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Abstract

Here we present the solution attempts our models found for the ten https://1stproof.org/
tasks posted on February 5th, 2026. All presented attempts were generated and typeset by
our models.
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1 Smooth shifts of the ®; measure on T?

Problem

Let T2 be the three dimensional unit size torus and let u be the ®3 measure on the space of
distributions D'(T3). Let ¢ : T> — R be a smooth function that is not identically zero and let
Ty : D'(T3) — D'(T?) be the shift map given by Ty (u) = u+ 1) (with the usual identification of
smooth functions as distributions). Are the measures p and leu equivalent? Here, equivalence
of measures is in the sense of having the same null sets and 77} denotes the pushforward under
Ty.

Solution

We separate the Gaussian case A = 0 from the interacting case A # 0. We use the notation Typ
for the image (push-forward) of a measure by the shift, that is (T;ju)(A) = M(delA) for Borel

sets A C D'(T3). Throughout, equivalence means having the same null sets and x L v denotes
mutual singularity.

1. Gaussian case A =0

When A = 0, it = pg is the (massive) Gaussian free field (GFF) on T3 with covariance (m?—A)~!,
In the massless case m = 0, one typically works with the pinned/mean-zero GFF on the closed
subspace {u : (u,1) = 0}.

By the Cameron—Martin theorem, Tjpo is equivalent to pg if and only if 9 lies in the
Cameron-Martin space: ¢ € H*(T?) in the massive case, and ¢ € H'(T?) with [ ¢ = 0 in the
pinned massless case. In particular, for m > 0 every ¢ € C*°(T?) yields equivalence. If 1 lies
outside the Cameron—Martin space, then pg and T I’p‘,ug are mutually singular.

2. Interacting case \ # 0: singularity under every nonzero smooth shift

Assume henceforth A # 0 and fix 1 € C®(T3), ¢ # 0. We implicitly restrict to the physi-
cal/stable range of couplings for which the Euclidean <I>§ measure is known to exist (with the
usual stochastic—quantisation sign convention this is A > 0); the argument itself only uses the
non—vanishing of the logarithmic coefficient by.

Pinned/mean-zero variants. If one works with a pinned/mean-zero version of p supported
on {u: (u,1) = 0} and [5¢ # 0, then p and T7;p are supported on disjoint affine subspaces,
hence are singular. In the remainder we either work in the massive case, or (in the pinned case)
assume [r; 1) = 0.

The key point in d = 3 is that the logarithmic (“setting-sun”) mass renormalisation produces
a large deterministic linear term at small scales; this term is what ultimately separates p from
its smooth shifts. The argument below uses only mollified fields at super-exponentially small
scales, together with standard renormalised model convergence results from regularity structures
(or paracontrolled calculus) for the dynamical ®3 model. Crucially, we do not assume that there
exists a time-zero “renormalised cube” as a random distribution under y (in fact, this is precisely
what fails in d = 3; see [2] for an “infinitesimal” manifestation).

2.1. Mollifiers and super-exponential scales

Fix 90 € C°(R®?), 0 > 0, Jgs0 = 1, and extend it periodically to T?. For ¢ € (0,1) define
0:(7) := e 3p(x/e) and, for w € D'(T?3),

we = w * g, € C°(T3).



Let
en = exp(—e"), n>1, and write Wp 1= W, .

Then ;! = " and log(e,;!) = e™

2.2. The renormalisation constants a and b)

In dimension 3, renormalisation for the dynamical <I>§ equation involves two divergent countert-
erms:

e a Wick (tadpole) constant C;(g) ~ cje7 1,

e a logarithmic (setting-sun) mass constant Co(g) ~ co log(s™1).

For the usual stochastic-quantisation normalisation at coupling A, the logarithmic counterterm
enters the drift with a factor proportional to A2, hence is nonzero for A # 0 (see e.g. [6, §10] and
the BPHZ description [4]).

For our purposes we fix deterministic constants a > 0 and by # 0 such that, as € | 0,

Ci(e) =ae 14+ 0(1),  NCy(e) = by log(e ) 4+ O(1),

where by # 0 for A # 0.

2.3. A (log)#-normalised cubic observable

Fix any exponent
1 3
7,1) g B="2).
Be (2 (e.g. B=7)

For w € D'(T3) define the real random variables (measurable functions of w)
Yo (w) := 6_5”<wi —3ae" w, — 9bye"w, 1/)> (1)

(Here (-, -) denotes the distributional pairing, extending the L? inner product.)

The next proposition is the precise substitute for the “renormalised cube exists at time zero”
claim: one does not get a convergent cubic random distribution, but one does get enough control
to deduce that Y, (u) — 0 in probability for u ~ y when 3 > 1.

Proposition 1.1 (Renormalised cubic at fixed time). Let u be the ®3 measure on T with A # 0,
realised as the time-marginal of a stationary solution to the renormalised stochastic quantisation
equation (see [6, 7, 5, 1]). Let uw ~ pu and define u, = ux* o, as above. Then there exist random
distributions ©, € D'(T3) and a random distribution R € D'(T3) such that:

(i) (Convergent remainder) One has

qu —3qe” U, — 9 e"u — 0, — R in probability in C73/27”(T3)

for every k > 0.

(ii) (Variance blowup is only logarithmic) For every f € C*(T?) there exists Cy < oo such
that
E[\<@n,f>}2] < Cpe"  foralln> 1.

Proof. This statement is not a new estimate. It is a convenient repackaging of standard fixed—
time estimates for the dynamical <I>§1 model which are scattered in the literature. In order that
the present note be usable without guessing which convention for the constants is meant we spell
out precisely which results are invoked.



We use the following three inputs.

(a) Let X denote the stationary solution of the linear equation (9; + m? — A)X = ¢ on R x
T3. The Wick powers of X and the additional stochastic diagrams entering the Da-Prato—
Debussche/regularity—structure expansion of <I>§ were constructed with sharp moment bounds,
for arbitrary mollifiers, in Mourrat—Weber—Xu [8, Sec. 3|. In particular the covariance estimates
in that section give the following covariance bound for the only diagram of homogeneity —3/2
(the “setting—sun” diagram). If és denotes this diagram mollified at scale e, then for every
smooth f N

E[(O., f)|* < Cy (1 +1loge™"). (2)

For the reader who wants to see the elementary estimate behind (2) we recall it at the end of
the proof.

