iopoulos, and V. Sze (eds.), Proceedings of Machine
Learning and Systems, volume 2, pp. 129–146, 2020.
URL https://proceedings.mlsys.org/
paper files/paper/2020/file/
6c44dc73014d66ba49b28d483a8f8b0d-
Paper.pdf.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen,
Emily Reif, Fernanda Viégas, and Martin Wattenberg.
An interpretability illusion for BERT. arXiv preprint
arXiv:2104.07143, 2021.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and
Lee Sharkey. Identifying functionally important features
with end-to-end sparse dictionary learning. 2024.

Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake
Mendel, and Lee Sharkey. Interpretability in parameter
space: Minimizing mechanistic description length with
attribution-based parameter decomposition, 2025. URL
https://arxiv.org/abs/2501.14926.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian
Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem
Anil, Carson Denison, Amanda Askell, Robert Lasenby,
Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim
Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E
Burke, Tristan Hume, Shan Carter, Tom Henighan,
and Christopher Olah. Towards monosemanticity: De-
composing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Lucius Bushnaq, Dan Braun, and Lee Sharkey. Stochas-
tic parameter decomposition. arXiv preprint
arXiv:2506.20790, 2025.

Steven Cao, Victor Sanh, and Alexander M. Rush. Low-
complexity probing via finding subnetworks, 2021. URL
https://arxiv.org/abs/2104.03514.

Lawrence Chan, Adrià Garriga-Alonso, Nicholas
Goldwosky-Dill, Ryan Greenblatt, Jenny Nitishinskaya,
Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas.
Causal scrubbing, a method for rigorously testing
interpretability hypotheses. AI Alignment Forum, 2022.
https://www.alignmentforum.org/posts/
JvZhhzycHu2Yd57RN/causal-scrubbing-a-
method-for-rigorously-testing.

Marmik Chaudhari, Jeremi Nuer, and Rome Thorstenson.
Superposition in mixture of experts. In Mechanistic In-
terpretability Workshop at NeurIPS, 2025.

Bilal Chughtai and Lucius Bushnaq. Activa-
tion space interpretability may be doomed.
https://www.lesswrong.com/posts/
gYfpPbww3wQRaxAFD/activation-space-
interpretability-may-be-doomed, 2025.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adrià Garriga-Alonso. To-
wards automated circuit discovery for mechanistic inter-
pretability, 2023. URL https://arxiv.org/abs/
2304.14997.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance, 2019.
URL https://arxiv.org/abs/1907.04840.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda.
Transcoders find interpretable llm feature circuits, 2024.
URL https://arxiv.org/abs/2406.11944.

Ronen Eldan and Yuanzhi Li. Tinystories: How small
can language models be and still speak coherent en-
glish?, 2023. URL https://arxiv.org/abs/
2305.07759.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Neel Nanda, and et al. Softmax linear units.
https://transformer-circuits.pub/2022/
solu/index.html, 2022a.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas
Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
Dodds, Robert Lasenby, Dawn Drain, Carol Chen,
et al. Toy models of superposition. arXiv preprint
arXiv:2209.10652, 2022b.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich
Elsen. The difficulty of training sparse neural net-
works, 2020. URL https://arxiv.org/abs/
1906.10732.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all
tickets winners, 2021. URL https://arxiv.org/
abs/1911.11134.

Lucy Farnik, Tim Lawson, Conor Houghton, and Lau-
rence Aitchison. Jacobian sparse autoencoders: Spar-
sify computations, not just activations, 2025. URL
https://arxiv.org/abs/2502.18147.

Abraham J. Fetterman, Ellie Kitanidis, Joshua Albrecht,
Zachary Polizzi, Bryden Fogelman, Maksis Knutins, Bar-
tosz Wróblewski, James B. Simon, and Kanjun Qiu. Tune
as you scale: Hyperparameter optimization for com-
pute efficient training (cost-aware pareto region bayesian
search), 2023. URL https://arxiv.org/abs/
2306.08055.

11

https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://arxiv.org/abs/2501.14926
https://arxiv.org/abs/2104.03514
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.lesswrong.com/posts/gYfpPbww3wQRaxAFD/activation-space-interpretability-may-be-doomed
https://www.lesswrong.com/posts/gYfpPbww3wQRaxAFD/activation-space-interpretability-may-be-doomed
https://www.lesswrong.com/posts/gYfpPbww3wQRaxAFD/activation-space-interpretability-may-be-doomed
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/1907.04840
https://arxiv.org/abs/2406.11944
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://transformer-circuits.pub/2022/solu/index.html
https://transformer-circuits.pub/2022/solu/index.html
https://arxiv.org/abs/1906.10732
https://arxiv.org/abs/1906.10732
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/2502.18147
https://arxiv.org/abs/2306.08055
https://arxiv.org/abs/2306.08055

Weight-sparse transformers have interpretable circuits

Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks, 2019.
URL https://arxiv.org/abs/1803.03635.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot, 2023.
URL https://arxiv.org/abs/2301.00774.

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Opti-
mal brain compression: A framework for accurate post-
training quantization and pruning, 2023. URL https:
//arxiv.org/abs/2208.11580.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learn-
ing transformer programs, 2023. URL https://
arxiv.org/abs/2306.01128.

Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi
Chen, and Asma Ghandeharioun. Interpretability illu-
sions in the generalization of simplified models, 2024.
URL https://arxiv.org/abs/2312.03656.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of
sparsity in deep neural networks, 2019. URL https:
//arxiv.org/abs/1902.09574.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. Scaling and evaluating sparse au-
toencoders, 2024. URL https://arxiv.org/abs/
2406.04093.

Song Han, Huizi Mao, and William J. Dally. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding, 2016. URL
https://arxiv.org/abs/1510.00149.

Babak Hassibi and David G. Stork. Second order derivatives
for network pruning: Optimal brain surgeon. Advances
in Neural Information Processing Systems, 5:164–171,
1993.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. Transformer language models without positional
encodings still learn positional information, 2022. URL
https://arxiv.org/abs/2203.16634.

Stefan Heimersheim and Neel Nanda. How to use and
interpret activation patching, 2024. URL https://
arxiv.org/abs/2404.15255.

Niall P. Hurley and Scott T. Rickard. Comparing measures
of sparsity, 2009. URL https://arxiv.org/abs/
0811.4706.

Kaarel Hänni, Jake Mendel, Dmitry Vaintrob, and Lawrence
Chan. Mathematical models of computation in super-
position, 2024. URL https://arxiv.org/abs/
2408.05451.

Siddhant M. Jayakumar, Razvan Pascanu, Jack W. Rae, Si-
mon Osindero, and Erich Elsen. Top-kast: Top-k always
sparse training, 2021. URL https://arxiv.org/
abs/2106.03517.

