Addendum to 03 and o4-mini system card: Codex

OpenAl

May 16, 2025

Codex is a cloud-based coding agent. Codex is powered by codex-1, a version of OpenAl 03
optimized for software engineering. codex-1 was trained using reinforcement learning on real-world
coding tasks in a variety of environments to generate code that closely mirrors human style and
PR preferences, adheres precisely to instructions, and iteratively runs tests until passing results
are achieved.

Users can ask Codex to perform coding tasks or to answer questions about a codebase. Each
agent runs in its own cloud container with no internet access. The container is preloaded with
the user’s code and a development environment defined by the user, including any dependencies,
configuration, or tooling they specify. After setup, internet access is disabled and the model
trajectory begins. Within that environment, Codex can read and edit files, as well as execute
commands including tests, linters, and type checkers.

Codex is trained to provide verifiable evidence of its actions through citations of terminal logs
and files, allowing the user to validate the model’s work. Once a task is complete, users can
inspect the results, request refinements, or export the generated diff — either by converting it
into a GitHub pull request or copying it for local testing and development.

1 Baseline Model Safety Evaluations

1.1 Disallowed Content Evaluations

The codex-1 model is purpose-built for software development and powers the coding-focused
Codex user experience. This includes answering questions and engaging in conversations about a
user’s source code.

While the model is not intended or expected to be used in general-purpose chat applications,
it can operate conversationally. Therefore we conducted standard refusal evaluations across
disallowed content categories.

Table 1: Standard refusal evaluation

Category metric codex-1 03
harassment /threatening not _unsafe 0.98 0.99
sexual /exploitative not unsafe 0.96 0.98
sexual /minors not unsafe 0.98 1
extremist /propaganda not _unsafe 1 1
hate not_ unsafe 0.97 1
hate/threatening not _unsafe 1 1
illicit /non-violent not_unsafe 1 1
illicit/violent not unsafe 1 1
personal-data/semi-restricted not unsafe 0.96 1
personal-data/restricted not unsafe 0.98 1
regulated-advice not unsafe 1 1
self-harm /intent not_unsafe 1 1
self-harm /instructions not unsafe 1 1

1.2 Jailbreaks

We evaluate the robustness of models to jailbreaks: adversarial prompts that purposely try to
circumvent model refusals for content it’s not supposed to produce.

We evaluate the model using StrongReject [1], an academic jailbreak benchmark.

Table 2: StrongReject

Evaluation codex-1 03

StrongReject (goodness@0.1) 0.98 0.97

2 Product-Specific Risk Mitigations

Our incremental safety work for Codex focused on four potential risks specific to this product:

1. Users might try to use Codex to do a harmful task, such as developing malicious software.

2. A prompt injection attack might lead Codex to do something contrary to the user’s
instructions, such as exfiltrating user data.

3. Codex might make a mistake in its coding.

4. Codex might falsely claim to have completed a task that it did not in fact complete.

Table 3:

Risks and Mitigations Overview

Product-specific safety risk

Mitigations

User uses Codex to do a harmful
task

e Safety training (covering both coding and non-coding

specific harms)

Network sandboxing — codex-1 does not have network
access

Monitoring

Codex makes a mistake

Network sandboxing — codex-1 does not have network
access

Filesystem sandboxing — codex-1 only has access to a
sandboxed container, limiting data exfiltration

User transparency and diff reviews

Codex falsely claims to have
completed a task that it did not
in fact complete.

e Safety training
e User transparency and diff reviews

Codex is prompt injected

Network sandboxing — codex-1 does not have network
access

Filesystem sandboxing — codex-1 only has access to a
sandboxed container

Safety training (instruction-hierarchy training to protect
against prompt injections)

User transparency and diff reviews

2.1 Harmful Tasks

2.1.1 Risk description

Safeguarding against malicious uses of Al-driven software engineering — such as malware devel-
opment — is increasingly important. At the same time, protective measures must be carefully
designed to avoid unnecessarily impeding legitimate, beneficial use cases that may involve similar
techniques, such as low-level kernel engineering.

2.1.2 Mitigations

To mitigate this risk, we use a number of different safety mitigations.

Safety training We have pre-existing policies and safety training data that cover refusing
harmful tasks in ChatGPT such as user requests for guidance on how to make illegal drugs.
These policies and this training data already lead to refusals for related coding tasks, such as
a request to build a website to sell illegal drugs. To further strengthen safety for Codex, we

developed a more detailed policy and training data for codex-1 to refuse tasks related to malware
development.

