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Abstract

The property of learning-curve monotonicity, highlighted in the recent papers [VML19,
LVM19, VL22], describes algorithms which only improve in average performance given
more data, for any underlying data distribution within a given family. We establish
the first nontrivial monotonicity guarantees for the maximum likelihood estimator in
a variety of well-specified parametric settings. For sequential prediction with log loss,
we show monotonicity (in fact complete monotonicity) of the forward KL divergence
for Gaussian vectors with unknown covariance and either known or unknown mean,
as well as for Gamma variables with unknown scale parameter. The Gaussian setting
was explicitly highlighted as open in the aforementioned works, even in dimension 1.
Finally we observe that for reverse KL divergence, a folklore trick from e.g. [CT99]
yields monotonicity for very general exponential families.

All results in this paper were derived by variants of GPT-5.2 Pro. Humans did not
provide any proof strategies or intermediate arguments, but only prompted the model
to continue developing additional results, and verified and transcribed its proofs.
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1 Introduction

In statistics and machine learning, the classical notion of a learning curve describes how
the performance of an algorithm evolves as it is exposed to more data. As highlighted in
[VML19, LVM19, VL22|, an appealing and intuitive property is monotonicity in the data:
the average performance of a learning algorithm should only improve as more data becomes



available. Although it is intuitively natural to expect such behavior, [VML19] constructed
simple examples of non-monotone learning curves for mis-specified models, where the data
generating distribution falls outside of the model class used for prediction (see also [LKB23]).

Does monotonicity hold for any commonly used estimators? We focus in particular on
the maximum likelihood estimator under well-specification, addressing a question of [VI1.22]:

...we wonder whether maximum likelihood estimators for well-specified mod-
els behave monotonically. Likelihood estimation, being a century-old, classical
technique, has been heavily studied, both theoretically and empirically. In much
of the theory developed, the assumption that one is dealing with a correctly spec-
ified model is common, but we are not aware of any results that demonstrate
that better models are obtained with more data.

A particularly simple and fundamental instantiation of this general question was raised
in [VML19]: fitting a single Gaussian. For IID samples from a Gaussian distribution with
known unit variance but unknown mean, the n-sample MLE (i.e. the sample mean) differs
from the true mean by a centered Gaussian with variance %; thus monotonicity holds in
any reasonable sense. However monotonicity is much less clear for a Gaussian with known
mean and unknown variance. Here we let z1, z9,... be IID from a one-dimensional centered
normal distribution N(0, v,) with unknown variance v, > 0. Then the maximum likelihood
estimator for v, is v, = %2:;1 z2. We consider two risk measures for this approximation:

the expected forward and reverse Kullback—Leibler (KL) divergence, given respectively by
gn = E[DKL(N<07 U*)vN(()? @n»] ’ g” =E [DKL(N(O7 @H)VA/’(O’ ,U*))} :

In Example IT therein, [VML19] demonstrated that a mis-specified analog of &, (with z; IID
from a non-Gaussian distribution) could be non-monotone, and went on to ask:

...this raises the issue to what extent well-specified statistical models can actu-
ally be proven to behave monotonically. For instance, is Example II monotone
if the problem is well-specified?

[LVM19] similarly remarked that monotonicity is unclear for Gaussians when both the mean
and variance are unknown. These works focused primarily on the forward KL risk &,
motivated by sequential prediction.

We establish monotonicity of the MLE in several well-specified settings. For forward KL
divergence, we prove monotonicity for Gaussian vectors with unknown covariance and either
known or unknown mean, as well as for Gamma distributions with unknown scale parameter
but known shape (e.g. exponential random variables). In fact we show a much stronger
property known as complete monotonicity, which implies that the marginal value of the n-th
datapoint is not only positive but also strictly decreases with n. For reverse KL divergence,
we observe that monotonicity holds in the extremely general setting of exponential families,
a fact closely related to known results from e.g. [CT99, Chapter 2, Problem 34(b)].

Statement on AI Assistance

The proof of Theorem 1.1, which directly addresses the question of [VML19], was originally
due to an unreleased prototype of a longer-thinking-time version of GPT-5.2 Pro. The model



was asked to solve the 1-dimensional problem raised in [VML19], and came back to us with
a correct proof in the more general setting of multivariate centered Gaussians. With this
proof in context, the now-public version of GPT-5.2 Pro was then able to:

1. Transcribe the proof of Theorem 1.1 into Latex form.

2. Locate references for standard facts on Gamma variables and functions (the original
AT output proved identities such as Equation (6) and Lemma 2.2 from scratch).

3. Extend the Gaussian results to unknown mean and reverse KL divergence, when we
asked if such extensions were possible (see Theorem 1.2 and Propositions 1.6 and 1.7).

4. Extend the reverse KL results to Poisson and Binomial distributions using a convexity
argument, when we asked if this was possible (GPT-5.2 Pro also pointed out that the
expected forward KL divergences are always infinite in both cases).

5. Extend this convexity proof to general exponential families, when asked whether it
could be pushed further (see Proposition 1.5).

6. Locate the closely related [CT99, Chapter 2, Problem 34(b)], when asked whether
Proposition 1.5 was already known.

Having obtained these results, we wanted to test how the public GPT-5.2 Pro model
would fare without being given the proof of Theorem 1.1 in the first step. Impressively, in
its first attempt at the same initial query (itself an Al-generated restatement of the open
problem from [VML19]), the public model also successfully proved Theorem 1.1. We then
reproduced the other core results of this paper (Theorems 1.2 and 1.3, and Proposition 1.5)
in our first attempt using only the following three follow-up prompts (without any retries or
prompt rewriting):

e how about in higher dimensions, when the entire covariance matriz is unknown?
e what about for exponential/gamma/poisson/binomial? does anything still work there?
e what about reverse KL? do things work there?