(b) The identification of the nonlinear solution with a finite sum of these stochastic diagrams
plus a regular remainder, uniformly for stationary initial data, is proved for the dynamical ®3
equation in either of the two equivalent frameworks: see Hairer |6, Sec. 10] and the paracontrolled
solution theory / decomposition of the dynamic ®; model (Mourrat-Weber |7, Secs. 2-3|), or,
in a form stated directly for the invariant measure, Gubinelli-Hofmanova [5, Sec. 4|. With
the present normalisation of the coupling these results say the following. There is a random
distribution ©. which differs from the diagram 0. of (a) by a uniformly L?-bounded linear
combination of more regular diagrams, and there is a random distribution R such that, for every
k>0,

u? — 3C1(e)ue — IN2Co(e)ue — ©. —» R in probability in C~3/27%, (3)

(The factor 9 is the usual combinatorial coefficient of the setting—sun subdiagram for the
stochastic-quantisation convention in which the drift is Au3.)

(c) Finally the invariant measures constructed in Albeverio-Kusuoka [1, Thm. 1.1 and Sec. 4]
and in Gubinelli-Hofmanova [5, Sec. 4.3| are precisely the laws of the stationary solutions to
which (b) applies. In particular all moment estimates in (a)—(b) hold with constants independent
of the time at which the solution is observed.

We now explain how (i)-(ii) follow from these references. Put ¢ = ¢,. Since Ci(¢) =
ae™t + O(1) and N2Cs(e) = byloge™! + O(1), and the finite parts hidden in the O(1) have
deterministic limits for a fixed mollifier (as is clear from the explicit integral formulae in the
cited references), replacing the counterterms in (3) by the leading terms changes the left—-hand
side by a deterministic multiple of u., plus a remainder tending to 0 in C~%/27*. Since u., ou in
the weaker spaces considered below, this contribution converges in probability to a fixed multiple
of u and can simply be incorporated into the limiting random distribution R (or, equivalently,
into the definition of R in (i)). The cited expansions are written with the factor u. in the linear
setting—sun term whereas in (1) and in (i) we have put the limiting field u. This replacement is
harmless in the topology of C~3/27% Indeed stationary solutions of <I>§ belong almost surely to
C—1/2-1 for every n > 0 (one of the basic a priori estimates in the cited works), and the standard
smoothing estimate for Besov/Holder spaces on the torus gives, for 0 < n < 1/2,

”ua - UHC*3/2*N S C(u7 7, "1) 8177]'

With our choice ¢ = &, = exp(—e") the factor e® = loge, ! multiplying this difference in the
setting—sun term is negligible. (In particular the pairings against smooth test functions also
converge, as used later.) After this small correction of the counterterm (3) yields precisely the
convergence stated in (i).

It remains only to record the quantitative bound (ii). The covariance estimate (2) for O,
together with the fact that ©, — (:)\E is a finite sum of more regular diagrams with uniformly
bounded second moments when tested against a smooth function (again part of (a)—(b)), yields

E[[{On, f)I"] < Cp(1+1oge,") < Cle™
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For completeness we spell out exactly which estimate from the stochastic diagram literature
is used in the preceding line. Uniform covariance estimates for all diagrams of the dynamical
®2 model (and for arbitrary smooth mollifiers) are proved in Mourrat-Weber—Xu [8, Sec. 3].
Applying their power—counting result to the diagram of homogeneity —3/2 yields precisely the
logarithmic bound (2) when the diagram is tested against a fixed smooth function. We refer to
their dyadic summation for the short analytic proof. This completes the proof of (ii) and of the
proposition. O

Lemma 1.2 (Convergence of the normalised observable under p). Let u ~ p. Then Yyp(u) — 0
wn probability as n — oo.

Proof. Write f = and decompose, using Proposition 1.1,
Yo (u) = e PR, ) + e PO, 1)), Ry = ud — 3ae u, — 9bre"u — O,,.

By Proposition 1.1(i), (R, %) converges in probability to (R, 1), hence is tight; multiplying by
e P — 0 gives e P*(R,,, ) — 0 in probability. By Proposition 1.1(ii) with f = ),

n—o0

E[le™?™"(0,,¢)]*] < Cpell=29m 5 0 since § > %,

hence e #"(0,,,4) — 0 in L? and therefore in probability. Combining these two terms yields
Y, (u) — 0 in probability. O
2.4. An almost sure separating set

From Lemma 1.2, we can extract a deterministic subsequence along which Y, (u) — 0 almost
surely. Indeed, choose n; 1T 0o such that

Py (Yo, (u)] > 27%) < 27F,
and apply Borel-Cantelli to obtain Y;,, (u) — 0 p-a.s. Define the measurable set

A= {w € D/(T3) : lim Y, (w) = 0}.

k—o0

Then p(A) = 1.

We shall allow ourselves in the next paragraph to pass, if necessary, to a further subsequence
of (ny) and to redefine A by the same formula for that refined subsequence (we keep the notation
ng and A). This causes no difficulty: every subsequence of a full-measure convergence subse-
quence still gives a set of y—measure one. The refinement will be chosen so that, in addition to
Yy, (u) — 0, the auxiliary error terms appearing in (4) below also converge to zero almost surely.

2.5. Effect of shifting by v
Let v = Ty (u) = u+ 1. Then v, = uy + 1, and

v3 — 3ae v, — 9bre™v = (ui — 3ae" u, — 9b>\enu) + 3, (ui — aeen)

3 _
+ 302Uy, + 3 — 9bre™ .

Pair with ¥ and multiply by e~#":

Vo) = Yalu) + e (30n (u2 — ae™), 0 ) + e (362un + 43, 0) — 9,0, (4)



e Along the subsequence n = ny we have Y, (u) = 0 p-a.s. on A by definition.

e The random distributions u2 —ae®" (the renormalised square) are tight when tested against

smooth functions (this is a standard output of the ®2 construction; see [6, 7, 5, 1]). Since
¥, — 1 in C™, the scalar random variables (39, (u2 — ae®"), ) are tight; multiplying by
e P — 0 forces the second term in (4) to converge to 0 in probability (hence, along a
further subsequence if desired, p-a.s.).

e Since u, — u in D’ and v, — 1 in C™, the bracket (3v2u, + ¥3,) is tight (indeed
convergent in probability), so the third term in (4) also tends to 0 in probability after
multiplying by e=#".

e The last term is deterministic and diverges because by # 0, f < 1, and (¢,¢) =

Jps ¥(2)?dz > 0:
—9bye1 =AM (4h ) — to0 (n — o0).

We now implement the refinement of the subsequence announced in §2.4 in a completely explicit
way. Since the second and the third terms in (4) converge to 0 in probability, a diagonal selection
and another application of the Borel-Cantelli lemma allow us (after passing to a subsequence
of the one chosen there and redefining A, without changing the notation) to find a measurable
set E with u(E) = 1 such that, for every u € E, all three random terms in (4) other than
the deterministic last one tend to 0 along n = ng. For such a u the divergent deterministic
contribution displayed in the last item forces |Yy, (u + ¢)| — oo (with a sign depending on by).
In particular u+1 ¢ A because membership in A is defined by the condition Y;,, (w) — 0. Thus

(T)(4) = p({u: u+ e A} =0,
whereas yi(4) = 1. We conclude that p L T p.