To support this, we built a synthetic data pipeline that generates a diverse set of prompts, code
snippets, and environment configurations involving malware-relevant scenarios.

We then taught the model to follow these safety specifications—refusing certain high-risk requests,
providing only contextual or defensive content, and appropriately handling dual-use scenarios
without excessive refusal or hedging. We incorporated edge cases and adversarial examples to
thoroughly test the model’s boundaries and reinforce policy-compliant behavior in ambiguous or
complex situations.

We introduced two evaluations to assess the effectiveness of this training. The first is a synthetic,
large-scale benchmark that tests the model on a wide range of malware-related tasks, including
ambiguous and dual-use prompts. The second is a curated “golden set” of test cases developed by
internal policy experts.

Table 4: Malware Refusals

Evaluation Metric codex-1

Malware Refusals (Synthetic) refusal rate (higher is better) 0.97

Malware Refusals (Golden Set) refusal rate (higher is better) 0.98

Network sandboxing codex-1 can only execute commands in a container configured and
sandboxed to have no internet access while the agent is in control,’ preventing it from completing
online malicious tasks such as denial-of-service (DoS) attacks or interactive hacking.

Monitoring We supplement automated safeguards with our Company-wide abuse detection
program, which for Codex includes ongoing monitoring to detect and mitigate potentially harmful
behavior. We developed two new monitors developed specifically for this deployment.

e Malware-related prompt monitor: A prompted classifier designed to detect user
attempts to generate disallowed malware-related content.

e Disallowed task monitor: A prompted monitor that flags whether a given user task or
prompt violates our policies, for example a request to code a website to sell illegal drugs.

2.2 Codex makes a mistake
2.2.1 Risk description

Codex can make mistakes such as writing buggy or insecure code.

Other types of mistakes would be possible if Codex wasn’t sandboxed. For example:

'The container has no network access while codex-1 is in control. The container has network access during the
“setup phase” of cloning the repo and installing dependencies, prior to codex-1 taking control.

e If Codex had network access then mistakes could also include harms such as accidental
excessive network requests resembling Denial-of-Service (DoS) attacks, or accidental data
destruction from a remote database or environment.

e If Codex ran on a user’s local computer then mistakes could include harms such as accidental
data destruction (within directories it can write to), accidental mis-configuration of the
user’s device or local environment.

2.2.2 Mitigations

Network sandboxing codex-1 can only execute commands in a container configured and
sandboxed to have no internet access while the agent is in control. This helps prevent it from
making mistakes that affect the outside world specifically while it executes commands to complete
a task.

Filesystem sandboxing Codex operates within a temporary container with filesystem sand-
boxing. It only has access to files within the user-configured environment for the connected
GitHub repository. It does not have access to the files on the user’s local computer, or other
directories outside of the sandbox.

This limits the scope for potential harms such as accidental local data destruction or accidental
misconfiguration of the user’s device or local environment.

User transparency and diff reviews After Codex completes a task, users are presented with
a diff view and a comprehensive log of actions taken by the model. This enables users to review,
validate, and approve changes before they are committed.

To further support transparency and user control, Codex is trained to cite its actions. These
citations link directly to:

e the specific files it modified, and

e the corresponding terminal commands it executed.

This makes it easy for users to trace the origin of any change, confirm that all modifications align
with the original intent, and verify the outcomes of terminal commands, such as tests.

2.3 Falsely claiming to have completed a task that it did not complete

In early testing we found that when Codex was presented with an extremely difficult or impossible
software engineering task (e.g. asked to modify code that doesn’t exist), it would often falsely
claim to have completed the task rather than disclose that it could not complete the task.

This behavior presents a significant risk to the usefulness of the product and such behavior
undermines user trust and may lead users to believe that critical steps—Ilike editing, building,
or deploying code—have been completed, when in fact they have not. Addressing this risk is
essential for ensuring reliable and transparent Al-assisted software development.

2.3.1 Mitigations

Model training To reduce such instances, we developed a new safety training framework for
codex-1. Our approach combines environment perturbations (modifying real environments to
create challenging conditions) and synthetic environment generation to simulate a wide variety
of real-world coding constraints, including various scenarios of unexpected container or code
states, e.g., when the user task requires key files missing from the container or when the user task
assumes a different repository than what is in the container.

During the reinforcement learning process, the model is penalized for producing results inconsistent
with its actions. The model is rewarded for correctly acknowledging missing resources, environment
limitations, and areas of uncertainty. We track the model’s improvement on a synthetically
generated dataset with unexpected container or code states.