On the other hand, our unreleased prototype also proved a much stronger complete mono-
tonicity property of the forward KL divergence via an explicit Laplace transform representa-
tion. This extension was provided first (without our asking for it) in the originally requested
setting of centered Gaussian variables in dimension 1. With this proof in context, GPT-5.2
Pro subsequently generalized it further to higher dimensional Gaussians, unknown means,
and Gamma variables; see the discussion around Equation (3) and Section 4.

In summary, the human contributions to this paper (aside from the development of GPT-
5.2 Pro and its internal variant) were as follows:

(a) Prompting the model to continue generalizing its results. We did not work out any
of these extensions ourselves before prompting the model, but just asked simple and
natural followup questions.



(b) Checking the proofs written by GPT-5.2 Pro. To our knowledge, the only mathematical
mistake that needed fixing occurred in (7). GPT-5.2 Pro’s initial proof flipped an in-
equality sign when bounding a sum by an integral, yielding an overly optimistic bound.
However this mistake did not affect any downstream arguments.

(c) Editing and rearranging the writing for clarity and style, and writing the introduction.

Of course, all proofs, citations, and other claims were verified by the human authors, and
we take full responsibility for their correctness.

1.1 Main Results

Let Zy,Z5,... be IID from a distribution P, = P,, which belongs to a parametric family
{Py : 0 € ©} with densities {pp}oco (With respect to a fixed base measure). Given data
i = (Z4,...,Zy,), the MLE is any maximizer

o~

0 € argmax leogpe(zi)-

We consider only settings where the MLE is almost surely unique, and study the expected
accuracy of the fitted model P; as a function of n.

Learning-curve risks. To measure the estimation error between @\n and 6., we consider
both directions of the Kullback—Leibler divergence

Dru(PQ) = Bxer o8 G (0)]

Namely we define the forward and reverse KL learning curves of the MLE by
& = E[Dxu(P || P;)]. & = E[Dxn(P; || P.)],

where the expectation is over the training sample Z.,,. We say the learning curve is monotone
for forward KL divergence if &,y < &, for all n where the former is finite, and strictly so if
the inequality is always strict; similarly for &,.

We note that in any parametric family with densities pg, the forward KL divergence is
the excess expected log-loss of the prediction P applied to IID data from P, relative to
the true model, up to an additive constant independent of the estimator:

DxL(P||P;,) = Ezwp,[—logp; (Z)] — Ez.p,[—logps,(Z)].

This sequential prediction perspective is the one taken in [VML19]. We will however work
only with Dgy,, which has the advantage of being invariant under reparametrization.

Gaussian models. Fix a dimension d > 1. In the centered multivariate Gaussian model, we

observe Xi ..., X, 2 (0, 3,) with unknown strictly positive definite covariance ¥, € S .

Given these observations, the MLE for the covariance ¥, is given by
S o= 1 i X. X7
n n — 7 7 "
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The corresponding forward-KL learning curve is

Enal(S,) = E[DKL(N(O, 5,) y\/\/(o,in))} .
In Section 3 we show the following monotonicity property of &, 4.

Theorem 1.1. Fiz d > 1 and 3, € S?,. Ifn > d+ 1, then the forward KL risk is
independent of ¥, and given by

Ena(3s) = 5 (fa(n) = d), (1)

l\DI»—t

where 1 is the digamma function (see (5)) and

—iw<w>—dlo (/2 +—" asas
2 2 & r—d—1 |

Moreover, &, 4 is data-monotone in the sense that
8n+1,d(2*) < Sn,d(E*) < Q.

If n <d+1, then &, 4(X,) = +00.

We also consider a full Gaussian model, in which we observe X; ~ N (., X,) with
(s, 2y) € RE x Si+ with both u, and X, unknown. The MLE is then given by:

1 & . 1 - -
==Y X;, S,=-) (-X)(X;-X)".
”;:1 1:1( ) )

We write EM (1., X.) for the corresponding forward-KL learning curve of (fi,, f]n) (see (11)).
Here the finiteness threshold shifts to n > d + 2. The next result is also shown in Section 3.

Theorem 1.2. Fizd > 1, . € RY, and X, € S%,. If n > d + 2, then the forward KL risk
is independent of (p, >Xy) and given by

l\')l»—l

gfull(lu*7 *)

where 1 is the digamma function and
d

=2ov(
=1

Moreover, EM is data-monotone in the sense that

(x+1)d
r—d—2

) dlog(z/2) + v >d+2.

Silill,d(:u*a Z*) < 52}3(#*7 2*) < 0.

Ifn <d+2, then Sifi}(u*, ¥,) = +o0.



In fact, both Gaussian settings can be reduced to the isotropic case P, = N(0, 1) via co-
ordinate changes, which explains why the above formulas for &, 4 and gn,d have no dependence
on fi, or X,. We derive the explicit polygamma function formulas in Theorems 1.1 and 1.2,
and deduce monotonicity using derivative estimates for the trigamma function ¢ = 1)/

Gamma-family scale estimation. A similar monotonicity extends to Gamma random

variables. We fix a known shape parameter @ > 0 and seek to estimate the scale parameter
0, from IID observations X; ~ Gamma(a, ). The MLE is

—~ 1 <&

In Section 3.5 we prove the following.