Theorem 1.3 (Failure of quasi-invariance under smooth shifts). Let p be a well-defined ®3
measure on T3 at a non-zero coupling \ (in the usual physical convention, X > 0). Then for
every nonzero i € C(T?) one has

p L Tjp.
(In the pinned/mean-zero setup, if [ # 0 the measures are trivially singular by disjoint support;
if [ =0 the conclusion still holds.)

Proof. The construction of the separating set in paragraphs 2.4-2.5 gives the claim: the set A
has full y-measure whereas the shifted measure assigns it zero mass, (7;1)(A) = 0. O

Remark 1.4. For comparison we mention that the mutual singularity of the <I>§ measure with
the (unshifted) Gaussian free field was proved by a different method in Barashkov—Gubinelli [3].
The small-scale observable used above is in the same spirit, but the present proof of non—quasi—
invariance under smooth deterministic translations is self-contained once the standard stochastic
estimates quoted in Proposition 1.1 are granted.
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2 A nonvanishing test vector for the twisted local Rankin—Selberg
integral

Problem

Let F' be a non-archimedean local field with ring of integers 0. Let N, denote the subgroup
of GL,(F') consisting of upper-triangular unipotent elements. Let ¢ : FF — C* be a nontrivial
additive character of conductor o, identified in the standard way with a generic character of
N,. Let II be a generic irreducible admissible representation of GL,,11(F), realized in its 1~!-
Whittaker model W(II, 1p~1). Must there exist W € W(II, 1 ~!) with the following property?

Let 7 be a generic irreducible admissible representation of GL,, (F'), realized in its ¢- Whittaker
model W(w,%)). Let q denote the conductor ideal of 7, let Q € F'* be a generator of q~!, and
set

uQ := Iny1 + Q Ep g1 € GLpg1 (F),

where E; ; is the matrix with a 1 in the (¢, j)-entry and O elsewhere. For some V' € W(m,v),
the local Rankin—Selberg integral

. o1
| Widiaglg. 1uq) Vi(g) |detgl* g
Ny \GL (F)
is finite and nonzero for all s € C.

2.1 Setup and goal

Let F' be a non-archimedean local field with ring of integers o, maximal ideal p, and a fixed
uniformizer w. Write | - | for the normalized absolute value on F'. For r > 1 set

G, = GL,(F), K, = GL,(0), N, = {upper unitriangular matrices in G, }.

Fix a nontrivial additive character ¢ : F' — C* of conductor o (so ¥ is trivial on o and nontrivial
-1
onw o).
Let II be an irreducible generic representation of G,11, and let m be an irreducible generic
representation of G,,. We work with Whittaker models

WAL ™) = {W : Gni1 — C smooth : W(ug) =¥ (w)W(g) Yu € Nuy1},
W(rm, ) ={V : G, = Csmooth: V(ug) =¢(u)V(g) Vu € N,}.

Let q = p° be the (integral) conductor ideal attached to 7 in the discussion above, and fix a
generator

Qeqal=p (s00(Q)=—c).

I e
ug = (5 Q1n> € Gn+1,

where e, is the nth standard basis column vector in F™.
For W € W(II, = ') and V € W(w,) consider the local Rankin-Selberg integral

Define

Z(s,W,V) = /

W((g 0) UQ) V(g) | det g|*3 dg, )
No\Ghn 0 1

with a fixed Haar measure dg on N,\G,.

Claim. There exists W € W(IL, v~ 1Y), depending only on I1 (and 1)), such that for every generic
7 and every choice of generator Q € q~% as above, one can choose V.€ W(w, ) with Z(s, W, V)
finite and nonzero for all s € C.



2.2 Step 1: Choosing W by prescribing its restriction to the mirabolic

_J[(9 TY. n
Pn+1{<0 1>.g€Gn,x€F}

be the mirabolic subgroup of Gpy1. Let Sy-1(P,41) denote the space of smooth functions
f : Pyy1 — C which are (Ny,41,%)-equivariant on the left and compactly supported modulo
Np1.

Let

Lemma 2.1. Define f: P,11 — C by

(5 7)) = 1@ wta) - 07 o)

where 1y, i, is the indicator function of N, K, C G, and u(g) € N, is chosen from any
decomposition g = u(g)k with k € K, (when g € N,Ky,). Then f € Sy-1(Pny1).

Proof. If g € N,K,, the decomposition g = uk is unique up to right multiplication of u by
N, N K,,. Since 9 has conductor o, it is trivial on N, N K, hence ¥ (u(g)) is well-defined.
Smoothness is clear.

For equivariance, let n = (4) € Nyq1 with u € N,, and y € F™. Then

g x\ (ug uxr+y
"o 1) \o 1 )
If g ¢ N, K, then also ug ¢ N, Ky, so both sides are 0. If g € N, K,,, then ug € N, K,, and one

may take u(ug) = uu(g) (modulo N, N K,,), so

Y (u(ug)) = 7 (w)y ™ (u(g)).
Moreover, (uz+y), = Zn+yn because u is upper unitriangular, so ¥~ ((uz+y)n) = ¥ (yn) Y~ H(zn).
Since ¥ ~1(n) = Y~ H(w)y " (y,) for n = <g ?) € Np41, we get

fnp) =4~ (n) f(p).

Finally, f is compactly supported modulo N,;; because modulo N,; the z-variable is
irrelevant (the left IV, 1-action moves z freely), and the g-support is contained in N, K,,, whose
image in N,\G,, is compact. O

The crucial representation-theoretic input is the standard fact that, for a generic II, the
Kirillov model on the mirabolic contains all compactly supported Whittaker functions on P, 1.

Lemma 2.2 (Compact Kirillov model on P,41). Let IT be irreducible generic. The restriction
map
resp, ., WALY ™) — C°(Npyi\Poy1, 07", W Wlp,,,,

has image containing Sy-1(Py11). In particular, for the f of Lemma 2.1 there ewists W €
WAL ¢~1) such that W|p,,, = f.

Reference. This is the classical “compact Kirillov model” statement; see Gelfand—Kazhdan |[3]
and the mirabolic/derivative formalism in Zelevinsky [5], or the discussion of mirabolic restriction
in Matringe [4, §2]. O

Fiz once and for all such a Whittaker function W € W(IL ¢~ ') with W|p,,, = f. This W
depends only on II (and %), not on 7 or Q.



2.3 Step 2: Reducing (5) to a compact integral on K,

0 e
<g 1) uQ = <g le n) Epn—i-l-

Hence, by the choice W|p, , = f,

For g € G,, we have

(5 1) 10) = L) wla)) v Qo) ()

Insert (6) into (5). If g € N, K, and we write g = u(g)k with k € K,,, then |det g| = 1 and,
using the Whittaker property V(u(g)k) = ¥ (u(g))V (k),

() Vig) = v (u(9) (ulg)) V(k) = V (k).

