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Abstract 

We used an autonomous lab, comprising a large language model (LLM) and a fully automated 
cloud laboratory, to optimize the cost efficiency of cell-free protein synthesis (CFPS). By 
conducting iterative optimization, the LLM-driven autonomous lab was able to achieve a 40% 
reduction in the specific cost ($/g protein) of CFPS relative to the state of the art (SOTA). This 
cost reduction was accompanied by a 27% increase in protein production titer (g/L). Iterative 
experimental design, experiment execution, data capture and analysis, data interpretation, and 
new hypothesis generation were all handled by the LLM-driven autonomous lab. The interface 
between OpenAI’s GPT-5 LLM and Ginkgo Bioworks’ cloud laboratory incorporated built-in 
validation checks via a Pydantic schema to ensure that AI-designed experiments were properly 
specified. Experimental designs were translated into programmatic specification of 
multi-instrument biological workflows by Ginkgo’s Catalyst software and executed on Ginkgo’s 
Reconfigurable Automation Cart (RAC) laboratory automation platform, with human 
intervention largely limited to reagent and consumables preparation, loading and unloading. By 
integrating LLMs with programmatic control of a cloud lab, we demonstrate that an LLM-driven 
autonomous lab can successfully perform a real-world scientific task, highlighting the potential 
of AI-driven autonomous labs for scientific advancement. 
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1. Introduction 

There are two central bottlenecks in scientific research.  The first is so-called “wet lab” 
experimentation: the hands-on, physical manipulation of chemical and biological materials to 
conduct experiments. The second is intelligence: the conception, planning, and design of 
experiments, and the analysis and interpretation of resulting data, to answer a given scientific 
question. Advances in laboratory automation, software architectures, application programming 
interfaces, and cloud labs promise to alleviate the former bottleneck. Similarly, rapid advances in 
large language models (LLMs), particularly reasoning models that can solve complex, multi-step 
problems by breaking them down into logical, sequential steps, can automate the latter. Together, 
reasoning models and “autonomous labs” are capable of performing all steps of routine scientific 
discovery: experimental planning, design, execution, data analysis and interpretation, and new 
hypothesis generation. Early efforts have illustrated the potential of autonomous labs across 
multiple disciplines including chemical research,1 material science2–6 and biological design.7,8 
Until recently, reasoning LLMs have been deployed mostly in computationally verifiable tasks 
such as algorithms, math, and physics. Evaluating AI performance in designing biological 
experiments is particularly challenging due to the need for wet lab validation.9 As a result, the 
potential of AI-driven autonomous labs for advancing real-world scientific applications remains 
largely untapped. 
 
One such real-world scientific application is cell-free protein synthesis (CFPS), a method for 
recombinant protein production of both laboratory and commercial importance that has proven 
difficult to optimize.10–12 Given the widespread use of CFPS in rapid prototyping13 including for 
antibodies,14–16 peptides,17 proteins,18 enzymes,19 and proteins for structure determination,20 as 
well as in the commercial production of an antibody-drug conjugate luveltamab tazevibulin 
(luvelta),21,22 improvements in CFPS achieved by the application of autonomous lab 
experimentation would demonstrate both the power of the autonomous lab concept and deliver 
real-world benefits.  
 
The very large CFPS parameter space suggests that its optimization would be a suitable—and 
challenging—testbed for autonomous lab experimentation. CFPS reactions consist of many 
components (DNA template encoding the protein of interest, cell lysate, nucleic acids, amino 
acids, energy sources, cofactors and coenzymes, buffers, salts, etc.). CFPS can also produce 
proteins bearing a wide variety of modifications, including disulfide bonds,23,24 glycosylation,25,26 
phosphorylation27 and non-canonical amino acids,28–32 further broadening the search space. 
Accordingly, there have been significant prior efforts leveraging machine learning and similar 
techniques to optimize CFPS reactions against two common figures of merit: titer (gram of 
protein produced per liter of reaction) and specific cost (the total reaction composition cost per 
gram of protein produced).33–40 Reducing specific cost—a critical factor given the much larger 
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scale of experimentation made possible by autonomous labs—without sacrificing titer makes 
CFPS optimization a non-trivial problem. 
 
Here we combined OpenAI’s GPT-541 with Ginkgo Bioworks’ Reconfigurable Automation Cart 
(RAC)-based cloud laboratory in Boston, MA to perform autonomous lab experimentation with 
the objective of minimizing E. coli CFPS specific cost. The LLM-driven autonomous lab was 
able to produce a standard benchmark protein, superfolder green fluorescent protein (sfGFP), at a 
cost of $422/g versus a recent state of the art (SOTA) report of $698/g by Olsen et al. (2025),42 a 
40% cost reduction over SOTA. This cost reduction was accompanied by an increase of 27% in 
protein production (titer, g/L) versus SOTA, confirming that cost and titer can be improved 
simultaneously without sacrificing one for the other. 

2. Results 

We used a GPT-5-driven autonomous lab to optimize CFPS 

Our approach to GPT5-driven autonomous lab experimentation, applied here to CFPS 
optimization, is illustrated in Figure 1. We used GPT-541 to design E. coli lysate-based CFPS 
reaction compositions that optimize production of a test protein, superfolder green fluorescent 
protein (sfGFP), with the objective of minimizing specific cost. The first iteration of CFPS 
reactions (what we refer to in this work as Step 0) were designed by GPT-5 without the benefit of 
any example reactions or prior experimental results (a setting referred to as “zero-shot”); thus, 
GPT-5 only leveraged intrinsic knowledge stored in model weights to generate experimental 
reaction compositions. GPT-5-designed experiments were constrained to be properly specified, 
e.g. verified to be scientifically valid and physically executable on Ginkgo’s cloud lab, by 
applying a Pydantic-based validation schema. 
 
