
How OpenAI
uses Codex

Merged +217 -196

Contents

Introduction 3

Use Cases
Code understanding 4
Refactoring and migrations 5
Performance optimization 6
Improving test coverage 7
Increasing development velocity 8
Staying in flow 9
Exploration and ideation 10

Best Practices 11
Looking Ahead 12

2 How OpenAI uses Codex

Introduction

Codex is used daily across numerous technical teams at OpenAI like Security, Product Engineering,
Frontend, API, Infrastructure, and Performance Engineering. Teams are using it to accelerate a
range of engineering tasks, from understanding complex systems and refactoring large codebases
to shipping new features and resolving incidents under tight deadlines.

Drawing from interviews with OpenAI engineers and internal usage data, we’ve compiled use cases
and best practices that highlight how Codex helps our teams move faster, improve work quality,
and manage complexity at scale.

3 How OpenAI uses Codex

Use case 1

Code understanding

Codex helps our teams get up to speed quickly in unfamiliar parts of the codebase when
onboarding, debugging, or investigating an incident.

They often use Codex to locate the core logic of a feature, map out relationships between services
or modules, and trace data flow through a system. It also helps surface architecture patterns or
missing pieces of documentation that would otherwise require significant manual effort to
generate.

During incident response, Codex helps engineers ramp into new areas quickly by surfacing
interactions between components or tracing how failure states propagate across systems.

Anecdotes from our teams

When I fix a bug, I use  
Ask mode to see where
else in the codebase the
same issue might appear.

Performance Engineer,
Retrieval Systems

When I’m on‑call, I paste
the stack trace and ask
Codex where the auth
flow lives. It jumps
straight to the right files
so I can triage fast.

Site Reliability Engineer,
API Platform

Codex answers my
‘Where would I do this?’
repo questions across
Terraform and Python
way faster than grep.

DevOps Engineer,
Infrastructure Services

Try using Codex for code understanding  
with these sample prompts:

Where is the authentication logic
implemented in this repo?

Summarize how requests flow through this
service from entrypoint to response.

Which modules interact with [insert module
name] and how are failures handled?

4 How OpenAI uses Codex

Use case 2

Refactoring and migrations

Codex is commonly used to make changes that span multiple files or packages. For example, when
engineers are updating an API, changing how a pattern is implemented, or migrating to a new
dependency, Codex makes it easy to apply changes consistently.

It’s especially useful when the same update needs to be made across dozens of files, or when the
update requires awareness of structure and dependencies that aren’t easily caught with a regex or
find-and-replace.

They’re also using it for code cleanup by breaking up oversized modules, replacing old patterns
with modern ones, or preparing code for better testability.

Anecdotes from our teams

Codex swapped every legacy
 for our new service pattern

and opened the PR. It did in minutes what
would’ve taken hours.

getUserById()

Backend Engineer,  
ChatGPT Web

To clear launch blockers, I have Codex
scan for every instance of the old pattern,
summarize the impact in Markdown, then
open PRs with the fixes.

Product Engineer,  
ChatGPT Enterprise

Try using Codex for refactoring and
migrations with these sample prompts:

Split this file into separate modules by
concern and generate tests for each one.

Convert all callback-based database access
to async/await.

5 How OpenAI uses Codex

Use case 3

Performance optimization

Codex is used to identify and address performance bottlenecks.

During tuning or reliability efforts, engineers prompt Codex to analyze slow or memory-intensive
code paths, such as inefficient loops, redundant operations, or costly queries and suggest
optimized alternatives, often resulting in meaningful gains in efficiency and reliability.

Codex is also used to support code health by identifying risky or deprecated patterns that are still
in active use. Our teams lean on it to help reduce long-term tech debt and proactively prevent
regressions.

Anecdotes from our teams

I use Codex to scan for repeated
expensive DB calls. It’s great at flagging
hot paths and drafting batched queries I
can later tune.

Infrastructure Engineer,  
API Reliability

Codex is great for spotting performance
issues quickly— I save 30 minutes of work
by spending 5 minutes on a prompt. 

Platform Engineer,  
Model Serving

Try using Codex for performance
optimization with these sample prompts:

Optimize this loop for memory efficiency and
explain why your version is faster.

Find repeated expensive operations in this
request handler and suggest caching
opportunities.

Suggest a faster way to batch DB queries in
this function.

6 How OpenAI uses Codex

Use case 4

Improving test coverage

Codex helps engineers write tests faster — especially in places where coverage is thin or
completely missing.

When working on a bug fix or refactor, engineers often ask Codex to suggest tests that cover edge
cases or likely failure paths. For new code, it can generate unit or integration tests based on the
function signature and surrounding logic.

Codex is particularly helpful for identifying boundary conditions like empty inputs, max length, or
unusual but valid states that are often missed in initial tests.

Anecdotes from our teams

I point Codex at low‑coverage modules
overnight and wake up to runnable
unit‑test PRs. 

Frontend Engineer,  
ChatGPT Desktop

When switching mono-repo branches is
painful, I have Codex write the tests and
kick-off CI while I keep working on my
branch.

Backend Engineer,  
Payments & Billing

Try using Codex for improving test  
coverage with these sample prompts:

Write unit tests for this function, including
edge cases and failure paths.

Generate a property-based test for this
sorting utility.

Extend this test file to cover missing
scenarios around null inputs and invalid
states.

7 How OpenAI uses Codex

Use case 5

Increasing development velocity

Codex helps teams move faster by accelerating both the start and end of the development cycle.

When kicking off a new feature, engineers use it to scaffold boilerplate — generating folders,
modules, and API stubs to get runnable code up quickly without hand-wiring every piece.