Theorem 1.3. If na > 1, then

~ 1
E | Dk, (Gamma(a, 6, ) || Gamma(a, Hn))] = ho(n) = a(w(na) —log(na) + 1),
no —
where 1 is the digamma function, and this quantity is strictly decreasing in n. If na <1,
the expectation is +00.

The special case @ = 1 of Theorem 1.3 recovers scale estimation for exponential random
variables. Also notably, the case 2a = d € N is equivalent to estimating the scale of a
centered Gaussian which is known to be isotropic, i.e. of the form N(0,6,1;). Indeed here
the squared norms || Z;]|? are IID Gamma(d/2, 26,) and are sufficient statistics for 6,.

Complete Monotonicity. An unreleased prototype of a longer-thinking-time version of
GPT-5.2 Pro completed the proofs of monotonicity in Theorems 1.1, 1.2, and 1.3 using a
different method. This approach rewrites the explicit functions above as Laplace transforms
of positive kernels, i.e. in the form

Liz) = / " e du() 3)

where p(t) is a positive finite measure on [0, 00) (for example a non-negative density). We
detail this in Section 4, and obtain the following.

Theorem 1.4. The functions fq, ga, he each have representations of the form (3), such that
the integral converges absolutely on the respective half-lines (d + 1,00), (d 4 2,00), (1/a, 00).
In particular, each L € {fy, ga, ha} satisfies the complete monotonicity inequalities

(~1)*LW (@) >0 (4)
for all x in the domain of L and all k € N, where L) denotes the k-th derivative.

The inequalities (4) follow directly from (3) by differentiation under the integral sign.
In fact the representation (3) famously characterizes all completely monotone functions;



see [Ber29, Merl4] or [Lax14, Chapter 14]. For integer n, the analogous discrete-difference
properties follow by integration: for £ € N with all terms finite, one has for instance

k k k k
<0) End — <1)5n+1,d + (2> Epgoar 4+ (=1)F (k> Entia > 0.

In particular setting k& = 1 recovers ordinary monotonicity. The case k = 2 (i.e. that
End — 2E041.4 + Entoaq > 0) also has a natural interpretation: although the added value of
the n-th datapoint is strictly positive, it is also strictly decreasing with n.

Reverse KL Divergence. We also consider the same questions under reverse KL divergence
En = E[Dki(P; || P.)-

In fact, monotonicity of the reverse KL divergence for the MLE is known to hold in the case
of discrete random variables; here the model class consists of all probability distributions on
the support, which means the MLE is the empirical distribution. See for instance [CT99,
Chapter 2, Problem 34(b)]. We observe (likely not for the first time) that the proof in the
discrete case extends to the much more general setting of exponential families. Recall that
an exponential family consists of densities of the form

po(r) = exp((, T(z)) — A(0)), 0€©CR"

with sufficient statistic 7" and log-partition function A. The family is regular if the mean
map u(0) = Eg[T'(X)] = VA(0) is one-to-one and its range M is open. The convexity of the
reverse KL divergence as a function of T, := % o T(X;) yields the following.

Proposition 1.5 (Reverse-KL. data monotonicity in exponential families). Let X;,..., X, ~
po, IID in a reqular exponential family. Assume that for each n in a range of mterest the
MLE exists, lies in the interior, and hence satisfies [i, := VA(H ) =T, almost surely. Then
the expected reverse KL risk is nonincreasing:

E|Dxu(pg,,, ||p9*)] < E[Dkw(ps, |l pa.)] -

If in addition A* is strictly convex on M (equivalently, the family is minimal) and T(X) is
non-degenerate under pg,, then the inequality is strict.

The Gaussian settings are both special cases of the above, with T'(x) = zx" and T'(x) =
(z,zx") respectively. Below we provide alternate proofs of monotonicity for the reverse KL
risk of Gaussian estimation, which were derived by GPT-5.2 Pro prior to Proposition 1.5
and again come with explicit formulas involving the digamma function. Of course, Propo-
sition 1.5 encompasses other classical examples including Gamma, Poisson, and binomial
random variables and many more.

Proposition 1.6. Let Xi,...,X, '& N(0,%.) in R, with MLE 5, = 23" X, X[ If

n > d, then the reverse KL risk is given by

E [ D (M (0,52 |V (0, 8.))| = 5 (d1oa(n/2) - Ed:zp(”_“l)),

and the expectation is strictly decreasing in n. If n < d, then the expectation is 4+00.
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Proposition 1.7. Let X1,..., X,, ~ N (., %,) in R, with MLEs

~ 1 _
n =X Y, =— X, — X)X, - X)".
i , - )( )

Ifn > d+ 1, then the reverse KL risk is given by

(" 57)

and the expectation is strictly decreasing inn. If n < d, then the expectation is 4+o00.

[ Dic, (N (s E2) [V (e, 22))| = 5 (d108(n/2) -

Ilbﬂm~

1.2 Other Related Work

In the setting of sequential prediction, the realized risk R, at time n is a function of the
estimated parameter 6, and the next sample z,. Given a well-specified prior for 6,, it is true
in general that suitably defined Bayes-optimal algorithms have monotone learning curves,
when averaged over the prior (see e.g. [VL22, Section 4.6]). For example, under log loss
this is equivalent to the fact that posterior entropy decreases on average, a standard fact in
information theory. See [HKOS91] for other results in this direction.