All CFPS reactions were run on Ginkgo’s Reconfigurable Automation Carts (RAC)-based cloud 
laboratory in Boston, MA. RACs are a modular laboratory automation solution developed by 
Ginkgo. Each RAC contains a single instrument type—e.g., liquid handler, centrifuge, incubator, 
plate reader—and standardized hardware that enables a RAC to move samples in SBS-format 
microtiter plates to and from that instrument (via a 6-axis robotic arm) and between RACs (via a 
sample transport track). RACs flexibly combine into unified assemblies to perform fully 
automated, scalable workflows. Ginkgo’s RAC command-and-control software, Catalyst, enables 
programmatic specification of multi-instrument workflows and orchestrates the running of many 
such workflows simultaneously on the same RAC assembly, including RAC and instrument unit 
operations, sample transport, and (meta)data collection (Supplemental Figure 1). Ginkgo’s cloud 
lab includes all the instrumentation needed for the described CFPS workflow (Supplemental 
Figure 2). 
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Figure 1: Experimental iterations by a GPT-5-driven autonomous lab implemented on RACs. OpenAI’s 
GPT-5 proposes a batch of experimental designs in 384-well plate format and validates them using a 
Pydantic schema.  Designs are then programmatically converted to Catalyst protocol runs for execution on 
Ginkgo’s RAC-based cloud laboratory. After experiments are executed, (meta)data and metrics are 
returned to GPT-5 for analysis, interpretation, hypothesis generation, and design of the next round of 
experiments. 

 
We ran CFPS reactions at 20-µL scale in 384-well plates. To improve dispensing accuracy and 
precision, different cloud lab liquid dispensing instruments were used to add reaction 
components (base buffer, reagents, DNA template and cell lysate) based on dispense volume and 
component viscosity (see Materials and Methods). Each plate consisted of 78 distinct reaction 
compositions (4 replicates each), purified sfGFP for absolute protein quantification, and  positive 
and negative controls. The cloud lab performed reaction component addition, CFPS reaction 
incubation, and fluorescence data acquisition. We used custom software code to (a) translate 
GPT-5-designed experiments into Catalyst protocol runs (Supplemental Figure 3) on Ginkgo’s 
cloud lab and (b) retrieve and return data to GPT-5.  Experimental data was returned to GPT-5 
via a JSON file comprising protein titers. Human intervention in laboratory experiments was 
primarily limited to preparation, loading and unloading of reagents and consumables on and off 
the RAC system. 
 
A compelling capability of an LLM-driven autonomous lab is its ability to generate 
human-readable laboratory notebook entries (Supplementary Material section 7.3). GPT-5 
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documented how it analyzed data, observations it made of experimental trends, surprising or 
confusing results, and new hypotheses it formulated for testing. Early entries from Step 0, for 
example, critiqued titer variability between replicates within a plate (CVs >40%). To reduce titer 
CVs, we modified certain reagent stocks to improve the precision and accuracy of liquid 
dispensing steps (Supplementary Material section 7.4). For example, we reduced concentrations 
to enable more accurate liquid transfer on the Echo 525 acoustic dispenser (potassium glutamate, 
magnesium glutamate, DMSO) and changed stock solutions to reduce precipitation (e.g., 
switched to a maltodextrin with a shorter chain length, and increased the pH of the tyrosine stock 
solution to pH 12).  Ginkgo personnel performed quality testing of precipitation and Echo liquid 
handling of different reagent stock solutions manually. With these improvements, we were able to 
achieve median per-plate CVs of 17%, with 90% of initially screened plates having CVs less than 
30%. In total in Step 0, 146 384-well plates totalling 7,502 unique reaction compositions were 
designed, tested and data returned to GPT-5. 
 
In Step 1, GPT-5 used experimental data from Step 0 to inform the next round of reaction 
designs. Thirty-two 384-well plates (1,656 unique reaction compositions) were executed on 
Ginkgo’s cloud lab with data returned to GPT-5. In this step, GPT-5 was able to design reaction 
compositions with reduced cost but similar titers versus Step 0 (Figure 2A). We also noted that in 
many lab notebook entries, GPT-5 suggested additional reagents not already available in the 
reagent list that it reasoned might improve specific cost. Indeed, there were so many lab notebook 
entries, and GPT-5 had so many reagent suggestions, that we asked GPT-5 to analyze and 
rank-order its reagent suggestions (Supplementary Material section 7.5), sourced those reagents 
that were commercially available, and added them to the list of reagents available to the model 
for Step 2 or Step 3 (Supplementary Table 1).  
 
In Step 2, although GPT-5 was able to make use of the additional reagents, it chose to do so 
relatively sparingly. Nevertheless, the GPT-5-driven autonomous lab achieved both lower 
reaction costs and higher titers versus Step 0–1 (Figure 2A). In total in Step 2, 64 384-well plates 
corresponding to 3,586 unique reaction compositions were tested with data return to GPT-5. 
After Step 2, we made a series of process improvements to our CFPS workflow to improve CFPS 
reaction productivity. In particular, we switched to a different sfGFP plasmid design and 
improved our cell-free lysate preparation process (Supplementary Material section 7.4 and 
Materials and Methods). 
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Figure 2: Autonomous lab experimentation reduces CFPS reaction cost and increases protein titer over 
six iterative steps. (A) CFPS reaction cost ($/L) versus protein titer (g/L) across Steps 0-5 of 
experimentation in 384-well plate reaction geometry (Pareto frontier plotted on a log-log scale).  
Reactions representing the minimum specific cost ($/g) for each step are highlighted with larger dots. 
Star: SOTA in 384-well plates as reported by Olsen et al. (2025).42 (B) Steps 3-5 of panel A replotted on a 
linear scale. (C) Best specific cost ($/g) obtained in 384-well plate reaction geometry at each step. Dotted 
line: SOTA in 384-well plates as reported by Olsen et al. 