Thus the integrand in (5) is supported on N, K, and the s-factor drops out. Transporting the
quotient measure from N, \(N,K,) ~ (N, N K,)\K,, gives

Z(s, W, V) = Io(V) := / U HQ k) V (k) dk. (7)

(NnNKn)\Kn

In particular, Z(s, W, V) is independent of s, and finiteness is automatic because the domain of
integration is compact.
The remaining task is to show Io(V') # 0.

2.4 Step 3: Fourier projection and the weak kernel on G,

For the rest of the proof put H = N, N K,,. If Q is the chosen generator of p~<(™) write
LV) = [ (- Qhu)V (). (8)
H\K,

We shall use two standard facts. First, for 2 = (z1,...,2,-1) € F*" ! put u(z) = I, +
S i B Ifa = (a1,...,an_1) € F* " and W € W(m,¢), define

(o) = [ Wiguta))w (—sz> dr. ©)

(The Haar measure gives volume 1 to 0.) Then P,W € W(m, ¢) and a change of variables
k — ku(z) in (8) gives the projection formula

L) = [ O Qhu)W R, (10)

kni=a; (modpc(7T> ), i<n

Indeed the inner integrals are [ o V(Q(kp; — a;)z)dx, equal to 1 or 0 according as ky; — a; € pe(™
or not.

The proof of non—vanishing for ramified representations rests on a standard piece of local
newform theory. We isolate it in the following form. Recall that H = N, N K.

Proposition 2.3 (compact test vector on K,). Assume that n > 2 and that the conductor
exponent ¢ = c(m) is positive. There is an integer mg = mg(m) > ¢ with the following property.
For every m > mq one can find a Whittaker function VI € W(r,v) whose restriction to
K,, is described as follows (we normalize it by a non—zero scalar which we take to be 1). Let
w € K, be the permutation matriz interchanging the last two columns. For a coset of H\K,, with

10



knn—1 € 0 choose the representative for which, after multiplication on the left by an element

of H,
h 0
kw = (7“ a’) (11)

(h€Gp1,7=(r1,...,7n_1) € F"1 a € F*X). Then

1, hel+p™M,_1(0), re€ (™", del+p°
Vi) = ety (12)

0, otherwise

on all such cosets. (On cosets for which kyn—1 ¢ 0* no assertion is made.) In particular the
subset Cp, C H\K,, cut out by the three congruence conditions in (12) is a non—empty compact
open set of positive measure and V,I,f is its characteristic function on the part of the quotient
which will occur below.

References. This is the familiar construction of the normalised Howe vector (or partial Bessel
function). We recall the precise results in the literature from which the stated form fol-
lows. Let K,(r) = 1+ p"My,(0) and set J, = d"K,(r)d~" for the standard diagonal d =
diag(1,w?,...,@?"); let ¥, be Howe’s character of J.. Rodier’s approximation theorem for
Whittaker models, in the form used by Cogdell and Piatetski-Shapiro, asserts that for ev-
ery irreducible generic representation there are, for all sufficiently large r, vectors v, with
w(j)vr = Yr(j)vy for j € J, and with Whittaker value normalized by W,, (1) = 1; see [1,
§7]. Such a vector is called a Howe vector. The values of a normalized Howe vector on the big
Bruhat cell were computed explicitly by Baruch.

In the notation above, Baruch [1, §7] shows that, after taking » = m larger than the conductor
exponent and translating the statement to the compact quotient H\K,, the restriction of W,
is exactly the characteristic described in (12). The multiplication on the left by H used to put a
representative in the form (11) is by elementary row operations (possible precisely when ky, 1
is a unit), and it introduces no character because 1 is trivial on H C K,. For the reader who
wants a detailed verification of this translation of notation, Baruch [1, §7] proves that if a Howe
vector is non-zero at a point of the form (11) with k£ € K,,, then the three congruences in (12)
are necessary, and in that case the value is the constant used for the normalization. This is
precisely the assertion above. Finally, choosing h = 1, r = 0 and ¢’ = 1 shows that C,, is
non—empty (it contains the coset of the permutation matrix w). O

2.5 Step 4: construction of the test vector in the ramified case

We now finish the proof under the assumptions n > 2 and ¢(7) > 0. Pick m > mq(m) and let
Vo = VH be the Whittaker function furnished by Proposition 2.3. We use the Fourier—projection
(9) exactly as in Step 3. Take

ay == ap—2 =0, ap—1 =1,

and put V = P, V. By the projection formula (10) and by the definition of Vj,

=) (= Qi) Vo )k
kn,nflzl, km-epc (i<n—1)
:/ (= Qhipn )dE:. (13)
Cm

(The congruences are modulo p€.) Indeed, on the domain of the first integral the condition
knn—1 =1 (mod p°) is exactly a’ € 1+p© in (12), and the characteristic property of V; imposes
the other two congruences which define C,; outside C), in this domain the integrand is zero.
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On C,, the last entry ky, = r,—1 lies in p™. Since v(Q) = —c and m > ¢, we have Qk,, € o
and the additive character is equal to 1 there. The right-hand side of (13) is therefore just the
positive Haar measure of the non—empty compact open set C,,; in particular it is different from
zero. With the Whittaker function W on the G, 41 side fixed in Step 1, the Rankin—Selberg
integral is finite and non—vanishing (and, as noted in Step 2, independent of s) in the present
ramified case.

2.6 Step 5: the exceptional cases

It remains to treat the two small cases omitted above.

The case n = 1. Then G; = F* and a generic representation is a quasi-character xy. The
compact integral furnished by Step 2 is the classical Gauss integral

| xtwi-quar

(up to the harmless choice of Haar measure, and in the unramified case simply the volume of
0 because an unramified character is trivial on the units). For the reader’s convenience let us
recall why the ramified Gauss sum is non-zero. If the conductor exponent of x is ¢ > 0, then,
with the multiplicative measure normalised in the usual way, the last integral is a non-zero scalar
multiple of the finite sum

Gluw) = D, x(w)e(@ ‘u). (14)

u€(o/pe)>

(We have chosen the generator @ = w™°.) Extend the function u + x(u) by 0 to the finite ring
R. =o0/p¢. Its additive Fourier transform is

J = 3 xwv@ ) (teR.).

uERZ

For t¢ divisible by w the character in the summand factors through a proper quotient of R,
and the primitivity of x (it is non-trivial on 1+ p¢~!) shows by summing over the cosets of the
kernel that ]?(t) = 0. On the other hand the finite Fourier transform on the additive group of
R, is an isomorphism, so fis not the zero function because f is not. Hence some value with
t € RX is non-zero. For such a unit ¢ the change of variables u — tu gives f(t) = x(t) " G(x, %),
and consequently the Gauss sum (14) itself is non-zero. Thus a suitable choice of the Whittaker
function V' = x supplies the desired test vector in rank one.