Harish Kamath, Emmanuel Ameisen, Isaac Kauvar,
Rodrigo Luger, Wes Gurnee, Adam Pearce, Sam
Zimmerman, Joshua Batson, Thomas Conerly, Chris
Olah, and Jack Lindsey. Tracing attention computa-
tion: Attention connects features, and features direct
attention. Transformer Circuits Thread, 2025. URL
https://transformer-circuits.pub/2025/
attention-qk/index.html.

Oscar Key, Luka Ribar, Alberto Cattaneo, Luke Hudlass-
Galley, and Douglas Orr. Approximate top-k
for increased parallelism, 2024. URL https://
arxiv.org/abs/2412.04358.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

János Kramár, Tom Lieberum, Rohin Shah, and Neel Nanda.
Atp*: An efficient and scalable method for localizing
llm behaviour to components, 2024. URL https://
arxiv.org/abs/2403.00745.

Peter Lai. Gpt circuits. https://
peterlai.github.io/gpt-circuits/, 2025.

Yann LeCun, John S. Denker, and Sara A. Solla. Opti-
mal brain damage. In Advances in Neural Information
Processing Systems 2, pp. 598–605. Morgan Kaufmann,
1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Snip: Single-shot network pruning based on con-
nection sensitivity, 2019. URL https://arxiv.org/
abs/1810.02340.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda,
Geoffrey Irving, Rohin Shah, and Vladimir Mikulik.
Does circuit analysis interpretability scale? evidence
from multiple choice capabilities in chinchilla, 2023.
URL https://arxiv.org/abs/2307.09458.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian
Chen, Adam Pearce, Nicholas L. Turner, Craig Citro,
David Abrahams, Shan Carter, Basil Hosmer, Jonathan
Marcus, Michael Sklar, Adly Templeton, Trenton
Bricken, Callum McDougall, Hoagy Cunningham,
Thomas Henighan, Adam Jermyn, Andy Jones, Andrew
Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and
Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL

12

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2208.11580
https://arxiv.org/abs/2208.11580
https://arxiv.org/abs/2306.01128
https://arxiv.org/abs/2306.01128
https://arxiv.org/abs/2312.03656
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2404.15255
https://arxiv.org/abs/2404.15255
https://arxiv.org/abs/0811.4706
https://arxiv.org/abs/0811.4706
https://arxiv.org/abs/2408.05451
https://arxiv.org/abs/2408.05451
https://arxiv.org/abs/2106.03517
https://arxiv.org/abs/2106.03517
https://transformer-circuits.pub/2025/attention-qk/index.html
https://transformer-circuits.pub/2025/attention-qk/index.html
https://arxiv.org/abs/2412.04358
https://arxiv.org/abs/2412.04358
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2403.00745
https://peterlai.github.io/gpt-circuits/
https://peterlai.github.io/gpt-circuits/
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2307.09458

Weight-sparse transformers have interpretable circuits

https://transformer-circuits.pub/2025/
attribution-graphs/biology.html.

Dong C Liu and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical
Programming, 45(1–3):503–528, 1989.

Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In Proceedings of the 2nd Interna-
tional Conference on Learning Representations (ICLR),
pp. 1–13, 2019. doi: 10.48550/arXiv.1711.05101. URL
https://arxiv.org/abs/1711.05101.

Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through L0 regular-
ization, 2018. URL https://arxiv.org/abs/
1712.01312.

Aleksandar Makelov, Georg Lange, and Neel Nanda. Is
this the subspace you are looking for? an interpretability
illusion for subspace activation patching, 2023. URL
https://arxiv.org/abs/2311.17030.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Be-
linkov, David Bau, and Aaron Mueller. Sparse feature cir-
cuits: Discovering and editing interpretable causal graphs
in language models. arXiv preprint arXiv:2403.19647,
2024.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Be-
linkov, David Bau, and Aaron Mueller. Sparse feature
circuits: Discovering and editing interpretable causal
graphs in language models, 2025. URL https://
arxiv.org/abs/2403.19647.

Eric J. Michaud, Asher Parker-Sartori, and Max Tegmark.
On the creation of narrow ai: hierarchy and nonlo-
cality of neural network skills, 2025. URL https:
//arxiv.org/abs/2505.15811.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H. Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks
with adaptive sparse connectivity inspired by network
science. Nature Communications, 9(1), June 2018.
ISSN 2041-1723. doi: 10.1038/s41467-018-04316-
3. URL http://dx.doi.org/10.1038/s41467-
018-04316-3.

Chris Olah, Alexander Mordvintsev, and Ludwig Schu-
bert. Feature visualization. Distill, 2017. doi:
10.23915/distill.00007. https://distill.pub/2017/feature-
visualization.

Chris Olah, Nicholas L. Turner, and Tom Con-
erly. A toy model of interference weights.
https://transformer-circuits.pub/2025/
interference-weights/index.html, 7 2025.
Transformer Circuits.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Son-
nerat, Arthur Conmy, Vikrant Varma, János Kramár, and
Neel Nanda. Jumping ahead: Improving reconstruction
fidelity with jumprelu sparse autoencoders, 2024. URL
https://arxiv.org/abs/2407.14435.

Lee Sharkey, Dan Braun, and Beren Millidge. Tak-
ing features out of superposition with sparse
autoencoders. AI Alignment Forum, 2022.
URL https://www.alignmentforum.org/
posts/z6QQJbtpkEAX3Aojj/interim-
research-report-taking-features-out-
of-superposition.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
learning rates with sublinear memory cost, 2018. URL
https://arxiv.org/abs/1804.04235.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
A simple and effective pruning approach for large lan-
guage models, 2024. URL https://arxiv.org/
abs/2306.11695.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution
patching outperforms automated circuit discovery, 2023.
URL https://arxiv.org/abs/2310.10348.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack
Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy
Cunningham, Nicholas L Turner, Callum McDougall,
Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. Scaling
monosemanticity: Extracting interpretable features from
claude 3 sonnet. Transformer Circuits Thread, 2024. URL
https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck
Shlegeris, and Jacob Steinhardt. Interpretability in the
wild: a circuit for indirect object identification in gpt-
2 small, 2022. URL https://arxiv.org/abs/
2211.00593.

13

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/2311.17030
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2505.15811
https://arxiv.org/abs/2505.15811
http://dx.doi.org/10.1038/s41467-018-04316-3
http://dx.doi.org/10.1038/s41467-018-04316-3
https://transformer-circuits.pub/2025/interference-weights/index.html
https://transformer-circuits.pub/2025/interference-weights/index.html
https://arxiv.org/abs/2407.14435
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://arxiv.org/abs/1804.04235
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2310.10348
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2211.00593

Weight-sparse transformers have interpretable circuits

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking
like transformers, 2021. URL https://arxiv.org/
abs/2106.06981.