 
In Step 3, we significantly expanded both the tools the model could access and the experimental 
(meta)data that we provided GPT-5. In particular, we provided GPT-5 with access to the internet, 
a computer, and data analysis packages. We also provided the model with the preprint on SOTA 
published by Olsen et al. (2025)42 on August 1, 2025 (including their supplementary materials). 
The model was able to access relevant scientific literature online. Finally, we exposed the model 
to additional, potentially useful experimental (meta)data, including raw fluorescence values, 
titers from positive and negative controls, reagent lot numbers, liquid handling errors, 
quality-of-fit metrics for per-plate standard curves, instrument protocols and parameters, and 
actual CFPS incubation times (which may vary from the intended incubation time of 20 h during 
periods of high cloud lab utilization). Together, these changes, along with improvements to the 
DNA template and cell lysate, enabled a jump in performance in both reaction cost and titer 
(Figure 2A), with the model making more use of the additional reagents. Note that we opted to 
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forego heuristic scoring in this step. Top-performing reaction conditions from Step 3 were 
k-means clustered to select a diversity of reagent compositions, down-selected by the $/g metric, 
and re-tested in 96-well plates (cloud lab) and 2-mL flat-bottom tubes (manually). As Olsen et al. 
note, CFPS reaction titers, and thus specific costs, vary with reaction oxygenation.42 Batch 20 µL 
CFPS reactions in a 2-mL tube format generally yielded higher titers than those in 96-well plates, 
which in turn generally yielded titers higher than those in 384-well plates, likely due to 
differences in oxygenation and known surface area to volume effects.43 Results from 96-well 
plates were provided to the model. In total, 48 384-well plates corresponding to 3,211 unique 
reaction compositions were tested in Step 3.  
 
Step 4 was performed by the GPT-5-driven autonomous lab using a similar approach as Step 3 
with 62 384-well plates being tested corresponding to 4,244 unique reaction compositions. 
GPT-5 was able to achieve lower reaction costs and higher protein titers in Step 4 versus Step 3 
(Figure 2B). In Step 5, we adopted a rubric scoring approach and ran 128 384-well plates 
comprising 7,809 unique reaction compositions. Step 5 resulted in similar reaction costs but a 
jump in titers (Figure 2B). In total over six steps, we executed 480 384-well plate experimental 
designs comprising 29,527 unique reaction compositions in six months via the GPT-5 driven 
autonomous lab, with each successive step resulting in lower specific cost (Figure 2C).  

The GPT-5-driven autonomous lab improved CFPS specific cost by 40% versus SOTA 

We benchmarked the performance of CFPS reaction compositions from the autonomous lab 
against the best-performing composition “RFopt” from Olsen et al. (2025),42 the current SOTA. 
Olsen et al. sought to reduce reagent costs–the cost of all CFPS reaction components other than 
cell lysate and DNA template. In light of Olsen et al.’s substantial reduction in reagent costs, 
however, cell lysate and DNA template now account for >90% of total CFPS reaction cost in 
SOTA. Accordingly, we focused on optimizing total CFPS reaction cost (specific cost, $ per 
gram of protein produced), i.e., the sum of reagent, lysate, and DNA costs. Indeed, we were able 
to further reduce reagent, lysate and DNA costs. Olsen et al. reported a total reaction cost of 
$1,676/LCFE (their Supplemental Table 1) and a titer of 2.4 ± 0.3 g/L (their Table 1), resulting in a 
calculated specific cost of $698/g for RFopt. Note that we use the same cell lysate, DNA template 
and reagent unit costs as Olsen et al. for direct comparison of specific costs obtained here to 
SOTA (see Olsen et al. Supplemental Tables 1 and 2). If a unit cost for a particular reagent was 
not available from Olsen et al., we adopted their approach and determined the unit cost based on 
the largest retail unit available from the vendor. 
 
The autonomous lab was able to improve upon SOTA by producing superfolder green fluorescent 
protein (sfGFP) at a specific cost of $422/g versus Olsen et al.’s report of $698/g (Table 1). The 
composition obtained from the autonomous lab reduces CFPS specific cost by 40% and increases 
protein titers by 27% relative to SOTA. Although reagents only cost was not an explicit model 

7 



objective, we also reduced reagent costs from $60/g to $26/g, a reduction of 57% over SOTA. 
Note that although the preprint published by Olsen et al. on August 1, 2025 quoted a reagents 
only cost of $55/g, the authors subsequently updated this cost to $60/g prior to final publication 
(Michael Jewett, personal communication). 
 
Table 1: Top-performing CFPS reaction compositions identified in this work. All CFPS reactions were 
performed at the 20-µL scale in the designated reaction geometry (2-mL tubes, 96-well plate or 384-well 
plate). Reported errors are standard deviations of 8 replicates for 384-well plates and 4 replicates for 
96-well and 2-mL tubes. Values for RFopt (SOTA) are calculated from Olsen et al. (2025)42 Supplemental 
Table 1 (total reaction cost calculation of $1,676 per liter of CFPS reaction), their Table 1 (titer for 15-µL 
scale in 2-mL tubes), and their Supplemental Figure 7a (estimated titer for 15-µL scale in 384-well 
plates). Reaction composition 1777863_77 has the lowest specific cost in 2-mL tubes, with a 40% 
improvement over SOTA; however, reaction composition 1793122_35 demonstrates the most balanced 
performance across reaction geometries, with a 38% improvement over SOTA in 2-mL tubes and a 188% 
improvement over SOTA in 384-well plates. 