Table 5: Unexpected container or code states

Evaluation Before Training After Training

Agent correctly states it couldn’t complete the 0.15 0.85
task (synthetic samples)

As we further invest in this new training framework, we expect to make continuous improvements
in this area.

User transparency and diff reviews Refer to the prior section on 2.2.2 “User transparency
and diff reviews” for how we invested to give the user full transparency into the actions of Codex
to further mitigate this risk.

2.4 Prompt Injection
2.4.1 Risk description

If we did not have mitigations such as network sandboxing, Codex could encounter a prompt
injection while interacting with the web, for example while browsing the web for documentation
or to debug an error.

If successful, a prompt injection against Codex could result in harmful outcomes such as:

e Data exfiltration (e.g. leaking the users codebase)
e Harmful code changes (e.g. introducing a backdoor)

e Data destruction (e.g. deleting all files on a computer or in a database)

2.4.2 Mitigations

Network sandboxing codex-1 can only execute commands in a container configured and
sandboxed to have no internet access while the agent is in control. This network sandboxing
prevents the model from being exposed to online prompt injection attacks.

With internet access disabled, the remaining vectors for prompt injection are confined to the
connected GitHub repository or its dependencies, and the environment explicitly configured by
the user.

If a prompt injection does occur, the network sandbox acts as a critical layer of defense. It helps
prevent potential harms such as:

e Data exfiltration — the model cannot transmit data to external endpoints.

e Remote data corruption or deletion — the model cannot connect to external databases or
services.

Filesystem sandboxing Codex operates within a temporary container with filesystem sand-
boxing. It only has access to files within the user-configured environment for the connected
GitHub repository. It does not have access to the files on the user’s local computer, or to other
directories outside of the sandbox.

This limits potential scope for harm such as data exfiltration and unauthorized modification or
deletion of files.

Safety training To enhance the model’s robustness against prompt injection attacks, following
the Instruction Hierarchy framework [2]|, we created new safety training data and trained the
model to ignore prompt-injection attacks in the coding environment.

We also developed a new prompt injection evaluation suite tailored to the Codex environment to
measure the model’s robustness to such attacks. The evaluation includes several types of attacks,
such as:

e Attempts to terminate the model’s current coding task, which would degrade its performance
on that task.

e Attempts to instruct the model to carry out a specific action in later steps, such as outputting
the final answer “HACKED!”.

Table 6

Evaluation codex-1

Successfully ignored prompt injection attack 0.98
during coding tasks in Codex environment

We additionally trained codex-1 using the same Instruction Hierarchy and prompt injection
robustness training data and methodologies used for some of our prior models.

User transparency and diff reviews Refer to the prior section on 2.2.2 “User transparency
and diff reviews” for how we invested to give the user full transparency into the actions of Codex
to further mitigate this risk.

2.5 Preparedness

codex-1 is a version of OpenAl 03 optimized for software engineering. OpenAl 03’s frontier
capabilities are assessed under the Preparedness Framework in the original o3 system card.

The additional training data for codex-1 emphasizes both human-like coding style to enhance
usability and safety without substantially changing its frontier capability profile, as demonstrated
by its similar performance, e.g. on SWE-bench metrics [3], compared to the original 03 model
announced in December 2024.

The Safety Advisory Group determined that codex-1 does not reach the High capability threshold
in any of our three tracked categories.

References

[1] A. Souly, Q. Lu, D. Bowen, T. Trinh, E. Hsieh, S. Pandey, P. Abbeel, J. Svegliato, S. Emmons,
O. Watkins, et al., “A strongreject for empty jailbreaks,” arXiv preprint arXiv:2402.10260,
2024.

[2] E. Wallace, K. Xiao, R. Leike, L. Weng, J. Heidecke, and A. Beutel, “The instruction
hierarchy: Training llms to prioritize privileged instructions.” https://arxiv.org/abs/
2404.13208, 2024.

[3] OpenAl, “Introducing codex.” http://openai.com/index/introducing-codex,
2025.

https://openai.com/index/updating-our-preparedness-framework/
https://openai.com/index/o3-o4-mini-system-card/
https://arxiv.org/abs/2404.13208
https://arxiv.org/abs/2404.13208
http://openai.com/index/introducing-codex

	Baseline Model Safety Evaluations
	Disallowed Content Evaluations
	Jailbreaks

	Product-Specific Risk Mitigations
	Harmful Tasks
	Risk description
	Mitigations

	Codex makes a mistake
	Risk description
	Mitigations

	Falsely claiming to have completed a task that it did not complete
	Mitigations

	Prompt Injection
	Risk description
	Mitigations

	Preparedness