Learning curves also play a central role in the modern literature on large-scale machine
learning, often via empirical scaling laws that relate test loss to dataset size and training
compute [KMH20, HBM*22]. Relatedly, hyperparameter transfer methods aim to predict
or accelerate progress along such curves across scales [YHB"21]. The notable double descent
phenomenon [BHMM19, BHX20, NKB*21, HMRT22, MM22, LW21] is a surprising non-
monotonicity property of the test loss relative to model size. These works document striking
regularities in overparameterized regimes, but they are largely orthogonal to our focus of
well-specified parametric models. On the other hand, our Gaussian example does include
high-dimensional linear regression with Gaussian covariates and errors, implying that the
log-loss of the maximum likelihood linear model is data monotone, even when the noise level
is one of the quantities to be estimated.

Classical theoretical analyses of learning curves in Bayesian/statistical-mechanics set-
tings go back at least to [PC87, SST92, OHI1, AFS92, Ama93], with additional viewpoints
from PAC/VC-style estimation [TT93, HKOS91]. The book [DGLI7] asked whether mono-
tone Bayes-consistent algorithms exist; this was resolved positively in great generality by
[Pes22], and in a black-box way by [BDK™22]. Our results show that the MLE suffices for
monotonicity in several natural examples.

2 Gamma functions and distributions

The Gamma function and associated objects will play a key role in our proofs. Recall that

['(z) = / t*te~tdt, z > 0.
0



The digamma and trigamma functions are defined by logarithmic differentiation:
d /
U(z) = 7, 108 ['(z),  i(z) =¢'(2) = i3 log I'(z). (5)
We use a standard series identity for ¢ (see e.g. [BE53, Section 1.16, Equation (9)]):

n(z) = ; - jk)” Wz > 0. (6)

This identity yields the following estimates which will be key in verifying monotonicity.

Lemma 2.1. Assuming t > 0 in the first inequality and t > 1 in the second, we have

t+1 1

< — (7)

12 t—1

Yi(t) <
Fort > 0 we also have the lower bound:

Ui(t) > (8)

~ | =

Proof. The latter estimate in (7) is clear. For the former, we have from (6) that

> 1 1 1 t+1
vi(®) t2+;(t+m)(t+m—1) 2TI TR

For (8), we have

> 1 < ds 1
N0 =2 Gy - Grse 1 -

k=0

Next we recall the Gamma distribution: for a shape parameter o > 0 and scale parameter
6 > 0, we write V' ~ Gammal(a, ) if V' has density

f(v) = =———v*te /0 v > 0. 9)

An important special case is the chi-squared distribution y? = Gamma(r/2,2) for v > 0.
Recall that y?2 is the law of ZZ + - -- + Z2 for I1ID standard Gaussian Z; when v € N.

Lemma 2.2 ([KBJ19, Equation (17.29)]). If V ~ Gamma(«, 0), then
Ellog V] = ¢(a) + log 6.

In particular, if U ~ x* = Gamma(v/2,2), then

Ellog U] = ¢(g> + log 2.



Lemma 2.3 (Reciprocal moment of a Gamma random variable). If V ~ Gamma(«, 6) and

a > 1, then
1
EV]=—r0n.
V=] O(a—1)
If a <1, then B[V~ = +o0. In particular, if U ~ x* with v > 2, then
1
E[U7] =
U—l=7—

and E[UY] = 00 if v < 2.

Proof. Direct integration gives, for av > 1,

If a < 1, the integral diverges at 0. [

3 Gaussian and Gamma estimation under forward KL

3.1 Coordinate Change Reductions for (Gaussians

Here we reduce both the known and unknown mean cases of Gaussian estimation to P, =
N(0, I;) by coordinate change.

Lemma 3.1 (Coordinate change for known mean). Let Y; := 52X, s0 Y~ N(0, 1),
and define

~ 1 <&
S,=—Y Yy
n ZZ:; ’
Then S, = L7 X,X] = £128,5Y? and
. 1 . .
Dia(N(0,2.) [N(0,£,)) = (1og det S, + tr(S71) — d)

and so

£,a(5.) = %(]E[log det ] +E[tr(S, )] - d). (10)

Proof. The covariar/l\ce identity is immediate from X; = Zi/ 2Y;. Moreover log det in =
log det 3, + logdet S,,. For the trace term,

tr(2;1%,) = tr (BY25,212) 71, = tr (2725, 1071/2%,) = (S, 1),

by cyclicity of trace. Substituting into Dir,(N(0,Z.) [N (0,%,)) and taking expectations
yields (10). O

10



We omit the very similar proof for the unknown mean case, stated below.

Lemma 3.2 (Coordinate change for the full model). Let Y; := ZII/Q(XZ- — 1,) and Y =
LS Y. We now let

i=1

Then Y; ~ N(0,1;) and the MLE is given by

lin — e = S12Y, 5, =325 w12,

* *

Moreover,
~ S 1 o ~_ — ~ 15
Dir(N (1, Z) | N (i, 20)) = 3 <10g det S, +tr(S; ) + Y 'S 'Y — d)

and so

1 . ~ IO
ER (., =) = 5 (Ellog det 5] + E[tr(S, )] + E[Y 7S, '¥] - d). (11)

3.2 Wishart Matrices
Let Yi,...,Y, ~ N(0,1;) 1ID and define the Wishart matrix

W=Y"YY;" ~ Wishartg(n,Io), S, =-W.