 

Reaction 
composition 
identifier 

Specific Cost ($/g) Protein Titer (g/L) 

2-mL tubes 2-mL tubes 96-well plates 384-well plates 

RFopt* (SOTA) $698* 2.39 ± 0.28* Not applicable* ~0.25* 

1777863_77 $422 3.04 ± 0.30 0.66 ± 0.12 0.29 ± 0.01 

1784943_26 $425 3.01 ± 0.27 0.86 ± 0.24 0.33 ± 0.05 

1793122_35 $430 3.04 ± 0.18 1.52 ± 0.32 0.72 ± 0.38 

1793665_74 $446 2.92 ± 0.19 1.31 ± 0.33 0.49 ± 0.05 

1793119_36 $466 2.77 ± 0.19 1.28 ± 0.13 0.78 ± 0.58 

1794089_36 $470 2.75 ± 0.27 2.00 ± 0.49 0.53 ± 0.07 

* As reported by Olsen et al. (2025).42 

We used a Pydantic model to filter GPT-5-designed experiments for scientific validity 

A key technical hurdle in the use of autonomous labs for scientific experimentation is ensuring 
that AI models generate valid experimental designs that can be physically performed on the 
available equipment. To address this hurdle, we made use of Pydantic, a Python data validation 
library, to formalize the shared contract for experimental design, encode physical and logistical 
constraints, and define the schema from which Catalyst protocols are generated and experimental 
results are returned and analyzed. We imposed key experimental design constraints including 
plate format and layout, standards, controls, replication factor, and allowed reagent volumes. We 
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also parameterized the available CFPS reagents, stock concentrations, chemical compositions 
and unit costs (Supplemental Table 1). 
 
GPT-5 interacted with the Pydantic schema to produce a JSON file representation of a “CFPS 
experiment,” a 384-well plate with specified reaction compositions. The Pydantic schema ensures 
that GPT-5 produces an experimental design that is both syntactically well-formed for Catalyst 
protocol generation and physically executable in Ginkgo’s cloud lab. The plate JSON file serves 
as a convenient abstraction and interface between the LLM, which is focused on experimental 
intent and design, and the cloud laboratory, which handles all the complexities of physical 
implementation of the experiment. 

GPT-5 wrote useful lab notebook entries documenting its scientific reasoning 

As discussed above, GPT-5’s lab notebook entries summarized prior data, interpreted results and 
proposed new hypotheses for testing. In particular, GPT-5 suggested new reagents that it deemed 
potentially useful to reduce specific cost, accompanying rationale for their inclusion and target 
concentration ranges to try (Supplemental Material section 7.5). For instance, GPT-5 noted that 
nucleotide triphosphates (NTPs) were a dominant cost in CFPS reactions and prioritized reagents 
that it reasoned could support NTP regeneration such as polyphosphate, acetyl phosphate, and 
potassium phosphate or NTP synthesis such as nucleotide monophosphates (NMPs), nucleosides, 
bases and ribose, in advance of being provided the Olsen et al. (2025) preprint. Thus, GPT-5 
anticipated certain reagents such as NMPs, potassium phosphate and ribose that were critical to 
the reagent cost advances described by Olsen et al. Note that GPT-5 did not list nicotinamide in 
its prioritized reagents to add; however, GPT-5 did try nicotinamide and ultimately used it in all 
top-performing reaction compositions of this work (Table 2). Of the more than 20 additional 
reagents proposed by GPT-5, several were components of one or more of our top-performing 
reaction compositions, including NMPs, glucose, potassium phosphate, dilithium acetyl 
phosphate, adenosine, guanine, catalase, and oxaloacetic acid.  The model also suggested various 
enzymes that it reasoned could be helpful in NTP regeneration or synthesis, but most of these 
could not be sourced commercially and were not included. 
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Table 2: Top performing CFPS reaction compositions identified in this work. All concentrations are in 
mM, unless otherwise noted. See Supplemental Table 1 for chemical abbreviations and compositions of 
stock solutions. 

Component RFopt* 1777863_77 1784943_26 1793122_35 1793665_74 1793119_36 1794089_36 

Cell lysate (% v/v) 30 25 25 25 25 25 25 

DNA template (nM) 8.686  5 5 5 5 5 5 

HEPES-KOH pH 7.5 75 45.0 50.0 67.5 75.0 75.0 60.0 

K(Glutamate) 362 312.6 299.8 273.2 299.8 277.5 273.2 

Mg(Glutamate)2 8 7.0 7.0 8.8 8.2 8.2 8.2 

Glucose 10 6.9  8.3 8.3 9.7 8.3 

Sodium pyruvate    9.1  18.2  

Oxaloacetic acid     5.0   

Amino acids 5 4.1 3.2 4.8 4.8 3.0 4.8 

Tyrosine 5 4.1 3.2 1.2 1.2 3.0 3.2 

Cysteine 5 4.0 3.2 5.0 4.0 3.0 4.0 

Potassium phosphate 
dibasic:monobasic mix 

 5.6 7.5 7.5 15.0 15.0 7.5 

Potassium phosphate 
monobasic:dibasic mix 

15 
(adjusted to 

pH 7) 