Eric Wong, Shibani Santurkar, and Aleksander Madry.
Leveraging sparse linear layers for debuggable deep
networks, 2021. URL https://arxiv.org/abs/
2105.04857.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han,
and Mike Lewis. Efficient streaming language models
with attention sinks. arXiv preprint arXiv:2309.17453,
2023.

Biao Zhang and Rico Sennrich. Root mean square layer nor-
malization, 2019. URL https://arxiv.org/abs/
1910.07467.

Michael Zhu and Suyog Gupta. To prune, or not to
prune: Exploring the efficacy of pruning for model com-
pression, 2017. URL https://arxiv.org/abs/
1710.01878.

14

https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2105.04857
https://arxiv.org/abs/2105.04857
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

Weight-sparse transformers have interpretable circuits

0.9M 1.9M 3.7M 7.4M 14.8M
Number of nonzero parameters (L0)

7.4M

29.7M

118.8M

475.1M

1900.5M

To
ta

l p
ar

am
et

er
 c

ou
nt

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

lo
g(

m
ea

n(
ku

rto
sis

))

Figure 10. We find that weight sparsity induces activation sparsity
in the residual stream. Since the residual stream entries are rarely
exactly zero, we measure kurtosis instead. As the weight L0 gets
smaller, or the number of total parameters gets larger, the kurtosis
of the final residual stream activation increases.

A. Method details
Many of our experiments were run with slightly different
settings at different points in time. As a result, numbers
across different plots are difficult to compare, and these
method details are a general rule, but not exactly applicable
to every model we train.

A.1. Architecture

Our architecture is very close to a standard GPT-2 Trans-
former architecture (Radford et al., 2019). Most experi-
ments use nlayer = 8, dmodel = 2048, nctx = 256, unless
stated otherwise. To ensure that zero values have a privi-
leged meaning in the residual stream, we use RMSNorm
(Zhang & Sennrich, 2019) instead of LayerNorm. Using
RMSNorm also enables us to fold all normalization weights
into the MLP/attention weights without altering the weight
L0. Our embedding and unembedding matrices are untied.
For some models, we use attention sinks (a per-head learn-
able attention denominator bias) (Xiao et al., 2023), which
we find leads to cleaner attention circuits, without impacting
loss substantially (Figure 18).

To enforce small L0 norm of activations, we apply an Ab-
sTopK activation function at various locations in the model,
zeroing out all but the k largest values by magnitude at vari-
ous locations; we generally set k to 1

4 of the dimension of
the location, unless otherwise indicated. See Figure 12 for
an illustration of where the AbsTopK activation functions
are placed for attention and MLP layers respectively. We
find that some amount of activation sparsity helps on top of
weight sparsity, but that too much activation sparsity hurts
the capabilities-interpretability frontier again (Figure 37).

0.0 0.2 0.4 0.6 0.8 1.0
Progress

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Le
ar

ni
ng

 R
at

e

Figure 11. The sharkfin lr schedule with 1% warmup and L0 decay
for the first 50% of training.

We also have some evidence that activation sparsity emerges
naturally from weight sparsity: we observe that kurtosis of
activations increases with increasing weight sparsity (Fig-
ure 10).

We also add a bigram table—a single dense dvocab × dvocab
matrix, with the most recent token’s entries added to the
final logits—to avoid the need for the sparse parameters to
memorize bigram frequencies. Intuitively, it is desirable to
add dense components to the model that have very simple
interpretations (prior log probabilities over bigrams); they
help improve the loss (Figure 24), and avoid valuable MLP
and attention space being taken up by this information.

In most experiments we do not use positional embeddings
at all (Haviv et al., 2022); we find that this is roughly neutral
on loss (Figure 26). In some earlier experiments we used
learned absolute positional encodings, concatenated to the
residual stream as read-only channels: we find that this im-
proves interpretability, leading to sparser activation patterns
within the attention heads.

We use small dhead (16 for most experiments in this paper),
which we find anecdotally to improve monosemanticity of
attention heads, at the cost of systems efficiency.

A.2. Weight-Sparse Model Optimization

We use AdamW (Loshchilov & Hutter, 2019; Kingma &
Ba, 2014) with β1 = 0.9, β2 = 0.95, λ = 0.1, ϵ = 0.1, and
sweep lr for every experiment. See Figure 27, Figure 28,
Figure 29, and Figure 30 for ablations of these hyperparam-
eters.

We also avoid zeroing values that would cause a neuron
or attention channel to have fewer than j = 4 nonzero

15

Weight-sparse transformers have interpretable circuits

TASK NAME DESCRIPTION

single double quote Predict whether a string should be closed with ') or ")
final kwarg Predict whether a function argument has a default in the definition (because

previous arguments were kwargs), by measuring probability of =None vs
):\n.

set or string Track whether a variable is a set() or string, and predict whether to
complete the input with .add or += (these particular types chosen for
tokenization reasons)

set or string fixedvarname Same as set or string but the variable name is always the same.
class init Given a class init with many lines of the form self.x = x, learn to copy

the variable name after the equals sign.
with as differentiate between using with as statements and variable declarations for

file loading (the former requires the model to predict as)
bracket brace Predict whether the next token should be a : or a , based on whether

we’re currently in a dict or a list.
with open predict whether to read 'r' or write 'w' to a file in a python open

statement based off of its name.
bracket counting Predict] or]] depending on how many layers of bracket nesting we’re

in.
for while Predict in or : based on if a loop in python is a for loop or a while loop.
else elif Predict : or not : based on if a else statement is else or elif.
fstring brace Predict whether a print statement involves an fstring or not (by whether or

not a model inserts a variable name in the print).
if ternary Predict : depending on whether or not an if statement is inside a ternary

expression.
var swap Predict x when asked to swap variables x and y using x, y = y, x
indent for Predict the correct indentation following a for loop in python.
lambda func distinguish lambda expressions from functions, predicting : for lambdas

(x = lambda func :), and (for functions, def func (
if equals Predict x == or x = depending on if the statement is an if conditional or

variable declaration.
enumerate range Predict enumerate vs range depending on whether a for loop in

python is over one or two variables
var if Predict if x == True :newline or x = True newline depending on if

the statement is an if conditional or variable declaration.
while return true Predict the correct indentation following a while true or return true statement.

Table 1. List of all handcrafted tasks we created.

values, to reduce the chance of dead neurons (Figure 22).15

We anneal the L0 linearly over the first 50%16 of training
(Figure 17), so that the model becomes sparser throughout
training (Zhu & Gupta, 2017). Our lr schedule is defined
by the product of a normal warmup-decay schedule, and a
factor of 1/

√
LO, as we find smaller L0 requires larger lrs.

We find that this change is necessary to get any benefit from
L0 annealing (Figure 25).