: n
=1
We rely on the following well-known consequence of Gram—-Schmidt orthogonalization.

Lemma 3.3 ([And03, Lemma 7.2.1]). Let W ~ Wishart,(n, I;) with n > d. Then

d
d
det W = []xX% i1

j=1
where the chi-squared variables on the right-hand side are independent.
Proposition 3.4. Let W ~ Wishart,(n, I;) with n > d. Then
d n—j+1
E[logdet W] = dlog2 + Zzﬂ(%) :

j=1

Proof. By Lemma 3.3, log det W L Z?Zl log Xfﬁjﬂ. Apply Lemma 2.2 termwise. O
Lemma 3.5. Let W ~ Wisharty(n, I;) with n > d. Then

1
W, £

5 .
Xn—d-‘rl

11



Proof. Let Z be the n x d data matrix with rows Y;",..., Y[ so that W = ZTZ. Write
Z = [Zl ZQ],
where z; € R™ is the first column and Z, € R**@=1 contains the remaining columns. Then
T TZ w UJT
W=27T7— AR AL 42 11 12 )
(Z;zl Zy Zy wiz Wa
The formula for the inverse of a block matrix is

1

R
wll - w12W22 w12

(W =

It is well-known (see e.g. [Mui09, Theorem 3.2.10]) that the denominator is a chi-squared
random variable with the claimed number of degrees of freedom, as desired. Explicitly, we
may write
wi1 — IUEW;;U}Q = Zir (In - ZQ(Z;ZQ)_IZ;—) 21
The matrix
Q =1l — Zo(Zy Zo) "' Zy

is the orthogonal projector onto col(Z,)* and has rank n — d + 1 almost surely. Since z; ~
N(0,1,) and is independent of Z,, it follows that 2] Qz1 ~ x2_,,, is equal in distribution
to the sum of squares of n — d 4 1 IID standard Gaussians, as claimed. O

Proposition 3.6. Let W ~ Wisharty(n, I;) withn > d. If n < d+ 1 then E[(W™1)y] =
Eltr(W™1)] =oc0. If n>d+1 then

Iy
n—d—1’

d

EWY = -
[ ] n—d-—1

Eltr(W)] =

Proof. Lemma 3.5 and Lemma 2.3 give E[(W ™)y = 1/(n —d — 1) for n > d + 1 and
+oo otherwise. Positive definiteness implies the off-diagonal entries have finite expectation
when the diagonal entries do. Orthogonal invariance of W implies E[W™!] oc I; when the
expectation exists. Combining completes the proof. O

3.3 Known mean: closed form and monotonicity

Proof of Theorem 1.1. We first show (1). This follows by combining Lemma 3.1 with Propo-
sition 3.4 and Proposition 3.6, using S,, = W/n, which yields

log det S, = logdet W — dlogn, tr(S;") =ntr(W™).

To complete the proof, it suffices to show f}(z) < 0 for all z > d + 1. Differentiating yields:

, I s jz—j+1\ d  dd+1)
i =320 () Game

12



By (7), we have ¢ ((z — j +1)/2) < , hence

d

, 1 d  dd+1) 1 1 d+1
fd<x)<;m—;—mfd<x_d—1‘z‘<x—d—1>2)

_ —d(d+1)?

T :

3.4 Unknown mean: closed form and monotonicity

For a Gaussian with unknown mean, recentering around the empirical sample mean is es-
sentially equivalent to removing a single datapoint. We detail this below.

Lemma 3.7. Let Yy,...,Y, ~ N(0,1;) be IID and Y = £ 3. V;. Define

Then W, ~ Wisharty(n — 1, 1;) and W, is independent of Y.

Proof. Let Z € R™? be the data matrix with rows Y;",...,Y.T. Let 1,, € R" be the all-ones
vector and set ¢; := 1,,/y/n. Extend ¢; to an orthonormal basis ¢, ..., ¢, and let Q € R™*™
be the orthogonal matrix with rows ¢/ , ..., q'. Since Z is Gaussian with IID N(0, 1) entries,
(QZ has the same distribution and has independent rows. Writing

YT
az= ("5 ).
the matrix Z € R®D*d hag 1D N(0,1) entries and is independent of Y. Moreover,
W, = ZT(J - 1 1T>Z 27Q7 (0 ; ) 0z=27"7
n—1

so W, ~ Wisharty(n — 1, I) and is independent of Y. O

Proof of Theorem 1.2. We start with (2). By Lemma 3.2 we may assume Y; ~ N (0, I).
Let W, be as in Lemma 3.7; then §n = W./n. The log-determinant term is given by
Proposition 3.4 with n — 1 in place of n. The inverse-trace term is given by Proposition 3.6
with the same substitution. For the mean term, independence gives

. _ n 1 d
E[YTS V] = tr(E[Sgl] E[YYTD = tf(—n — ol 51d> Tn—d-2

As in the centered case, it remains to show ¢/,(z) < 0 for all x > d + 2. Differentiating:

Ly (Esdy 4 ey
2 2
j=1

r (r—d-2)*

13



By (7), 2d1((x — j)/2) < =, hence

1< (L) - E - <o )

_ —d(z+ (d+2)?)
 z(r—d—2)2

3.5 Gamma Distributions under Forward KL

Fix a > 0 and let X; ~ Gamma(a, 0,) with unknown scale #, > 0 and known shape a. The
MLE is

~ 1 <&
na 2 (12)
Indeed, the log-likelihood as a function of 6 is
((0) = —nalogh — 071> X;+C

where C' does not depend on 6; setting ¢'(6) = 0 yields (12).