5.6 7.5 7.5   7.5 

Dilithium acetyl 
phosphate 

     0.2  

Nicotinamide 4 3.1 4.0 4.0 4.0 0.4 3.0 

Spermidine    1.2 1.2  1.2 

Ribose 50 77.4 69.9 40.0 40.0 50.0 40.0 

AMP 3 0.6 0.8 0.5 1.5 1.0  

CMP 2.15 0.4 0.5 1.0 1.0 1.0 1.1 

GMP 2.15  0.5 1.0  1.0 1.1 

UMP 2.15 0.4 0.5 1.0 1.0 1.0 1.1 

Adenosine    0.4    

Guanine  0.2   0.6   

Catalase (U/mL)    187.5    

*As reported by Olsen et al. (2025).42 
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Reaction designs improved significantly with computer tools, DNA template and cell lysate 
improvements, experimental (meta)data return and the SOTA report 

We provided GPT-5 with access to the internet, a computer, and data analysis packages as well as 
the preprint on SOTA by Olsen et al. (2025)42 (including supplementary materials) starting in 
Step 3. Since GPT-5 had access to a computer, we also chose to provide it with access to the 
Pydantic model itself so that we could return additional experimental (meta)data for the model to 
consider in its experimental design. Thus, in this setting, GPT-5 was able to combine insights 
from the SOTA report with previous experimental results and other online publications (see 
References section of the GPT-5 generated lab notebook entry in Supplementary Materials 
section 7.3), and design CFPS experiments accordingly. Together, these changes along with cell 
lysate and DNA template improvements (Supplementary Materials section 7.4) resulted in a 
performance jump in both specific cost and protein titer (Figure 2). In fact, the model achieved 
many reactions with better specific cost than SOTA for 384-well plates in Step 3. This 
performance jump is consistent with prior work by OpenAI demonstrating significant model 
performance gains with tool use across multiple benchmarks.44 

Heuristic scores from grading of experimental designs did not obviously correlate with 
superior designs 

At each step, we ranked and selected all Pydantic-validated GPT-5 generated experimental 
designs using one of three scoring methods: (A) “heuristic” in which another LLM with a 
“principal investigator” persona critiqued the design and justification (Supplementary Material 
section 7.6); (B) “random” in which only Pydantic model validation and no scoring was used; 
and (C) “rubric” in which GPT-5’s reasoning process was graded against a rubric crafted by 
human experts to encourage thorough analysis and reaction diversity (Supplementary Material 
section 7.7). The scoring used was: Steps 0-2, heuristic; Steps 3-4, random; Step 5, rubric. We did 
not conclusively establish whether heuristic scoring correlated with superior designs since (A) 
top-performing reaction compositions came from designs with both high and low heuristic scores 
and (B) improvements in specific cost occurred even in the absence of scoring (Step 3 and Step 
4). 

GPT-5 discovered novel, improved CFPS reaction compositions 

In six steps spanning six months, GPT-5 was able to find CFPS reaction compositions that 
surpassed state of the art in terms of both specific cost ($/g) and titer (g/L) (Table 1). The top 
performing reaction compositions differ from SOTA both in reaction composition and component 
concentration (Table 2).  
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When prompted to synthesize insights from Steps 3-5, GPT-5 (guided by human input and 
subsequently checked with our own median titer calculations) made several observations and 
potential rationales that we found plausible but require further experimental validation. 

1. Adding cheap HEPES buffer has an outsized impact on specific cost by preventing yield 
collapse from pH changes. Generally, it found that higher HEPES concentrations 
increased titer and thus decreased cost. GPT-5 also noted that there is an interdependence 
between other reaction components and the optimal amount of buffer. For example, in 
Step 4, reactions without added HEPES-KOH pH 7.5 (e.g., just the HEPES in the base 
buffer) had a median titer of 0.057 g/L (95% confidence interval 0.053–0.061), whereas 
reactions with an added 1200-2000 nL HEPES-KOH pH 7.5 had a median titer of 0.177 
g/L (95% confidence interval 0.160–0.222). 

2. Phosphate must be buffered, with mono- and dibasic potassium phosphates within an 
optimum concentration and pH range, lest titers fall precipitously. For example, in Step 5, 
reactions with either no potassium phosphate or very high potassium phosphate (> 25 
mM) had very low titer or approximately zero titer, respectively; whereas concentrations 
of 5-10 mM produced strong titers. This observation is consistent with our result that all 
top-performing reaction compositions in this work as well as RFopt from Olsen et al. 
(2025) include potassium phosphate (Table 2). 

3. In concurrence with Olsen et al.,42 GPT-5 concluded that use of NTPs is not a 
cost-effective route to high protein titers and that NMPs yield a better specific cost. The 
model also noted that NMPs cannot be fully replaced by the corresponding nucleosides or 
bases, but partial replacement does reduce costs while preserving titers. Again, this 
finding agrees with Olsen et al., who note that GMP may be replaced by guanine and 
ribose without loss of titer, a result we confirmed (Tables 1 and 2, reaction compositions 
1777863_77 and 1793665_74). GPT-5 also found that AMP may be partially replaced by 
adenosine (Tables 1 and 2, reaction composition 1793122_35). In Step 5, reactions with 
adenosine had a median titer of 0.279 (95% confidence interval 0.273–0.285) and those 
without had a median titer of 0.138 (95% confidence interval 0.136–0.139). However, 
attempts to replace CMP and UMP with their pyrimidine nucleoside counterparts failed.  

4. Spermidine is a low-cost reaction component for which addition correlates with increased 
protein titers. Specifically, in Step 5, reactions with spermidine had a median titer of 
0.253 (95% confidence interval 0.248–0.259) whereas those without had a median titer of 
0.131 (95% confidence interval 0.129–0.133). GPT-5 asserted that polyamines such as 
spermidine stabilize nucleic acids and ribosomal function, thereby improving 
transcription and translation efficiency. 