We clip the root-mean-square of the gradient to 1. We find

15It hurts the loss, and has an unclear impact on interpretability.
We’re not sure if we would include it in future runs. We also
think this could reduce the apparent qualitative monosemanticity
of randomly sampled nodes; it potentially artificially keeps some
irrelevant neurons alive that “want” to be dead.

16For our largest, sparsest models, we found it beneficial to
increase this to 80%.

gradient clipping essential for ensuring training stability
(Figure 16).

At some point, we identified a bug in our L0 scheduling
that meant while our weights had the intended L0 schedule,
the embedding, unembedding, and biases would go from
dense to sparse in a relatively small number of steps in the
middle of training. However, fixing this bug seems to very
slightly hurt model quality in terms of both capabilities and
interpretability, so we kept it in. (Figure 21).

We find that lr warmup (for the first 1% of training in most
of our experiments) is critical for stability at higher lrs, sub-
stantially improving optimal loss (Figure 13). We also find
that doing a longer warmup is slightly beneficial (Figure 14).

We generally don’t find improvements of the capability-
interpretability pareto frontier from increased token budget

16

Weight-sparse transformers have interpretable circuits

on the current margin; while increasing token budget im-
proves the pretraining loss, it generally hurts the pruned
circuit size.

A.3. Bridges loss terms

We want the weight-sparse model to match the dense
model’s computations, with the bridges accurately translat-
ing between the sparse and dense activations. To accomplish
this, we use three bridge loss terms in addition to normal
pretraining loss. Let hd

i and hs
i be the residual activations of

the respective models at layer i, M d
i , M s

i be the sublayers of
the model (either an MLP or attention block), so that hd

0, hs
0

are the token embeddings of the dense and sparse models,
and M d

i (h
d
i) = hd

i+1, M s
i (h

s
i) = hs

i+1), fi and gi be the
bridge encoders and decoders, and yd =M d

unemb(h
d
L) as the

final logits. First, we have a normalized MSE term

LNMSE =

L∑
i

NMSE(fi(hd
i), h

s
i) + NMSE(gi(hs

i), h
d
i)

Second, we have a KL term to train the sparse model to
accept activations from the dense models

LKL,d→s =
∑
i

KL
(
yd, (M s

unemb ◦M s
L ◦ · · · ◦M s

i ◦ fi)(hd
i)
)

and another term for the reverse—dense models accepting
activations from sparse models

LKL,s→d =
∑
i

KL
(
yd, (M d

unemb ◦M d
L ◦ · · · ◦M d

i ◦ gi)(hs
i

))
(Figure 7).

Ideally, we’d like to train over all 2L possible combinations
of sparse and dense layers. We can think of our KL terms
as the first order approximation of this, where we consider
only the subset of combinations with one transition between
sparse and dense.

A.4. Bridge intervention

Bridges are trained to convert between residual stream lo-
cations in a dense and in a sparse model. We would like
to reuse these bridges to convert single-node interventions
in sparse models to “interpretable” dense interventions in
dense models.

Bridges act on residual stream locations (pre-RMSNorm),
and so they learn to compensate for differences in scale of
the residual stream between sparse and dense models. Be-
cause these locations are not “nodes” in our framework,
when performing interventions we instead use the next
nodes that exist, which are post-RMSNorm residual stream

RMSNorm

AbsTopK

make Q,K,V

AbsTopK

attn op

AbsTopK

RMSNorm

AbsTopK

mlp fc

AbsTopK

mlp cproj

AbsTopK

Figure 12. An illustration of our attention and MLP blocks, respec-
tively. The AbsTopK activation functions are inserted at each node
position, between each operation. AbsTopK is applied to Q,K, and
V seperately.

reads. The residual stream scale consideration does not ap-
ply post-RMSNorm, where both models have activations
with

√
dmodel-scale norm. To compensate, we multiply the

bridge weights by the ratio of RMS residual stream activa-
tions averaged over a reference dataset before performing
the intervention.

To construct the sparse model intervention, we first subtract
the activation of the channel of interest in the presented
condition (e.g. double quote) from the activation in the
counterfactual condition (e.g. single quote) at all tokens.
We then take the outer product with the corresponding row
of the bridge (scaled as described above) and construct a
tensor of tokens by dense model hidden dimension. We scale
this by a “steering strength” between 0.0 (no intervention)
and 1.0 (fully patched).

17

Weight-sparse transformers have interpretable circuits

10 1

Learning rate

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
No lr warmup

Figure 13. Learning rate warmup ablation

10 1

Learning rate

1.15 × 100

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
Lr warmup over first 5%
Lr warmup over first 10%

Figure 14. Learning rate warmup fraction ablation (1%)

10 1

Learning rate

1.2 × 100

1.3 × 100

1.4 × 100

1.5 × 100

1.6 × 100

1.7 × 100

1.8 × 100

1.9 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
No lr decay

Figure 15. Learning rate decay ablation

10 1

Learning rate

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

1.4 × 100

1.45 × 100

1.5 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
noclip

Figure 16. Grad clipping ablations

10 1

Learning rate

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100
Cr

os
s-

en
tro

py
 lo

ss
Model width
256
512
1024
Experiment
Baseline
anneal_stop_frac0.2
anneal_stop_frac0.8

Figure 17. Fraction of training spent annealing ablation (baseline
is 50%)

10 1

Learning rate

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
Attention sink

Figure 18. Attention sink ablation

18

Weight-sparse transformers have interpretable circuits

10 1

Learning rate

1.15 × 100

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
Dense biases

Figure 19. Sparse bias (baseline) vs dense bias ablation

10 1

Learning rate

1.15 × 100

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
d_head = 32
d_head = 64

Figure 20. d head sweep (baseline = 16)

10 1

Learning rate

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
embbias_pfrac_anneal_fix

Figure 21. L0 decay schedule for biases and embedding matrices

10 1

Learning rate

1.15 × 100

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
Keeping j = 1 neuron alive
Keeping j = 2 neurons alive
neuronwise_none

Figure 22. Number of forced-alive weights per neuron ablation
(baseline is j = 4)

10 1

Learning rate

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

1.4 × 100
Cr

os
s-

en
tro

py
 lo

ss
Model width
256
512
1024
Experiment
Baseline
No L0 annealing

Figure 23. L0 annealing ablation

10 1

Learning rate

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

1.375 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
No bigram table

Figure 24. Bigram table ablation

19

Weight-sparse transformers have interpretable circuits

10 1

Learning rate

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
anneal_no_lr_with_L0

Figure 25. Sharkfin (baseline) vs normal warmup-decay lr sched-
ule

10 1

Learning rate

1.175 × 100

1.2 × 100

1.225 × 100

1.25 × 100

1.275 × 100

1.3 × 100

1.325 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
Positional encoding

Figure 26. Positional embedding ablation

10 1

Learning rate

1.15 × 100

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
b1_0.8
b1_0.95

Figure 27. Adam β1 ablation (baseline = 0.9)