Proof of Theorem 1.3. For fixed shape «, one computes

Dy (Gamma(a, 6,) || Gamma(a, 0)) = oz(logg + % — 1),

Indeed, the log-density ratio for X ~ Gamma(a, 6,) is

5081 (o) (-t 3) o 3 4)

Taking expectation and using Eg, [X]| = af, gives

log

0 11 0 0.
Dy (Gamma(a, 0,) || Gamma(ca, 0)) = alog 7 + 049*(5 — 9_*> — a(log o + i 1).
Let S =), X; ~ Gamma(na, 6,), so
~ 0.
0, = i ~ Gamma(na, —)
no no
Then Lemma 2.2 gives E[log(é\n/ﬁ*)] = ¢(na) — log(na). Lemma 2.3 gives (for nav > 1)
0 ~ 0.no no
E|=| =6.Ef,"] = — = :
[gn] 6."] O.(na—1) na—1

Monotonicity follows by differentiating in ¢ = na and using (7). Concretely, define
1
h(t) = a((t) — logt + m) > 1.
Then h(na) is the displayed risk, and
1 1
B (t) = ( t——————J.

By (7), ¥u(t) < B < 1 + ﬁ for t > 1; hence h'(t) < 0, implying the result. O
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4 Complete monotonicity of Forward KL Divergence

Here we finish the proofs of Theorems 1.1, 1.2, and 1.3 in a different way. Namely we
represent the relevant functions as Laplace transforms of positive measures, i.e. in the form

L(z) = /0 et du(),

This representation implies the much stronger property of complete monotonicity: such a
function L satisfies (—1)*L®*) (z) > 0 where L™ is the k-th derivative.
We will use the standard Laplace transform identities:

1 o
= / et dt: (13)
0

x
1

e — > —(z—w)t _ * —xt jwt
T wp? —/0 te dt—/o te e dt, Vr>w. (14)

By expanding the series (6) for 1; we also obtain the Laplace transform representation of
the trigamma function.

Lemma 4.1. For every u > 0,

() = /0 e (15)

1—et

Proof. Starting from (6) and the identity a% = fooo te= dt for a > 0, we obtain

o0 0 o0 o0 oo ¢ —ut
% (U) = Z/ t@i(u+k)t dt = / teim Z efkt dt = / e—_t dt,
k=070 0 k=0 o L—e
where Tonelli’s theorem justifies exchanging sum and integral. O]

We now prove Theorem 1.4, proceeding separately for each of the three cases. In fact we
will show the functions — f}, —g/,, —h! are Laplace transforms of positive kernels as in (3).
This implies they are completely monotone, hence so are fy, ga, ho. (By definition of complete
monotonicity it remains to verify their non-negativity; this follows from non-negativity of
KL divergence.) This yields Theorem 1.4 by again applying the equivalence between (3) and
completely monotone functions in the opposite direction (see e.g. [Lax14, Chapter 14]).

Proof of Theorem 1.4 for f;. Fix x > d + 1. Using (13), (14), (15) with w = d + 1 and the
change of variables s — 2t, we compute

1 _ a1 1 [ —(z—j+1)s/2 ot —(z—j+1)t
_%(w):_/ “—ds:/ .
2 2 2)y l—e o l—e®

. . . d i dt _ .
Summing over j = 1,...,d and using > j_, el = =L gives

d .
1 r—j+1 2 el —1
- S N @ . dt.
2;%( 2 ) /0 S T
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Substituting these representations into —f(z) = % - (mdfitll)y — %Zﬂ @Z)l(xféﬂ) yields
—fi(z) = /OO e " By(t) dt, (16)
0
where the kernel is
By(t) :== d +d(d + 1)t eVt — 2 et 1, t>0. (17)

1—e2t et —1

The integral in (16) is absolutely convergent for x > d + 1: as t | 0 one has By(t) = O(t)
(hence no singularity at 0), while as t — 0o, By(t) = O(te!*V!) and e~*! provides exponential
decay since x > d + 1.

It remains to show By(t) > 0 for all t > 0. First note

2t tet

1—e2  sinht <e (t>0),

since sinh¢ > ¢ for ¢ > 0. Hence

et — 1
By(t) > d+d(d+1)tel™V — et — -
e p—
Using e Z ', €, we obtain the simpler lower bound
d
By(t) > Fy(t) :=d+d(d+1)te™D =Y e
k=1
Now Fy(0) = 0, and differentiating gives
d
Fy(t) =d(d+1)e ™D (1+ (d+1)t) = > ke,
k=1
Since et < e for 1 < k < d, we have
k=1 k=1
Therefore,
1
Fi(t) > d(d + 1)e (et(l 4 (d+1)t) — 5).
The right-hand side is strictly positive for ¢ > 0 because e'(1+ (d+1)t) > 1. Thus F,(t) > 0
for all ¢t > 0, and hence By(t) > Fy(t) > 0 for all ¢ > 0. O