The case n > 2 and ¢(m) = 0. Here 7 is spherical. Let v°® be a non-zero K,fixed vector
and let W° be the associated Whittaker function normalized by W*°(1) = 1. For every k € K,
we have W°(k) = A(w(k)v°®) = A(v°) = 1. Since a generator () of the inverse conductor is a
unit and our additive character is trivial on o, the factor ¥ (—Qkyy,) is also identically 1 on K.
Thus (8) is simply the (positive) volume of the compact space H\K,, and the same V gives a
non-vanishing Rankin—Selberg integral for all s.

Combining the ramified construction with these two observations completes the proof of the
claim stated in the problem. The Whittaker function W on the G, side was fixed once and
for all, independently of the representation m of G, and for every generator @) of the inverse
conductor ideal we have exhibited a Whittaker function V' such that Z(s, W, V) = L(V) # 0 for
all complex s.
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3 A Markov chain from interpolation polynomials?

Problem

Let A = (A > --- > A\, > 0) be a partition with distinct parts. Assume moreover that A is
restricted, in the sense that it has a unique part of size 0 and no part of size 1. Does there exist
a nontrivial Markov chain on S,,(\) whose stationary distribution is given by

Fi(z1,... w059 = 1,1)
Pl (x1,...,005q = 1,1)

for € S, ()

where F(z1,...,2n5¢,t) and P§(21,...,7n;¢,t) are the interpolation ASEP polynomial and
interpolation Macdonald polynomial, respectively? If so, prove that the Markov chain you con-
struct has the desired stationary distribution. By “nontrivial” we mean that the transition prob-
abilities of the Markov chain should not be described using the polynomials F};(z1,...,%n;q,1).

Solution

It may be useful first of all to say in which sense the question can be read. I shall explain that,
with the notation which is written in the statement, it is not a well posed question. In particular
it has a negative answer if one interprets it as a statement which should be true for arbitrary
numerical values of the variables.

Let me recall a small amount of notation from the paper which is quoted in the question. In
H. Ben Dali-L. K. Williams, A combinatorial formula for interpolation Macdonald polynomials,
arXiv:2510.02587, the letter f; is used for the interpolation ASEP polynomial. Their “Main
theorem”, Theorem 1.3 in § 1 says that this polynomial is equal to the generating series F; of
signed multiline queues. I shall use the letter f;‘j below. The same paper contains a factorisation
which is special to the specialisation ¢ = 1. More precisely, if Supp(u) = {i : p; > 0} and if
¢(X\) denotes the number of non—zero parts of the partition, Theorem 7.1, equations (7.1)—(7.2),
of loc. cit. asserts that for every subset S C {1,...,n} of cardinality ¢(\)

> filry,. a1t =] (x — prom Hej;(:z:l,...,xn;t) (15)

t#(scn{l,...,z'—l})> A
HESn (), Supp(p)=5 €S j=2

and that the interpolation Macdonald polynomial is

A1

P (z1,. .. a0 1,t) = Hej{;(xl,...,xn;t). (16)
j=1

Here )\ is the conjugate partition and

) AN L, i—1})
ep(x1,...,xp;t) = Z H (mi_tnl (17)

Sc{l,...,n}i€es
|S|=k

(this is the definition immediately preceding Theorem 7.1). I shall use these formulas only in the
very small example below. The equality between the symbols F); which occur in the statement
of the present problem and the polynomials f;; is precisely the “Main theorem” just cited.
Recall what a Markov chain on a finite set means. Its transition matrix has non—negative
real entries and its stationary distribution is a probability vector, i.e. a list of non—negative real
numbers which add up to 1. In the problem, however, the symbols x1,...,x, and t are left as
indeterminates. Over the field of rational functions in these indeterminates there is no notion
of “non—negative”, and consequently the words Markov chain and probability distribution do

14



not have a mathematical meaning. One might try to repair the statement by demanding that,
after every real specialisation of the variables for which the denominator in (3) is non—zero, the
displayed formula should give the stationary probabilities of a stochastic matrix depending on
the same parameters. With this (the most generous) interpretation the assertion is simply false.
The obstruction already appears for the smallest restricted partition.

Indeed take n = 2 and A = (2,0). This partition has distinct parts, contains a unique zero
and has no part equal to 1. In this case ¢/(A) = 1 and, for a fixed support, there is only one
permutation of A\. Formula (15) therefore gives the individual interpolation ASEP polynomials
themselves. Since X' = (1, 1), from (15)-(17) we obtain

foo (@, 22;1,t) = (21 — t7Y) el (z1, x93 1), (18)
fop (@125 1,8) = (22 — 1) €1 (21, 225 0), (19)

where
ef(x1, xo;t) = (x1 —t 1) + (29 — 1). (20)

Equation (16) gives at the same time P(*2 0) = (e1)?. Hence the putative stationary weights in
(3) would have to be

— ¢! -1
= < w02 = —
.711—1—33‘2—1—251 le—l—aj‘Q—l—tl

m(2,0) = (21)

Now specialise the (so far completely arbitrary) parameters to real numbers, for instance
t:2, .leo, 1'2:10.

The denominator in (21) is then 17/2, and the two numbers in (21) are respectively

1 18

il 92) = ——
17? 7T(07 )

2,0) = — .

They add up to 1, as they should algebraically, but they are not a probability vector: one
entry is negative (and the other is bigger than 1). No stochastic matrix on the two-point
set S2(2,0) = {(2,0),(0,2)} can have such a stationary distribution, because the stationary
distribution of a finite Markov chain is always a list of non—negative real numbers.

This example shows two things. First, if the problem is read literally, with z; and ¢ re-
garded as formal variables, the phrase “Markov chain with stationary distribution” has no de-
fined meaning. Secondly, under the natural alternative reading that a single statement should
hold for arbitrary numerical values of the parameters, the answer is negative (already for the
restricted partition (2,0)). To obtain a genuine and non-trivial problem one would have to
add extra hypotheses, for example a specified real chamber of the parameters in which all the
quantities in in the target are known to be non—negative, and then give an explicit stochastic
rule in that chamber. Such additional data are not part of the question as stated, so no Markov
chain satisfying the requested property can be constructed from the present formulation.
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4 Finite additive convolution and a harmonic-mean inequality
for @,

Problem

Let p(z) and ¢(x) be two monic polynomials of degree n:
n n
p(z) = Z apz™® and q(z) = Z bk
k=0 k=0
where ag = by = 1. Define p H,, ¢(x) to be the polynomial
n
(p B g)(z) =D cpa”
k=0

where the coefficients ¢; are given by the formula:

o 3 M=

I(n — k)
it nl(n — k)!

for k=0,1,...,n. For a monic polynomial p(z) = [[,<, (z — i), define

Bulp) = 30 5y )

i<n ji

and ®,,(p) := oo if p has a multiple root. Is it true that if p(z) and ¢(x) are monic real-rooted
polynomials of degree n, then

Solution

We give a self-contained proof. The few coefficient identities and conventions used later are
recorded explicitly.