10 1

Learning rate

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
b2_0.99
b2_0.999

Figure 28. Adam β2 ablation (baseline = 0.95)

10 1

Learning rate

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

1.4 × 100
Cr

os
s-

en
tro

py
 lo

ss
Model width
256
512
1024
Experiment
Baseline
wd0.03
wd0.3

Figure 29. Adam λ ablation (baseline = 0.1)

10 1

Learning rate

1.2 × 100

1.25 × 100

1.3 × 100

1.35 × 100

1.4 × 100

1.45 × 100

1.5 × 100

1.55 × 100

Cr
os

s-
en

tro
py

 lo
ss

Model width
256
512
1024
Experiment
Baseline
eps = 1
eps = 0.01
eps = 0.001

Figure 30. Adam ϵ ablation (baseline = 0.1)

20

Weight-sparse transformers have interpretable circuits

A.5. Pruning algorithm

Setup. First, we insert boolean masks in several locations
in the model:

• Immediately after each RMSNorm in the attention and
MLP blocks

• At the very end of each attention and MLP block, right
before adding the result back to the residual stream

• After each MLP activation

• After the attention q, k, v activations17

We consider each element of the mask in each of these
locations to be a “node”, and the mask determines whether
the node is included or excluded from the circuit. We reuse
this definition of node in many other parts of this paper.
Note that we apply the mask at the level of nodes, and not
edges (e.g. interactions between nodes) as some previous
pruning approaches (Bhaskar et al., 2025). We apply the
mask uniformly across all prompts and across all tokens.

We learn a parameter for each node that is clamped to
[−1, 1], which is used to compute a boolean mask at each
step by passing the parameter through a Heaviside step func-
tion, which determines which nodes are included in the
resulting circuit. By optimizing the mask, we can learn ex-
tremely small circuits (compared to baselines like selecting
the top nodes by gradient attribution to task loss Figure 31).

Initialization. We initialize with Gaussian noise scaled
by a factor of init noise scale, and centered at
init noise bias, and clamp the mask to [−1, 1]. We
enforce this clamping constraint after every training step.

Optimization. We optimize the masks using AdamW with
grad clipping. We linearly decay lr through training with-
out any warmup. To perform backpropagation through the
Heaviside step function, we use a sigmoid estimator to com-
pute a biased gradient approximation in the backward pass,
with temperature heaviside temp.

Loss function. We optimize our masks on a linear combi-
nation of task cross entropy and k, the number of nonzero
elements in the mask. We weight these losses via a term
k coef.

Mask discretization. After training, we bisect for the k
that exactly achieves the threshold; we’ve observed that

17Since q and k channels are paired most of the time, this means
that each attention qk pair generally uses up two nodes. In retro-
spect, queries and keys should have used tied masks.

sometimes this diverges substantially from the final k out-
put by the training procedure. As we find that our dis-
cretized models often are quite uncalibrated, we optimize a
scale+shift transformation to the final logits using 16 steps
of LBFGS (Liu & Nocedal, 1989). It’s unclear whether this
is principled to do in general.

Hyperparameter optimization. Because of the large
number of hyperparameters, and the difficulty of setting
them correctly, we use CARBS (Fetterman et al., 2023) to
retune the hyperparameters for each combination of model
and task. We run 32 iterations of CARBS with 8 parallel
pruning jobs per iteration18, starting from the initial hyper-
parameters given in Table 2. We generally find that results
are poor on the first iterations and improve dramatically
towards the end of CARBS tuning.

We use a batch size of 64 task datapoints (each consisting of
a positive and negative sequence), for 128 total sequences
of length up to 256 tokens.

128 512 2048 8192 32768 131072
Mean Edges (per circuit)

0.002

0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500
Ta

sk
 L

os
s

Attribution-based Pruning
Learned Pruning

Figure 31. Learned pruning drastically outperforms a baseline of
attribution-based pruning, finding much smaller circuits at all loss
targets.

A.6. Dataset

Our data consists of Python code generated from a mix of
GPT-4-base and GPT-4o-base. The data consists of two
components: a 10 billion token component of Python code
designed to consist of especially simple and repetitive id-
ioms, and a 25 billion token component designed to be
closer to the full distribution of Python code.

Our decision to use a simpler data component was inspired
by Eldan & Li (2023), and our hope is that our mix makes it
easier to observe interesting circuits at smaller scale without

18That is, we do 256 total steps of the CARBS optimizer, but we
alternate generating 8 suggestions, running all of them, updating
on those 8 results, and repeating.

21

Weight-sparse transformers have interpretable circuits

Figure 32. Inverse Pruning: ablating the circuit found by pruning
cripples loss of the overall model. As the circuit found increases in
size (and task performance), the model becomes (slightly) worse
without it.

Hyperparameter CARBS search center
k coef 1× 10−4

init noise scale 1× 10−2

init noise bias 1× 10−1

wd 1× 10−3

lr 3× 10−3

inv beta2 5× 10−2

lr warmup frac 5× 10−2

heaviside temp 1× 100

Table 2. Initial search centers for CARBS

making the data too toy, though we did not ablate this. Some
of the smaller scale experiments in this paper are trained
only on the simpler component.

We train a 2048 token BPE tokenizer on our dataset.

A.7. Task tokenization considerations

For single double quote, we consider the tokens
(" and (' , since they always appear as their own tokens,

unlike " and ' , which might be tokenized in diverse
ways. Likewise for the closing quote tokens.

For bracket counting,], is one token, so] is
unlikely to indicate end of a non-final row.

B. Systems considerations for scaling
Our weight-sparse training and pruning procedures opti-
mize for interpretability, not for hardware efficiency. In
particular, the (per-tensor) top-k magnitude masking used to
enforce L0 constraints induces unstructured sparsity. From
a systems perspective, unstructured sparsity is unfriendly
to modern GPUs: gathers/scatters break the tiled dataflow

that high-performance GEMM kernels rely on, reduce data
reuse from on-chip SRAM, and typically prevent the use of
Tensor Cores. Since Tensor Cores provide the vast majority
of available math throughput,19 the default dense pathway is
almost always preferable to attempting to implement matrix
multiplies on CUDA cores.

GEMM dataflow on Hopper and Blackwell Architec-
tures. Modern high-performance GEMM kernels typi-
cally use a tiled pipeline designed around bulk movement
of dense submatrices and compute on Tensor Cores:

1. Tile movement via Tensor Memory Accelerator
(TMA). The TMA initiates asynchronous transfers of
contiguous tensor tiles from global (HBM) to shared
memory (SMEM).

2. MMA on tiles. Tensor core instructions operate on
large tiles of data in SMEM and compute matrix multi-
plies of up to size 128x256.