Proof of Theorem 1.4 for g4. Recall that for x > d + 2 we have

1< z—j\ d  dd+3)
252}“( ) T G
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Fix © > d+ 2. Using (13), (14), (15) with w = d + 2 and the change of variables s — 2t, we

compute
_ 1 [ ge(@—i)s/2 00 9t o—(z—J)t
() =5 [ S [ A
2 Jo 1—es g 1l—e2

Summing over j = 1,...,d yields

RN T —J > 2t t_
— e - Jtdt -t . dt
2;%( 2 ) /0 1—e Ze / C 1 e o1

Substituting into

, d  dd+3) 1 z—j
) = ot g gp 3 ()

gives the Laplace transform representation

—%u»—/ et By(t) dt, (18)
0
where the kernel is

d
~ o . ot eldt)t _ ot
Bqy(t) := d+d(d+3)teldD - — D et = d+d(d+3)te T - —

j=1
The integrand in (18) is again absolutely convergent for = > d + 2.
We now show By(t) > 0 for all £ > 0. Using again that 1—?*% <e' for t > 0 we find

d d+1
By(t) > Fy(t) :=d+d(d+3)t e ™" — 'y "' = d+d(d+ 3)tel T2 =) " et
j=1 k=2
Then F4(0) = 0, and differentiating gives
N d+1
Fy(t) = d(d+3)e™ (1 + (d+2)t) = > ke
k=2
Since et < @Dt for 2 < k < d+1 and
%k (@+D)d+2) | _dd+3)
2 2
k=2
we have -
Z kekt < d(d + 3) e(d-i—l)t'
k=2 2
Therefore,

Fit) > d(d + 3)el " (14 (d + 2)t) - ;)>o (t > 0),

¢t > 0, and hence By(t) > Fy(t) > 0 for all ¢ > 0. O

because e'(1+ (d+2)t) > 1 for all t > 0 and is strictly > 1 for ¢ > 0. Thus Fy(t) > 0 for all
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Proof of Theorem 1.} for h,. For t := na, the expected forward KL risk equals

Roal0.) = ]E[DKL(Gamma(a, 6,) | Gamma(a, é;»] —ah(t);,  h(t) = w(t)—logt—l—t_%,

whenever ¢t > 1 (and R,, o = +o0o for t < 1).
Differentiating,

H(t) = alt) — -

Using (13), (14), (15) with w = 1 we obtain

(t—1)*

9 S

—h'(t) = / e~ B(s) ds; B(s) =14 se® —
0

1—es
To see that B(s) > 0 for all s > 0, set u = e* > 1 and set
Fu) = (u—1)B(s) = (u—1) + u(u — 2) log u.

Then one has }
F'(u) = (u—1)(2logu+1) >0, Vu> 1.

Meanwhile (1) = 0, and so F'(u) > 0 for all u > 1. This implies B(s) > 0 for all s > 0 as
desired. []

5 Reverse KL monotonicity in exponential families

In this section we prove Proposition 1.5 on reverse KL monotonicity in general exponential
families, and then present the explicit Gaussian formulas in Proposition 1.6 and 1.7.

To generalize the monotonicity of reverse KL divergence, we take advantage of the fol-
lowing domination in the convex order.

Lemma 5.1. Let Zy,Z,... be IID in a finite-dimensional real vector space V, and let
Zn =230 Zi. Let ¢: V — (—00,+00] be convex and assume E[¢(Z,,)] < oo. Then

T n

El¢(Zni1)] < E[p(Zn)],  Vn = no.

If ¢ is strictly conver on a convex set supporting Z, and Z, is non-degenerate, then the
inequality s strict.

Proof. Let
- 1
7= . = 7.
n n Z J
1<j<n+1
J#i
be the leave-one-out mean. Let I be uniform on {1,...,n+ 1}, independent of all Z;. Then

E[Z(L_I) | Z1, ..., Zpy1] = Zns1. Jensen gives
O(Zni1) <E[GQ(ZT) | Zv,. oy Znga].

Taking outer expectations yields the claim since ]E[¢(Z7(Z_I) W = j] = E[¢(Z,)] for each j. O
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5.1 Regular exponential families and Bregman form of reverse KL

Let v be a measure on X and consider a (minimal, regular) exponential family on X given
by the densities

po(z) = exp ((9,T(a:)> - A(@)) h(zx), e CR™,

where
A(0) = log/exp((H,T(x)))h(x) dv(zx).
Define the mean map p(0) := Ey[T'(X)] = VA(#). Let M := VA(O) be the mean-parameter

space, and let

A*(p) == sup{(0, ) — A(0)}

0cO
be the Fenchel dual on M, which is well known to be convex.

Proposition 5.2. Let 0,6, € O, and set u =V A(0), p. = VA(O,). Then

Dxv(po | po.) = A" (1) — A* () — (VA" (i), po — p1a) =2 Ba (1, ),

the Bregman divergence generated by the convex function A*. In particular, p— Dky(po(u)||pe.)
s convexr on M.

Proof. We compute directly by expanding the log-density ratio. Since both py and py,
share the same base measure h(x) dv(z), the h terms cancel in log(pg/py, ), leaving only the
sufficient-statistic and log-partition contributions:

Dxu(pollpe.) = Eo[(0 — 0., T(X)) — A(0) + A(6.)] = (0 — 0., ) — A(0) + A(0.).

By Legendre duality, for p = VA(f) one has A*(u) = (0, u) — A(f), and similarly A*(u,) =
(0., 1) — A(0,). Moreover VA*(u,.) = 0,. Substituting these identities into the previous
display and rearranging yields the stated Bregman form, which is clearly convex. O]

Let Xi,...,X, ~ ps. be IID and write T, = %Z?:l T(X;). Whenever the MLE exists
and lies in the interior, it satisfies

VA, =T,, — fi, == VA®@,) =T,.
We now prove Proposition 1.5.