5. Sodium hexametaphosphate did not have a beneficial effect on titers. 
6. Reaction costs are dominated by cell lysate and DNA template. But improvements in titer 

from buffering / pH control or from addition of spermidine can materially improve the 
overall specific cost. 
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To evaluate whether the CFPS reaction compositions developed here could be used to produce 
other proteins of interest, we tested CFPS reaction composition 1793119_36 with a panel of 
twelve proteins (each of which had a C-terminal HiBiT complementation tag) and sfGFP. We 
found that six of twelve proteins were produced at sufficiently high titer to be visible by 
SDS-PAGE (Supplemental Figure 4) in addition to sfGFP and nine of twelve proteins were 
detectable by HiBiT assay (data not shown), suggesting that further CFPS optimization may be 
needed for particular proteins of interest.  

3. Discussion 

Our work demonstrates the real-world application of an autonomous lab to address an open 
scientific problem, the simultaneous cost- and titer-optimization of cell-free protein synthesis. 
We used OpenAI’s GPT-5 to plan and design experiments, and Ginkgo’s cloud laboratory, based 
on RAC automation technology, to execute those experiments. Human intervention was primarily 
limited to the preparation, loading and unloading of reagents and consumables. We were able to 
improve upon the prior state of the art to produce sfGFP at a specific cost of $422/g versus 
$698/g, representing a 40% reduction in reaction cost per gram of protein produced over SOTA. 
Although the CFPS reaction costs quoted here are not directly comparable to the prices of 
commercially-available CFPS kits, it is notable that the NEBExpress kit, as one example, has a 
list price of $800,000/g of protein produced based on reported specifications.45 

 
Importantly, our GPT-5-driven autonomous lab was able to reduce reaction costs while 
increasing CFPS titer. Use of reaction composition 1793122_35, for example, improved protein 
titer by 27% in 2-mL reaction tubes (3.04 vs. 2.39 g/L; Table 1), and by 188% — nearly 3-fold 
higher — in 384-well plate reactions (0.72 vs. 0.25 g/L; Table 1). We anticipate that additional 
optimization for (A) particular reaction geometries, (B) particular reaction volumes, or (C) the 
protein of interest could further improve E. coli CFPS protein production. 
 
Use of OpenAI’s GPT-5 for experimental planning and design and Ginkgo’s RAC-based 
automated cloud laboratory for experimental execution enabled data generation at a scale 
sufficient to support reinforcement learning. In total, we ran over 580 microtiter plates, tested 
36,000 reaction compositions, and generated almost 150,000 datapoints in six months, with Steps 
3–5 taking just two months. We believe this scale and speed of successful experimentation would 
not have been possible without the use of an LLM-driven autonomous lab.  
 
In autonomous labs, experimental costs are dominated by reagents and consumables, not 
personnel. We believe that our use of an autonomous lab to optimize CFPS is a harbinger of 
things to come. Particularly apropos, one of the many potential applications of this work is a 
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cloud laboratory running low-cost CFPS workflows as a useful complement to the many 
AI-based protein design tools available today.46–51 

 
We chose not to use GPT-5 to write the Catalyst protocols responsible for executing the 
RAC-based workflows. Indeed, all Catalyst protocols were written by Ginkgo personnel. Instead, 
we constrained GPT-5, via the Pydantic schema, to produce experimental designs within a 
predefined operational envelope of Ginkgo’s cloud laboratory. We believe that this constraint 
appropriately focused the GPT-5-driven autonomous lab on exploring relevant regions of 
biological parameter space rather than on writing, attempting to run, and debugging 
RAC-compatible protocols. We intend our work to open the aperture of what Thomas Kuhn calls 
“normal science”52 that can be successfully performed using an LLM-driven autonomous lab. 
 
A common concern with the use of the current generation of LLMs for scientific research is the 
possibility of hallucinations. In part due to our use of the Pydantic schema to validate 
experimental designs produced by GPT-5, we found that hallucinations were quite rare: less than 
1% of the executed designs were flawed (just two of 480 total 384-well plates designed by GPT-5 
across Steps 0–5). In one plate design, the model attempted to overwrite the required volume of 2 
µL for 10X base CFPS buffer (see Materials and Methods) so that it could add additional 
volumes of other available reagents while remaining within the 20-µL total volume specification, 
resulting in a total CFPS reaction volume above our 20-µL specification. We updated the 
validation in the Pydantic schema to prevent this error from recurring. In a later design, GPT-5 
wrote code that had a minor bug (converting nL to μL by dividing by 106), resulting in a plate 
where each well contained only glucose and ribose. Unsurprisingly, in the absence of nucleic 
acid building blocks, these CFPS reactions produced no protein. Overall, given that the model 
designed over 480 plates and we only discovered 2 plates with fundamental design flaws post 
execution, the autonomous lab designed and executed scientific experiments remarkably well. 
 