3. Epilogue and global store. Accumulators are option-
ally fused with bias/activation epilogues and written
back to HBM.

This dataflow assumes regular, contiguous tiles. Unstruc-
tured masks (our top-k selection) create irregular sparsity
patterns that defeat bulk TMA copies and steady tensor core
instruction issues.

Even on non-GPU hardware, one can expect sparse models
to be significantly inefficient compared to dense ones, due
to the fundamental complexity required to implement sparse
GEMMs. Using a tiled dataflow with tile size greater than
one would result in the memory bandwidth being wasted
on moving mostly zeros, so one needs to directly route the
weights individually. On a fundamental level, one needs
“extra space” on the GPU die to wire the any-to-any con-
nections (to move each entry in each weight matrix from
memory to its corresponding hardware arthimetic circuit),
so even a hardware implementation heavily optimized for
sparse models cannot achieve the same compute density as
those using systolic array-like architectures. This limita-
tion means that it is impossible for weight-sparse models
as understood here to catch up to dense models in terms
of kernel efficiency. Nonetheless, we present some ideas
to improve efficiency on modern GPUs above the baseline
naive implementation.

Option 1: CUDA Core GEMMs. Depending on the ra-
tio between the CUDA core FLOPS and the Tensor Core

19On H100: ∼989 TFLOPs of half-precision matrix-
multiply throughput on Tensor Cores versus ∼60 TFLOPs
for “everything else,” i.e., CUDA cores and scalar units; see
https://hazyresearch.stanford.edu/blog/2024-
05-12-tk.

22

https://hazyresearch.stanford.edu/blog/2024-05-12-tk
https://hazyresearch.stanford.edu/blog/2024-05-12-tk

Weight-sparse transformers have interpretable circuits

100 101

Dense model loss

100

101

De
ns

e
m

od
el

 lo
ss

 (d
iff

er
en

t s
ee

d)

dense vs dense (correlation: 0.94)

100 101

Sparse model loss
De

ns
e

m
od

el
 lo

ss
 (d

iff
er

en
t s

ee
d)

sparse vs dense (correlation: 0.93)

100

101

102

103

104

Nu
m

be
r o

f t
ok

en
s

100

101

102

103

104

Nu
m

be
r o

f t
ok

en
s

Figure 33. The loss of sparse and dense models on individual tokens is strongly correlated. The correlation is comparable to that between
dense models trained with different seeds.

FLOPS on the accelerator, we can determine to dispatch to
sparse GEMM kernels written to run on the CUDA cores
instead of Tensor Cores. CUDA cores have no tiling re-
quirements and can thus efficiently operate on sparse data,
with the caveat that they are much slower. We find that
CUDA core GEMMs are more efficient than their Tensor
Core counterparts at sub-1% sparsity levels.

Option 2: Semi-structured (2:4) sparsity. Sparse Tensor
Cores accelerate GEMMs when one operand satisfies a 2:4
pattern (at minimum two zeros in every contiguous group of
four elements along the reduction dimension), with a maxi-
mum theoretical 2× math-throughput speedup and reduced
memory traffic. We experiment with 2:4 semi-structured
sparsity and find that it shows some improvement in through-
put, especially in regimes of less sparsity (i.e., 1% to 50%).
However, the improvement is generally less than the theo-
retical 2x. Fusing prune and compress into the matmul is
challenging, so to minimize memory bandwidth usage, we
would ideally fuse the 2:4 prune and compress for both the
forward and backward (transposed) layouts into the top-k
kernel.

TopK kernels. We find that significant time is spent on
AbsTopK operations, both within the forward passes (en-
forcing activation sparsity) as well as during the training
steps (enforcing weight sparsity). PyTorch’s naive TopK
implementation uses a radix sort operation, which is slow.

We find large speedups by binary searching over a threshold
to find k, which requires very few memory writes. This
speedup is most apparent during activation sparsity, as the
small rows can be fit independently in different warps, al-
lowing for massive parallelism across the batch dimension.
This type of implementation can be sped up even more; we
are excited about approaches for approximate top-k,20 as
the model does not seem especially sensitive to this during
training, as long as the final few steps are done exactly.

Although these kernels would provide large speedups in the-
ory, our current optimization stack is unsuited to using them
during training. Significant further optimization research
is needed to allow the use of sparse kernels everywhere, as
well as sparse representations of all model parameters (to
save memory). Early on in the project we experimented with
various optimization changes to enable the kernel changes,
but many of these systems changes would require archi-
tecting our codebase in a manner not conducive to rapid
iteration, and so we ultimately decided to focus on research
velocity for this work. Without additional research on sys-
tems approaches, we find it unlikely that we can drastically
scale up our models, but we believe all of the problems
outlined below to be tractable.

20It’s worth being careful about approximate top-k. In some
early experiments, we ran into some optimization degradation due
to approximate top-k with Key et al. (2024), because the buckets
would line up with rows of the matrix, thereby inducing unintended
structure.

23

Weight-sparse transformers have interpretable circuits

dW computation. While the forward pass matmul and
dx matmul are both a sparse weight times a dense activation
matrix, the dW computation requires taking the product of
two dense matrices. Thus, the dW computation will become
the limiting factor asymptotically. Importantly, only L0 ele-
ments of dW will actually be used in the computation, but
those elements are chosen by top-k of W + dW (assuming
we use SGD; we address Adam in the next section). While
the memory usage is more straightforward to fix (we can
fuse a TopK into the matmul kernel), the compute usage
is a greater challenge. We believe it may be possible to
approximate the top-k of W + dW operation, or amortize
it out over many steps, similar to Evci et al. (2021).

Adam moments. One other source of dense memory and
compute usage is the Adam moments. In early experiments,
we explored pruning the Adam moments to the m ·L0 most
important entries, for various values of m and measures
of moment importance, but always found this to be a non-
trivial optimization hit at reasonable m. There are several
approaches we could take: we could use an optimizer like
SGD or signSGD (Bernstein et al., 2018); we could accept
the cost of Adam moment pruning, if the systems win over-
all is worth it; we could use some hybrid of sparse-moment
Adam with a memory-efficient Adam-like optimizer Adafac-
tor (Shazeer & Stern, 2018).

Annealing. We currently find that annealing our models
from dense to sparse over a large amount of training helps
substantially with optimization. If we were to significantly
scale up, this would be a massive cost. We have also experi-
mented with annealing schedules which decay rapidly over
the first few training steps and still achieve similar final test
loss.

C. Binarizing feature magnitudes
When an SAE feature activates, it can take on a very wide
range of different possible strengths. Therefore, to fully
understand what a feature is doing, it would be insufficient
to merely show that it activates if and only if a certain
concept is present; we’d also have to either explain why it
activated to the extent it did, or claim that the magnitude is
of no significance (Chan et al., 2022).