0. Two conventions (extension to non-monic/leading-zero inputs; n > 2)
Throughout let n > 2 and put m :=n — 1.

Extension of H, to degree < n (leading zeros allowed). For a polynomial f of degree
< n, write it in the degree-n coefficient array form

f(z) = Zakl‘”_k (so ap = 0 is allowed).
k=0

Given two such arrays (og))_, and (8i)}_,, define their H,-convolution by the same coefficient
rule

FBag)a) =3 e, e Y0 DI

I(n — k)
k=0 i+j=k nl(n — k).

This is bilinear in the arrays and agrees with the original definition when both inputs are monic
of degree n (then ap = Sy = 1). We will use this extension whenever one of the inputs has
leading coefficient 0 in degree n (e.g. R, in the centered case, or ¢; in degree m).
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Remark on n =1. For n =1 one has ®;(p) = 0 for every monic linear polynomial, so 1/®;
is not meaningful; hence we restrict to n > 2.

1. The &, transform and the basic identities
For a nonnegative integer r and k& > 0 write the falling factorial
?”E::T'(T—l)“-(r—k—‘rl), rd.=1.

If f(z) = > 5_o akz" " has degree at most r define

T k
&) =Y on 1. (2.1)
k=0

Then the convolution is equivalently:

En(pBr q) = (Ea(p) Ea(0)) - (2.2)

where the right-hand side multiplies the two polynomials in ¢ and discards terms of degree > n.
We use (2.2) also for the leading-zero extension described above; the convention (2.1) makes this
unambiguous and all formulas below are linear in coefficients.

Translations. If p,(z) = p(z — a) and ¢,(x) = g(x — b), then

Pa EE‘n Qb(x) = (p EEn Q)(x_a_b)' (2'3>

Proof (coefficient check, included for mormalization). Write p(z) = > p_, g™ *.

formula gives that the coefficient of 2"~ in p(x — a) equals

k .
_a j . .
E ( j') ap—j(n—k+ 7).
Jj=0 '

Taylor’s

Dividing by nE gives exactly the coefficient of t* in e=% £, (p)(t), hence

En(pa) = (™" En(p))<n-

Applying (2.2) yields (2.3), since discarding terms before multiplying cannot affect degrees < n.
O

Derivatives and the polar part. Define

1
rpi=—pls Ryi=p—ary, (2.4)
and similarly for g. Then, with m =n — 1,
1
E(p B, Q)/ =Tp B Tq, (2.5)
and 1
(pBna) =z —(pBaq) = (BpBaq) + (p By Ry). (2.6)

Proof (sketch; both are coefficient checks from (2.2)). For (2.5), view r, as degree-m; its nor-
malized coefficients (2.1) are those of p with the last one missing, so multiplying the truncated
E-polynomials gives the derivative identity. For (2.6), compare the coefficient of 2% on both
sides: the left coefficient is

while the right-hand side produces the same sum split into i/n and j/n contributions. O
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2. Centering and the critical values w;(p)

By (2.3) we may translate p and ¢ independently. We therefore assume from now on that p and
q are centered, i.e. the coefficient of 2”1 in each is 0 (equivalently the sum of roots of each is
0). Then R, has degree at most m — 1 and, regarded as a degree-m polynomial, it has leading
coeflicient 0.

Assume p has simple real zeros and is centered. Let r, = p//n and denote its zeros by

v <vg <o < Upy (m=mn-1).
Define R ()
() o s \Vi
i) = (2.7)

Lemma 4.1 (Residue formula for ®,,). If p has simple real zeros and is centered, then all w;(p)
are positive and

m
n
P = — . 2.8
Proof. Consider the rational function
V(2
4p/'(z)p(z)

At a zero X of p, the residue is (p”(X)/(2p’ ()\)))2, and these are precisely the summands defining
®,,(p). The other finite poles are the zeros v; of p/, and the residue there is

() _ mrhn)

dp(vi) — 4Ry(vi)

The function is O(z~2) at infinity, hence the residue at infinity is 0. Therefore the sum of
residues is 0, yielding (2.8) after rewriting with w;(p). The sign in (2.7) (and thus positivity of
w;(p)) can also be read off from the local extrema: each v; is a strict maximum or minimum of
a real-rooted simple polynomial. At a maximum one has p(v;) > 0 and p”(v;) < 0, and at a
minimum the signs are reversed, so —R,(v;)/r,(vi) > 0. O O

3. Tracking the w’s through convolution: the transport computation

Let p and ¢ be centered with simple real zeros. Keep v; for the zeros of 7, and define

1
r= g(p B Q)/ =Tp Hn Tqs (2.9)
and write the zeros of r as 1 < -+ < py,. For each v; define the monic degree-(m — 1)
polynomial
rp(x)
li(z) = ==, 2.10
(@) v — v ( )
Define the m x m matrix
(; B ;
K;j = M. (2.11)
7' (pi)

Here /; is used in H,, as a degree-m polynomial with leading coefficient 0, per the extension
stated in Section 0.
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Lemma 4.2 (Transport identity). With the above notation,
R, H
M ZKUwJ (i=1,...,m). (2.12)

The analogous identity with p and q interchanged also holds.

Proof. We spell out the coefficient computation, because the step where H,, becomes H,, is
precisely where padding matters.

Write p(z) = Y p_ agx™ * and set Ay := ay/n%; define By, similarly from ¢q. For 1 < I <m,
the coefficient of "~ '~1 in R, &, ¢, divided by (n — 1)L, equals

> iA;B;. (2.13)
i+j=I+1

Indeed this is the definition (2.2), with the coefficient (i/n)a; of R, in place of a;, and using
nItL = n(n — 1)L

Now regard R, as a degree-m polynomial with leading coefficient 0 (valid since p is centered).
Its normalized coefficient of ¢* for s > 1is (s + 1) Ay 1. The coefficient of ™~ in the order-m
convolution R, B, 74, again divided by (n — 1)L, equals

Z (S + 1)A5+1Bj = Z ZAZB] (2.14)
stj=I i+j=I+1

(The ¢ = 1 term is absent because A; = 0 for centered p; for I = 0 the leading coefficients on
the two sides are likewise 0.) Comparing (2.13) and (2.14) yields the crucial padded identity

R, 8, ¢ = R, H,, 7, as polynomials of degree at most m. (2.15)

Next, since deg(R,) < m — 1, Lagrange interpolation at the nodes v; gives

=" Ry(v)) 7J(V7’)”((gf)_y) == wi(p) 4(). (2.16)
p\Yi J =1

J=1

Convolution of order m is linear in the first factor; combining (2.15) and (2.16) and evaluating
at © = p; gives (2.12) with Kj; as in (2.11). O O

4. The matrix K is doubly stochastic, and why

Lemma 4.3 (Doubly stochasticity). Assume r in (2.9) has real simple zeros. Then K satisfies
Kj>0, > Ky=1, Y Kj=1 (2.17)
i J

The equalities do not use reality of the zeros.