In the immediate future, we believe work such as that described here—optimizing CFPS reaction 
cost and titer using LLM-driven autonomous lab experimentation—will become common across 
a wide range of biological, biomedical and even chemical science. And just a few years out, as 
reasoning models grow ever more powerful, and modular laboratory automation becomes 
pervasive, autonomous lab experimentation will increasingly supplant traditional labwork, 
allowing scientists to focus on harder and more fulfilling work than designing and executing 
experiments. 
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4. Materials and Methods 

Pydantic model 

The Pydantic (v2.11.7; https://docs.pydantic.dev/) schema comprised three primary models to 
define the interface between experimental design by GPT-5,41 a reasoning model released by 
OpenAI on August 7, 2025, and execution on Ginkgo’s cloud lab. The Plate model represented 
the complete experimental design, including plate geometry, plate layout, sample definitions, and 
high-level composition metadata such as reserved columns and the number and placement of 
controls. The Sample model represented an individual cell-free protein synthesis reaction, 
capturing the experimental condition at the well level, validating the desired replication for each 
sample. The ReagentList model specified the set of reagents and their associated volumes for 
each sample; at this level, the availability of reagents and permissible reagent volumes were 
validated against inventory and constraint rules. Together, these models provided a structured, 
machine-interpretable specification of experimental designs that could be reliably transformed 
into executable Catalyst protocols. For each iterative step, we generated 2X the target number of 
designs from GPT-5 because not all experiment definitions passed Pydantic validation. The 
Pydantic model used in this work has been open-sourced (Supplementary Material section 7.8). 

Cell lysate preparation 

Lysate was generated from a fermented E. coli (BL21 Star (DE3)) strain. We grew cells 
overnight at 30°C in LB media to prepare starter culture. The following day, we combined all 
starter cultures and confirmed OD. We aseptically charged inoculum to Ginkgo’s FM39 
production medium supplemented with isopropyl-β-D- thiogalactopyranoside (IPTG) to induce 
T7 RNA polymerase expression in 5L Bioflo 320 vessels (Eppendorf) for fed-batch style 
fermentation with temperature, oxygen, pH, glucose and antifoam control. Once fermentation 
was complete, we harvested and pelleted cultures. We discarded the supernatant and washed the 
pellet three times in the harvest/lysis buffer. After the third wash the pelleted material was flash 
frozen in liquid nitrogen and stored at -80°C. 
 
We removed the washed fermentation pellet from the freezer and thawed at room temperature. 
We supplemented the harvest/lysis buffer with DTT to the thawing pellet and agitated it to ensure 
a homogenous mixture. Once fully thawed and homogenous, we lysed the material with a 
PandaPLUS 2000 homogenizer (GEA). We clarified the resulting lysate twice via centrifugation. 
We then aliquoted, flash froze and stored the final clarified lysate at -80°C. 
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Plasmid DNA preparation 

Plasmid m9134733 (length of 2511 base pairs; molar mass of 1,546,533 g/mol) was synthesized 
and cloned at Ginkgo using Type IIS restriction enzyme-based DNA assembly and standard 
molecular cloning into E. coli DH5alpha strain (Supplementary Material section 7.9). The 
plasmid sequence was based on pJL1-sfGFP (Addgene plasmid #69496; 
http://n2t.net/addgene:69496)30 used in state of the art by Olsen et al. (2025).42 We introduced 
minor sequence modifications as a byproduct of our DNA assembly process at the DNA 
assembly junctions. The plasmid insert, harboring the sfGFP with C-terminal Strep-tag II 
transcription unit including T7 promoter, ribosome binding site, coding sequence and terminator, 
remained unchanged from pJL1-sfGFP. We outsourced giga-scale plasmid DNA production 
(from single colonies on LB agar plates with 50 µg/mL kanamycin) to Genewiz (Azenta Life 
Sciences). 

Cell-free protein synthesis reactions 

Cell-free protein synthesis reaction compositions were high-throughput end-to-end screened 
using fluorescence plate reader measurement-compatible 384-well plates (Greiner, cat. #781209; 
surface area to volume ratio: 1 mm2/mm3). Low-throughput, follow-up assessments of cell-free 
protein synthesis reaction oxygen dependency during incubation were performed using 
intermediate 96-well plates (Thermo Fisher Scientific, cat. #95040450; surface area to volume 
ratio: 3 mm2/mm3) and the 2-mL tubes (Axygen, cat. #14-222-180; surface area to volume ratio: 
5 mm2/mm3) used in Olsen et al. (2025).42 Cell-free protein synthesis reactions that completed 
incubation were then transferred to the 384-well format plates, for downstream fluorescence plate 
reader measurements. 
 
Unless otherwise noted, all cell-free protein synthesis reactions were performed in a total volume 
of 20 µL, and contained 25% v/v cell lysate, 5 nM plasmid DNA template and 2 µL of “10X base 
CFPS buffer” (300 mM HEPES, pH 7.5; 1.5 M potassium glutamate, 26 mM magnesium 
glutamate, 10 mM 17 amino acid mix [all 20 canonical amino acids except glutamate, tyrosine 
and cysteine], 10 mM tyrosine, pH 12; 10 mM cysteine), used to establish a buffer, salts and 
amino acid baseline in all reactions using more concentrated stock solutions, thus ensuring 
sufficient leftover volume (11 µL) for acoustic dispensing of the remaining variable reaction 
components. All essential and non-essential variable reaction components (additional buffers and 
salts, nucleobases, nucleosides, nucleotides, amino acids, ATP regeneration components, 
co-factors, solvents, detergents etc.) are detailed in Supplemental Table 1. 
 