Therefore, we binarized the model by inserting a step func-
tion at every node location, and then measuring the mean
task loss.

Binarization algorithm. We construct an activation func-
tion ψt,ℓ,r such that ψ1 is the identity function and ψ0 is a
step function

ψ0(x) =

{
ℓ if x < (ℓ+ r)/2

r otherwise,

so that we can interpolate between the two, and such that
ψt(ℓ) = ℓ and ψt(r) = r, by mixing the identity func-
tion with an appropriately-shifted sigmoid of temperature t.
Throughout training, we anneal t as (1− progress)5.

To initialize the parameters ℓ and r for each node, we iterate
over each node and search over possible choices to find
the choice that results in the least drop in performance.
Specifically, we try thresholds 1

4 , 1
2 , and 3

4 of the way in
between the max and min observed activations, and take
the mean of the subset of activations above and below the
threshold for ℓ and r.

Results. We find that we can often binarize tasks, and that
while the result is very noisy, there is generally a trend to-
wards greater binarizability as total params increases while
L0 is held constant (Figure 34). However, unlike the circuit
size metric, where decreasing L0 improves interpretability,
we generally find that increasing L0 at a constant number
of total params improves binarizability. All baseline task
losses start out the same, because we prune to a fixed target
task loss.

Anecdotally from qualitative exploration, some of our fea-
tures do not seem binarizable, but still nonetheless seem to
be understandable — for instance, some nodes, such as the
one in bracket counting, take on 3 distinct semantic
values (for outside a list, inside a singly nested list, or in-
side a doubly nested list); other nodes, especially attention
key channels, grow continuously throughout the context, in
order to pay more attention to recent tokens.

D. Smooth Approximations to L0 Norm
Previous work has discovered several techniques for enforc-
ing sparsity in language models. In particular, Louizos et al.
(2018) found success using a differentiable estimator of the
L0 norm based on the HardConcrete distribution. In this
work, we benchmark this method against our TopK variant
on a toy language modeling task.

In order to improve performance, we make two main modi-
fications to the technique outlined in Louizos et al. (2018).
Namely,

• Initialization: Louizos et al. (2018) opts to initial-
ize all parameters to roughly the same value. Instead,
we sample original parameter values from a scaled
Bernoulli distribution, with a fixed initial sparsity.

• Sparsity Floor: Often, especially at high levels of spar-
sity regularization, the sparse model learns to deacti-
vate all of its weights, stopping the model from learning
further. To abate this, as well as provide more control
over the final sparsity, we clip the sparsity penalty at a
fixed minimum.

24

Weight-sparse transformers have interpretable circuits

0.9M 1.9M 3.7M 7.4M 14.8M
L0

7.4M

29.7M

118.8M

475.1M

To
ta

l p
ar

am
s

0.25

0.30

0.35

0.40

0.45

0.50

Figure 34. Task loss after binarizing all features in the circuit, average across all tasks. No data is available for L0 > total params for
obvious reasons.

Figure 35. Comparing our method (baseline) to that of Louizos et al. (2018).

25

Weight-sparse transformers have interpretable circuits

We find that the technique performs consistently worse than
TopK, with slightly higher loss across all sparsity levels
(Figure 35). This aligns with previous work, such as Gale
et al. (2019), which benchmarked these techniques on Neu-
ral Machine Translation.

We also attempted to use a this technique for pruning, similar
to Cao et al. (2021), and were unable to beat our baseline.

E. Validating circuit hypothesis with mean
ablations

Once we believe we’ve found a circuit inside our sparse
model, we need to ensure that the circuit is actually reflec-
tive of the internal behavior of the model. Without faithful-
ness, explanations might look plausible but do not necessar-
ily accurately reflect the model’s underlying computation
(Bolukbasi et al., 2021; Makelov et al., 2023; Friedman
et al., 2024). Thus, in order to draw safety guarantees from
interpretability, we must have some procedure for validating
that our explanation is actually faithful.

Our work substantially improves on the state of the art for
circuit faithfulness with very granular nodes, but it is still
by no means maximally faithful.

We draw heavily on Causal Scrubbing (Chan et al., 2022) for
inspiration. Unfortunately, our circuits are not fully faithful
by the standards of causal scrubbing. Causal scrubbing has
two components:

1. Any two node values that we claim to be semantically
identical should be interchangeable. For example, if we
claim that a neuron value is above x if and only if the
token is a variable containing a string, then it must be
the case that changing the node to any in-distribution
value greater than x does not impact performance.

2. Any node we claim to be irrelevant must be substi-
tutable with any value of the node drawn from the
distribution of values observed during pretraining.

As we see in Appendix C, while our models satisfy condition
1 for some tasks, they are by no means uniformly able to do
so. On this front, our method offers some signs of life, but
does not perform well.

As for condition 2, using just the mean is a strictly weaker
version of condition 2. In early results, we found that even
just condition 2 of Causal Scrubbing alone was much harder
to satisfy than mean ablation. However, we claim that the
loss in faithfulness from using mean ablations instead of the
full pretraining distribution is not so bad.

Chan et al. (2022) claim that mean ablation is suboptimal
because it (a) can take the model out-of-distribution in an
unprincipled manner, (b) can have unpredictable effects on

measured performance, and (c) remove variation that your
model might depend on for performance. However, (a) only
matters if your circuit actually depends on the irrelevant
nodes, and even when it does, moving off the manifold of
plausible activations should harm performance much more
often than it helps; similarly, (b) plausibly increases variance
and hurts the interpretability score on average, but seems
unlikely to overestimate interpretability; to reduce (but not
eliminate) the probability of (c) being a major issue, we also
verify that ablating parts of the network that we claim to be
relevant does indeed destroy performance (Figure 32).

Importantly, mean ablations leads to much more complete
circuits than activation patching (Heimersheim & Nanda,
2024). If there are parts of the circuit that are critical for
performing the task, but for which activations differ across
prompt pairs rather than within each pair, then activation
patching will fail to notice it. Concretely, for example, since
each pair of prompts in set or string uses a different
variable name, but the variable name is the same within
each pair, activation patching will completely ignore the
part of the circuit that copies the name of the variable to the
final token. In early experiments, we found that activation
patching was substantially easier to get good scores on, but
led to circuits which were qualitatively unsatisfying.

We are excited for future work that further pushes the fron-
tiers of circuit faithfulness to full causal scrubbing and be-
yond.

F. Details for qualitative results
F.1. Constant queries

In single double quote, the query channel appears
to be a constant, and not data-dependent. To verify that this
is a valid simplification, we show that setting it to a constant
value across the entire pretraining distribution increases loss
by 2.6e-5 nats per token, which is small compared to the
pretraining loss hit of 1.47e-4 nats per token when zeroing
the Q.