Proof. Column sums. Fix j and consider the rational function

fj Eﬂm ’I“q
” .

As a degree-m polynomial, ¢; has leading coefficient 0 and coefficient 1 at 2™~!. The convolution
¢ By, g therefore has leading coefficient 0 at 2™ and leading coefficient 1 at 2™~ (a coefficient
check from (2.2) with £ = 1). Thus the numerator has degree m — 1 with leading coefficient 1
at 2™~ !, while r is monic of degree m. Hence the partial fraction expansion is

m

T T — W
i=1 Hi
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and the expansion at infinity begins with 1/z. Therefore ), K;; = 1.
Row sums. Use the identity Y 7", ¢; = 7, (obtained by writing r,(z) = [[;(z — v;) and
differentiating), and claim

D (Ul Byrg) =7 (2.18)
7j=1

This is again a coefficient check using &,,. Let &, (rp)(t) = A(t) and &y, (rq)(t) = B(t). Then
the normalized coefficient polynomial of the leading-zero derivative r;, in degree m is (tA(t))<m.
After convolution with 4 it becomes (tA(t)B(t))<m. On the other hand &, (r) = (A(t)B(t))<m
by (2.2), and the leading-zero derivative of r has normalized polynomial (t(A(t)B(t))<m)<m.-
These coincide because any terms of A(t)B(t) of degree > m disappear after multiplying by ¢
and truncating to degree m. Thus (2.18) holds. Evaluating (2.18) at = = yu; gives

m

S (6 B ) () = 110,

Jj=1

and dividing by r'(p;) yields >, Ki; = 1.

Nonnegativity. Assume (for the moment) that the interlacing—preservation theorem of the
next subsection is known for simple polynomials of the same (actual) degree. There is a small
point of interpretation here, because in our application ¢; has degree m — 1 (it is being padded
by a zero leading coefficient in the order—m convolution). We record explicitly the standard
limiting device which reduces this case to the theorem just quoted.

For € > 0 put

E;a) () :=Lj(z) + erp(z).

Then 65-5) has real zeros — namely vy, for k # j and the additional zero v; — 1/e — and is in non—
strict proper position with 7,. If one wants the hypotheses of the interlacing theorem literally,
move the common zeros by arbitrarily small alternating perturbations (and divide by the positive
leading coefficient) to obtain simple degree—m polynomials which interlace r,; after applying the
theorem to those polynomials and to ry, let the perturbations tend to zero. By continuity of the
zeros (Hurwitz’s theorem, or elementary continuity of the roots as functions of the coefficients)
it follows that Eg-e) H,, r interlaces r = r;, H,, r,. Finally we let ¢ | 0 and use bilinearity of the
convolution to get the desired interlacing of ¢; By, r, with r (allowing coincidences).

Since the coefficient of ¢; H,, r, at ™1 is positive, such an interlacing (even with coinci-
dences) implies that (¢;8,,74) (1) has the same sign as r’(y;), or is zero, and hence K;; > 0. [

5. Real-rootedness and interlacing preservation for H, (non-circular)

We now prove the following key theorem. The proof proceeds by a self-contained induction and,
at the same time, supplies the deferred nonnegativity of K in all degrees.

Obreschkoff (Hermite—-Kakeya—Obreschkoff) theorem. Let f, g be real polynomials of
degree n without common zeros and with leading coefficients of the same sign. Then the zeros
of f and g interlace if and only if every nontrivial linear combination af 4 bg has only real zeros.
(Proof: consider R = f/g; interlacing < R strictly monotone between poles; strict monotonicity
< every horizontal line meets the graph n times.)

Theorem 4.4 (Real-rootedness and interlacing preservation). If p,q are monic real-rooted poly-
nomials of degree n, then so does pH,, q. Moreover, if p1,ps are two such polynomials and their
zeros interlace, then p1 B, q¢ and ps B, q interlace.

20



Proof. We first treat monic polynomials of exact degree n with simple zeros. Multiplying an
input by a non—zero constant does not change its zeros (and merely scales the convolution in
that factor), and polynomials with multiple zeros will be recovered at the end by approximation.

For the real-rootedness assertion translations allow us to assume that p and ¢ are centered;
once it is proved in that situation formula (2.3) removes the centering. We prove, by induction
on n, the slightly stronger statement that simple inputs give simple outputs. Simultaneously we
use that in all smaller degrees the matrices of Lemma 4.3 are non—negative; this non—negativity
was reduced in Lemma 4.3 to the interlacing part of the theorem in the smaller degree and is
therefore part of the induction hypothesis.

Base n = 1 is trivial. Assume these assertions known up to degree n—1. Let p, ¢ be centered
of degree n with simple real zeros, and define r, = p’/n, ry = ¢’/n. By the induction hypothesis,

r=rpH,_17g

has real simple zeros 1 < --- < pn—1. Also, by the induction hypothesis again, the matrices
K, K arising from the degree n — 1 derivative convolution are nonnegative doubly stochastic, so
(KwP); + (Kw?); > 0.
Lemma 4.2 applied to both (R, 8, ¢) and (p B, R,) together with the split (2.6) yields, at
the points p;, N
(0 B )(115) = — 7' (1s) (), + (Ru)). (2.19)

The parenthesized quantity is strictly positive. For a monic degree-(n — 1) polynomial r the sign
of () is (—1)®~1=%: hence the values (p B, q)(x;) alternate in sign.

A monic polynomial of degree n whose derivative has real simple zeros and whose val-
ues at these critical points alternate in sign has n real simple zeros (one in each interval
(=00, 1), (W1, p2)s - -+ (n—1,00)). Indeed the sign just computed gives (p B, ¢)(n—1) < 0
while the polynomial is positive for large positive x, and (pH, q)(1) has sign (—1)"~!, opposite
to the sign (—1)" at large negative x; between two consecutive critical points the derivative has
a fixed sign, so the alternation yields exactly one crossing in each interval and none at a critical
point. Thus p H,, ¢ is real-rooted in the centered case, hence in general by (2.3).

This completes the induction for real-rootedness.

To prove interlacing preservation, let pi,ps be two interlacing degree-n polynomials. By
Obreschkoff, every linear combination h = ap; + bps is real-rooted. If the leading coefficient of
h is non—zero we divide by it and apply the real-rootedness part just proved (multiplying the
convolution afterwards by the same constant); if the leading coefficient vanishes we approximate,
say, by ap1 + (b + €)p2 and pass to the limit. Consequently

(ap1 + bp2) B, g

is real-rooted for all a,b. By linearity of H,, in the first factor,

(ap1 + bp2) B, ¢ = a(p1 B, q) + b(p2 B, q).