Cell-free protein synthesis reactions were set up, incubated and measured using Ginkgo’s cloud 
laboratory built from RAC lab automation technology (Supplemental Figure 2) and Catalyst 
software (Supplementary Figure 1 and 3). Variable reaction components were acoustically 
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dispensed, using the Echo 525 acoustic dispenser (Beckman Coulter), from acoustic 
dispensing-compatible 384-well source plates (Beckman Coulter, cat. #001-14555) to columns 
4-24 of the fluorescence plate reader measurement-compatible 384-well destination plates 
(Greiner, cat. #781209). Based on offline, manual liquid handling experiments, different liquid 
classes were used for different reaction components: the 384PP_AQ_BP liquid class was used for 
all reagents except for 60% v/v DMSO and 10% v/v Brij-35, for which the 384PP_AQ_SPHigh 
liquid class was used. Each 384-well source plate was unique and dedicated to one 384-well 
destination plate. Each 384-well destination plate was pre-dispensed with 2 µL 10X base CFPS 
buffer into all columns, using the MultiFlo FX bulk dispenser (Agilent). The first three columns 
of each 384-well destination plate were dedicated to sfGFP protein standards and did not receive 
any reagents; instead, they were backfilled with 11 µL 1X Phosphate-Buffered Saline, pH 7.5 
(Teknova, cat. #P5275), using the MultiFlo FX bulk dispenser (Agilent). 
 
Next, the sfGFP protein standards and plasmid DNA template were liquid transferred (constant 2 
µL volume stamp), using the Bravo 384 liquid handler (Agilent), from a pre-made, reusable 
384-well source plate (Greiner, cat. #781281) into the pre-filled (with variable reaction 
components) 384-well destination plate. The reaction setup was completed by a cell lysate bulk 
dispense (5 µL into all columns), using the MultiFlo FX bulk dispenser (Agilent), followed by a 
brief (30 seconds) linear shake on the instrument. 
 
Quality control fluorescence plate reader measurements were taken at ambient temperatures (top 
read, averaging 10 flashes per well using standard settings with 485 nm excitation and 520 nm 
emission), before the start of cell-free protein synthesis reaction incubations, using the 
PHERAstar FSX plate reader (BMG Labtech), to confirm the presence of sfGFP protein 
standards and successful addition of cell lysate. The reactions were generally incubated at 30℃ 
for 20 hours without shaking using the SteriStore (HighRes Biosolutions) though during periods 
of high Ginkgo cloud lab utilization, incubation times were sometimes extended up to 30 hours. 
Depending on instrument availability, some plate sets were instead incubated at 30℃ for 6 hours, 
with 400 rpm shaking, using the Cytomat 2 C-LiN (Thermo Fisher Scientific). Non-breathable, 
aluminum seals were used to seal the 384-well destination plates. Follow up assessments in 
96-well plates were incubated at 30℃ at 400 rpm with a 3mm orbital throw for 20 hours, using 
the Cytomat 2 C-LiN (Thermo Fisher Scientific). Follow up assessments in 2-mL tubes were 
incubated at 30℃ at 400 rpm with a 3mm orbital throw for 20 hours, using a Multitron shaking 
incubator (Infors HT). 

Protein Titer Quantification 

Finished cell-free protein synthesis reactions were also processed using Ginkgo’s cloud 
laboratory. 60 µL of 1X Phosphate-Buffered Saline, pH 7.5 (Teknova, cat. #P5275) was bulk 

17 



dispensed into each well of the 384-well destination plate, using the MultiFlo FX bulk dispenser 
(Agilent) to reduce well-to-well variation in measured fluorescence. Lower-throughput, 
follow-up assessments of cell-free protein synthesis in intermediate 96-well plates and 2-mL 
tubes required dynamic adjustment of dilution factor, based on the expected protein titer range 
and our standard curve range, i.e. variable volumes of 1X Phosphate-Buffered Saline, pH 7.5 
were added to the intermediate plate wells / tubes and 80 µL of each diluted reaction were 
transferred into the 384-well destination plates for fluorescence measurement. The varying 
dilution factors were accounted for in the final protein titer calculations. Final fluorescence 
measurements were taken with the Spark plate reader (Tecan) at ambient temperatures (top read, 
485 nm excitation with 20 nm bandwidth, 535 nm emission with 20 nm bandwidth, measurement 
averages 30 flashes per well). The output relative fluorescence unit data was immediately 
available for downstream computer analysis, upon a finished plate read Catalyst software 
“event”. Protein titers were calculated using standard curve interpolation with RANSAC 
exclusion of outliers, using either linear or log transformed values to minimize the mean absolute 
percentage error (MAPE) of the fit curve. The standard curve was set up using 15 different 
concentrations in technical triplicate. Their reaction concentrations are detailed in Supplemental 
Table 2. 
 
We made the sfGFP protein standards in-house, using the m9134733 plasmid DNA template. 
The sfGFP protein expression was driven by a T7 promoter expression system in E. coli (BL21 
(DE3) strain). We induced protein expression at mid-log phase with 0.2 mM IPTG in a shake 
flask liquid culture, grown in TB containing 0.4% v/v glycerol and 50 µg/mL kanamycin at 37°C. 
We harvested cells via centrifugation, after 24 hrs of growth in the liquid cell culture, 
mechanically lysed using the PandaPLUS 2000 homogenizer (GEA), and filtered with a 0.2 µm 
filter. The sfGFP protein, harboring a C-terminal Strep-tag, was purified via affinity 
chromatography. We loaded 50 mL of the clarified cell lysate onto a 5 mL Strep-Tactin XT FF 
column (Cytiva) on an ÄKTA Avant system (Cytiva), equilibrated with a running buffer (50 mM 
HEPES, 150 mM NaCl, pH 8.0). We eluted the sfGFP protein with an elution buffer (50 mM 
HEPES, 150 mM NaCl, 50 mM biotin, pH 8.0). We concentrated eluate and buffer-exchanged 
into a 20 mM HEPES, pH 7.4 buffer, using tangential flow filtration with a 10 kDa mPES TFF 
cassette (Repligen). We determined protein concentration via an absorbance measurement at 280 
nm, using the calculated extinction coefficient. Protein aliquots were stored at −80°C.  
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