As projects approach release, Codex helps meet tight deadlines by handling smaller but essential
tasks like triaging bugs, filling in last-mile implementation gaps, and generating rollout scripts,
telemetry hooks, or config files.

It’s also used to turn product feedback into starter code. Engineers often paste in a user request or
spec and have Codex generate a rough draft they can return to and refine later.

Anecdotes from our teams

I was in meetings all day and still merged
4 PRs because Codex was working in the
background.

Product Engineer,  
ChatGPT Enterprise

Codex helped ship 3-4 low‑priority fixes
perfectly that would’ve languished in the
backlog, which was super empowering.

Full‑Stack Engineer,  
Internal Tools

Try using Codex for increasing development
velocity with these sample prompts:

Scaffold a new API route for POST /events
with basic validation and logging.

Generate a telemetry hook for tracking
success/failure of the new onboarding flow,
using this template [insert example of your
telemetry code].

Create a stub implementation based on this
spec: [insert spec or product feedback].

8 How OpenAI uses Codex

Use case 6

Staying in flow

Codex helps our engineers stay productive when their schedules are fragmented and filled with
interruptions.

It’s used to capture unfinished work, turn notes into working prototypes, or spin off exploratory
tasks that can be revisited later. This makes it easier to pause and resume work without losing
context, especially when they’re on call or have a lot of meetings.

Anecdotes from our teams

If I spot a drive‑by fix, I fire a Codex task
instead of swapping branches and review
its PR when I’m free.

Backend Engineer,  
ChatGPT API

I routinely forward Slack threads, Datadog
traces, issues and more to Codex so I can
stay focused on high priority work.

API Engineer,  
Infrastructure Observability

Try using Codex for staying in flow  
with these sample prompts:

Generate a plan to refactor this service  
and split it into smaller modules.

Stub out the retry logic and add a TODO —  
I’ll fill in the backoff logic later.

Summarize this file so I can pick up where  
I left off tomorrow.

9 How OpenAI uses Codex

Use case 7

Exploration and ideation

Codex is also useful for open-ended work like finding alternative solutions or validating design
decisions. You can prompt for different ways of solving a problem, explore unfamiliar patterns, or
pressure-test assumptions. This helps surface tradeoffs, expand design options, and sharpen
implementation choices.

It’s also used to identify related bugs. Given a known issue or deprecated method, Codex can
identify similar patterns elsewhere in the code, making it easier to catch regressions or finish
cleanup work.

Anecdotes from our teams

Codex helps me solve the cold‑start
problem — I paste a spec and docs and it
scaffolds code or shows me what I forgot.

Product Engineer,  
ChatGPT Desktop

After I fix a bug I ask Codex where similar
bugs might lurk, then spin follow‑up tasks. 

Performance Engineer,  
Retrieval Systems

Try using Codex for exploration and  
ideation with these sample prompts

How would this work if the system were
event-driven instead of request/response?

Find all modules that manually build SQL
strings instead of using our query builder.

Rewrite this in a more functional style, avoid
mutation and side effects.

10 How OpenAI uses Codex

Best practices

Codex works best when it’s given structure, context, and room to iterate. Here are some of the
habits OpenAI teams are cultivating to get consistent value out of it in day-to-day work.

Start with Ask Mode For large changes, start by prompting Codex for an
implementation plan using Ask mode, which then becomes the
input for follow-up prompts when you switch to Code Mode.
This two-step flow keeps Codex grounded and helps avoid
errors in its output. Codex works best with well-scoped tasks
that would take you or a teammate about an hour to complete
or a few hundred lines of code to implement. As models
improve, expect the size of the tasks it can take on to increase.

Iteratively improve Codex’s
development environment

Setting a startup script, environment variables, and internet
access significantly reduces Codex’s error rate. As you run
tasks, look for build errors that can be corrected in Codex’s
environment configuration. This may take a few iterations, but
gives significant efficiency gains in the long run.

Structure your prompt as if  
you are writing a Github Issue

Codex responds better when prompts mirror how you’d
describe a change in a PR or issue. That means including file
paths, component names, diffs, and doc snippets when
relevant. Prompting with patterns like “Implement this the
same way it’s done in [module X]” improves results.

Use the Codex task queue  
as a lightweight backlog

Fire off tasks to capture tangential ideas, partial work, or
incidental fixes. There’s no pressure to generate a full PR in one
go. Codex works well as a staging area you can return to when
you’re back in focus.

11 How OpenAI uses Codex

Best practices

Use AGENTS.md to  
supply persistent context

Maintain an AGENTS.md file to help Codex operate more
effectively in your repo across prompts. These files typically
include naming conventions, business logic, known quirks, or
dependencies Codex can’t infer from the code alone. Learn
more on structuring your AGENTS.md file in the docs.

Leverage “Best of N”  
to improve output

The Best-of-N feature lets you simultaneously generate
multiple responses for a single task to quickly explore multiple
solutions and pick the best one. For more complicated tasks,
you can review several iterations and combine parts of different
responses to get a stronger result.

Looking ahead

Codex is still in research preview, but it’s already making a real impact in how we build, helping us
move faster, write better code, and take on work that would’ve otherwise never been prioritized.

We’re excited by the potential ahead — as our models get better and Codex becomes more deeply
integrated into our workflows, we’re looking forward to unlocking even more powerful ways to
develop software with it. We’ll continue to share what we learn along the way.

12 How OpenAI uses Codex

http://AGENTS.md
https://platform.openai.com/docs/codex/overview#using-agents-md