F.2. Rescaling Ablations and Redundancy

For the circuit outlined in Section 3.2.2, to obtain the com-
plete description, we found that rescaling a small number of
nodes was helpful to remove redundant components of the
model. However, this intervention is quite powerful when
applied generally, and can “hide” superposition within the
model.

We take care to ensure that we only perform rescaling
interventions when the model computation are truly re-
dundant, and are not hiding superposition present within
the model. For the bracket counting circuit, we
rescale two activation scalars: 4.attn.resid delta idx 1079

26

Weight-sparse transformers have interpretable circuits

and 2.attn.resid delta idx 1249.

For residual stream channel 1079, the circuit uses it in its
final MLP layer, in order to compute the correct output
logits. If this final MLP is ablated, loss suffers. However,
this last layer can be ablated if one rescales 4.attn.resid delta
idx 1079 directly. This is equivalent to the logit scale and
logit bias transformations used by pruning to recalibrate the
output logits of the pruned circuits. We also find that by
linearly replacing the unpruned outputs of the MLP is able
to recover most of the loss, when compared to a baseline of
zero ablation (5.8e-5 nats per token vs 2.69e-4).

Figure 36. Activation of 2.attn.resid delta idx 1249 vs
3.attn.resid delta idx 1249 across pretraining.

For 2.attn.resid delta idx 1249, it appears that within
the bracket counting circuit, residual channel 1249
is written to by attention layer 3 as well as attention
layer 2. The activation patterns of 2.attn.resid delta idx
1249 and 3.attn.resid delta idx 1249 look highly corre-
lated, both across the pretraining distribution, and the
bracket counting task distribution Figure 36. Thus,
we suspect that the model is using 3.attn in order to amplify
the activation from 2.attn. To verify this, we intervene on
3.attn.resid delta idx 1249, replacing its activation with a
linear function of 2.attn.resid delta idx 1249, and compute
pretraining loss. When compared to a baseline of zero ab-
lation of the node (a 4e-3 nat per token loss hit), the linear
replacement suffers a comparatively negligible loss hit of
7e-4 nats per token. Thus, this channel is unlikely to be in
cross-layer superposition, and 3.attn is redundant at index
1249. To simplify the circuit description, we ablate 3.attn,

and rescale 2.attn.resid delta idx 1249 correspondingly.

We also find 3.attn to be implementing highly interpretable
computation, essentially the ”same circuit” as 2.attn in one
attention head (head 85), and copying the 2.attn.resid delta
idx 1249 in another (1249). We ablate it mostly for simplic-
ity.

27

Weight-sparse transformers have interpretable circuits

1009 × 10 1 1.1 × 1001.2 × 1001.3 × 1001.4 × 1001.5 × 1001.6 × 100

Pretraining loss (capability)

103

104

Pr
un

ed
 c

irc
ui

t s
ize

 (i
nt

er
pr

et
ab

ilit
y)

iso-(afrac, total_params) lines

1009 × 10 1 1.1 × 1001.2 × 1001.3 × 1001.4 × 1001.5 × 1001.6 × 100

Pretraining loss (capability)

103

104

Pr
un

ed
 c

irc
ui

t s
ize

 (i
nt

er
pr

et
ab

ilit
y)

iso-(afrac, L0) lines

1009 × 10 1 1.1 × 1001.2 × 1001.3 × 1001.4 × 1001.5 × 1001.6 × 100

Pretraining loss (capability)

103

104

Pr
un

ed
 c

irc
ui

t s
ize

 (i
nt

er
pr

et
ab

ilit
y)

iso-(L0, total_params) lines

Figure 37. Contours varying one of {L0, total parameters, activation sparsity} and holding the other two constant. L0 moves along the
frontier. The first plot varies L0, the second varies total parameters, and the third varies activation sparsity. Total parameters pushes the
frontier. Increasing activation sparsity initially helps but eventually becomes Pareto dominated.

28

Weight-sparse transformers have interpretable circuits

Figure 38. A screenshot of the activation patterns of some random (post RMSNorm) residual stream features from one of our models.
Notably, we do a pretraining pruning step to remove dead nodes which do not before we select random nodes. For each node, random
documents from the top and bottom 5 percentile of activation are shown. Random nodes are somewhat interpretable, especially considering
that our models are unlikely to represent extremely complex concepts.

29

Weight-sparse transformers have interpretable circuits

Figure 39. A screenshot from our circuit visualizer showing documents with various percentiles of activations, drawn from the entire
pretraining distribution (and not just the single double quote task) for the 10.attn.resid delta.83 node from Figure 4.
Even on the pretraining distribution, the activations are surprisingly monosemantic—it activates positively inside double quote strings,
negatively inside single quote strings, and near zero outside of strings. This node is cherrypicked; not all nodes are this monosemantic.

30

Weight-sparse transformers have interpretable circuits

Figure 40. A screenshot of visualized activations for a quote type
classifier layer 3 attention input channel of a bridged sparse model
used for constructing interpretable perturbations. Most positive
and negative pretraining activations are on top and paired task
activations are below.

Figure 41. A screenshot of visualized activations for a “current
line begins with if/while/except” layer 3 MLP input channel in a
bridged sparse model used for constructing interpretable perturba-
tions. Most negative pretraining activations on top and paired task
activations below.

31

Weight-sparse transformers have interpretable circuits

G. Contributions
Leo Gao set the research direction and led the project. Leo
designed and implemented the sparse model training code-
base and the pruning codebase. Leo studied scaling, opti-
mization, architecture, pruning, bridges, and feature bina-
rization. Leo worked on the pretraining systems and kernels.
Leo created several of the pruning tasks. Leo contributed to
the visualizer. Leo contributed substantially to the writing
of the paper text. Leo provided technical mentorship for
Achyuta through the duration of the project.

Achyuta Rajaram studied pretraining architecture, opti-
mization, and circuit pruning. Achyuta improved the prun-
ing algorithm. Achyuta performed the qualitative analysis
for the examples in the paper. Achyuta created many of the
pruning tasks. Achyuta experimented with alternatives to
top-k for weight sparsity. Achyuta contributed substantially
to the writing of the paper text.

Jacob Coxon studied optimization and circuit pruning. Ja-
cob did initial explorations intoL0 annealing and attribution-
based pruning. Jacob designed an initial version of the
dataset. Jacob created several of the pruning tasks. Jacob
implemented the circuit visualizer.

Soham V. Govande implemented an optimized CARBS
implementation and contributed to the kernels and systems
analysis.

Bowen Baker managed Leo for the first portion of the
project.

Dan Mossing studied bridges and gave day-to-day technical
feedback. Dan contributed substantially to the writing of
the paper text. Dan managed Jacob and Achyuta through
the duration of the project, and Leo for the latter portion of
the project.

32