Proof of Proposition 1.5. By Proposition 5.2,

Dxur(pg Ipe.) = Bas(Tin, pt) = Ba=(Tn, 1)

Define ¢(u) := Ba«(p, jt«). As a function of p, this is convex because it is the sum of the
convex function A*(u) and an affine function of y (the remaining Bregman terms depend on
w only linearly).

Now T, = £ 3" | T(X;) is the sample mean of the IID vectors T'(X;). Apply Lemma 5.1
with Z; := T(X;) and Z,, := T, to conclude E[¢(T,.1)] < E[¢(T},)], i.e. the expected reverse
KL is nonincreasing. Strictness follows from the strict convexity /non-degeneracy conditions
exactly as in Lemma 5.1. O
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5.2 Explicit Reverse KL for Gaussians with Known Mean

Assume X7, ..., X, ~ N(0,%,) and the MLE is

1 n
=) XX/
n -
i=1
We derive explicit formulas for the reverse-KL learning curve
EO)(T.) = E[DKL (N(0,5,) [| M (0, z*))]

and again deduce monotonicity.

Proof of Proposition 1.6. As before we reduce to the identity-covariance case by coordinate
change. Set Y; := Z*_l/in, so Y; ~ N(0, 1), and define the empirical covariance in the new
coordinates by

~ ~ 1 <
S, =12 12 = 2N Ty
* * n Z 1

Since KL divergence is invariant under the invertible change of variables z +— >, Y2y x,

Dict (N(0,5,) | N(0,24)) = Dict. (V(0, 5,) [|V(0, 1))

The Gaussian KL formula gives, for ¥ > 0, that
1
Dy, (N (0, ) [|N(0, 1)) = é(tr(E) —d —logdet )

and hence

Dict (N(0,5,) [ N(0, 1)) = %(tr(@) —d~logdet(S,)).

Let W := > VY, so W ~ Wishartyq(n,I,;) and S, = W/n. Moreover tr(W) =
S IYill?, so Eftr(W)] = nd and thus E[tr(S,)] = d. Therefore the tr(S,) — d term

vanishes in expectation, giving

~ 1 ~ 1

EWN(E.) = =5 Ellogdet(S,)) = —3 (E[log det W] — dlog n) .
Applying Proposition 3.4 yields

n—j+1>

d
E[log det W] = dlog 2 + Zw( 5

J=1

SO
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If n < d, then W is singular a.s., so log det(gn) = —oo and the expectation is +oo.
For monotonicity, differentiate r4(z) for x > d — 1:

zi: (l‘—]—i-l).

HI&
l\DI»—t

By (8), for each j,

1 /rx—7+1 1
- > .
2%( 2 ) z—j+1
Summing over j gives
d K1 d d
! < - = — < ———=0,
ral®) x ]le—j+1_x T

since each denominator satisfies z — j + 1 < x and hence (z — j + 1)~' > z~!. Hence ry is
strictly decreasing on (d—1, 00), and in particular r4(n+1) < r4(n) for all integers n > d. [

5.3 Explicit Reverse KL for Gaussians with Unknown Mean

Assume X7, ..., X, ~ N (., X,) and use the Gaussian MLEs
ﬁn ::Xa gn :_Z(XI_X)(XZ_X>T

Define the reverse-KL learning curve
(11, 5.) = E [DKL (AN (s S0 [| N (1, z*))} .

Proof of Proposition 1.7. Again we use the coordinate change

|
Y, =2 V2(X; — ) ~ N(O, T Y==Y.
* ( N) (ad)a TLZ

Then

_ < ~ ~ 1
fn— s =22y, S, =x128 512 S =N (v, -Y)(V,-Y)".
n <

* *

The Gaussian KL formula gives

Dict, (N (s S) [N (10, 50)) = 5 (8005 S0) + (i — ) T2 G — ) — d = log det (2,15, )

(tr(:S’\n) +|IY|I? = d—log det(§ ))

N~ N

which is again independent of (g, 2. ).
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Let
W=y (Vi -Y)(Y;-Y)"
so S, = W/n. By Lemma 3.7 (applied to V1,...,Y, ~ N(0, 1)), we have
W ~ Wishartg(n — 1, 1)

and that W is independent of Y ~ N(0, I;/n). Consequently,

E[tr(3,)] = %E[tr(W)] _ @ = (1~ 1);

E[|Y]*] = tr(BE[YY]) = tr(lg/n) =

Thus E[tr(S,) + |Y]|> — d] = 0. In particular, after taking expectations the reverse KL
reduces again to a (negative) log-determinant term independent of (p., ,):

| ~ 1
Eml1e,2.) = =5 Ellog det(S,)) = —3 (E[log det W] — dlog n) .

Applying Proposition 3.4 with n replaced by n — 1 yields:

d : d :

(n—1)—j+1 n—j
Eflog det W] = dlog2 + > ¢ —dlog2+ Y W —=),
o1 =2+ S ) g 3

i.e. for ry4 in (20) we have Ni"‘g = r4g(n — 1)/2. We have already seen that ry is strictly

Sfull

decreasing on (d — 1, c0); thus f%d is decreasing in n for n > d, concluding the proof. O
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