Hence every linear combination of p; B, ¢ and ps B, ¢ is real-rooted. Applying the Obreschkoff
theorem in this limiting form (equivalently, factoring out any common zeros first) yields that
p1 B, ¢ and ps H,, g interlace.

It remains only to spell out the harmless limiting convention that was used in Lemma 4.3.
The passage from simple to multiple roots in the real-rootedness assertion itself is obtained
by the same coefficientwise approximation, since the set of real-rooted polynomials is closed.
The interlacing theorem just proved for simple polynomials with non—zero leading coefficient
also covers the padded leading—zero inputs occurring there: the approximation Kg»g) = {; +
erp (together with an arbitrarily small perturbation to remove common zeros) reduces that
situation to the strict case, and bilinearity plus continuity of the roots allow one to pass to the
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limit. Multiple common roots in the statement of the theorem itself are dealt with by the same
perturbation.

Finally, the nonnegativity part of Lemma 4.3 now holds in every degree, because it was
reduced to interlacing preservation in the relevant lower degree, which we have proved by induc-
tion. O

6. The key decomposition of the convolved critical values

Keep p, q centered and simple, and keep the notation above. For the convolved polynomial define
its w-numbers by
(pHhng—zr)(p)

wi(pB, q) i=— 2.20
00 ) -t (220
Then by (2.6) and Lemma 4.2 (and its p <> ¢ analogue),

wi(p B q) = (Ku?); + (Ku?);, (2.21)

where K, K are nonnegative doubly stochastic matrices and w?, w? are the vectors of w-numbers
of p and gq.

7. The one-line estimate and conclusion

Define

U | U |
Yo A
=1 i=1

and similarly for pH, q. If S; := (KwP);, then by Jensen’s inequality for the convex function =
1/z (using the row sums of K to form convex combinations and the column sums afterwards),

1 T
=< Z o = Ay, (2.22)

i—1 Pt =

and similarly for T; := ([?wq)i one has >, 1/T; < A,
For positive S, T and every real «,

m

1 a2 (1—-a)?
Si T st T (2.23)
since the difference is (a7 — (1 — @)S)?/(ST(S+T)). Summing (2.23) with S = S;, T = T; and

using (2.21) and (2.22) yields

E — < a4, + (1 —a)A4,.
— wi(p By q) p (1= a4,

Choosing a = A,/(A, + A,) gives

“ 1 A,A
< Pra 2.24
2 B S At A, 224
By Lemma 4.1,
n n N — 1
(bn == *A 5 (bn = *A s (bn BHTL = — - @@
() = 74 (9) = 34 (pBng) = Zwi(p 0

Multiplying (2.24) by n/4 and inverting gives
1 S 1 n 1
(I)n(p Bﬂn q) N (I)n(p) (I)n(q) .

This proves the inequality for centered simple-rooted polynomials.
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8. Removing centering and multiple roots

If the roots are not centered, translate p and ¢ to make them centered, apply the proved in-
equality, and translate back using (2.3). The value of ®,, is unchanged by a common translation
of the roots.

If a polynomial has a multiple root we interpret 1/®,, as 0. Choose sequences p) . ¢ of
monic real-rooted polynomials with simple roots converging coefficientwise to the given ones.
The map (p,q) — p B, ¢ is polynomial in the coefficients, hence continuous, and for simple
polynomials the quantities in (2.8) are continuous functions of the roots. Moreover (2.8) shows
that as two roots of a real-rooted polynomial coalesce the sum defining ®,, tends to +o00, so its
reciprocal tends to 0. Applying the proved inequality to p(®), ¢(*) and taking liminf therefore
gives the desired inequality in the limit. In particular, if the right-hand side has a positive limit
the convolved polynomials cannot acquire a multiple root in the limit (otherwise the left—hand
side would tend to 0), and if the right—hand side tends to 0 the estimate is immediate. Thus the
convention on multiple roots is consistent and the inequality survives passage to the limit.

Conclusion

For all n > 2 and all monic real-rooted degree-n polynomials p,q (with ®,, = co on multiple
roots),

1 S 1 1
D,(pBrq) ~ Pulp)  Pnlq)
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5 The O-adapted slice filtration and a geometric fixed-point cri-
terion for slice connectivity

Problem

Fix a finite group G. Let O denote an incomplete transfer system associated to an N, operad.
Define the slice filtration on the G-equivariant stable category adapted to O and state and
prove a characterization of the O-slice connectivity of a connective G-spectrum in terms of the
geometric fixed points.

Solution

Conventions. By a localizing subcategory of a stable category we mean a full subcategory
closed under equivalences, cofibres (hence suspensions), extensions, and arbitrary coproducts
(not necessarily under inverse suspension). For a collection of objects C we write Loc(C) for the
smallest localizing subcategory containing C.

We write &7 : Sp& — Sp for geometric H-fixed points. When we speak of the connectivity
of ®H(X) we mean the connectivity of the underlying nonequivariant spectrum. Let Sps; C Sp
denote the usual full subcategory of k-connective spectra. -

A G-spectrum X will be called connective if ®%(X) € Sps for every H < G.

Lemma 5.1 (Connective spectra are generated by spheres). For every integer ¢ > 0 one has
Locgp(S™ | m >c¢) = Sps,.

Proof. Since Sps.,. is closed under coproducts, cofibres, and extensions, and contains S™ for all
m > ¢, it contains Locg, (S™ | m > ¢). Thus

Locgp(S™ [ m > ¢) C Sps,.

Conversely, let X € Sps.. By the standard cellular approximation theorem for spectra (see |1,
§ II1.2]) one can build a CW-approximation of X using only cells in degrees > ¢: start with
X_1 =0 and inductively construct a sequence

X,1—>X0—>X1—>"'—>X

so that X, — X is (¢ + r)-connective and X, is obtained from X,_; by attaching a wedge of
spheres \/ ¥ S° with m > ¢+ r (e.g. by killing the kernel of 7.y, (X,_1) — 7etr(X) and then
surjecting onto mey,41(X)). Taking the sequential homotopy colimit (mapping telescope) yields
an equivalence

hocglim X, ~ X.

Each X, lies in Locgp(S™ | m > ¢), and this subcategory is closed under sequential homotopy

colimits because in a stable category hocolim, X, ~ cofib (@T X, 1 =shift, D, XT) is built from
coproducts and a cofiber. Hence X € Locg, (S™ | m > ¢). O

Transfer systems from N, -operads. Write K — H for the relation in the transfer system.
For each H < (G set
O ={K<H|K-—H}.

If O comes from an Ny-operad (equivalently an indexing system), then for each fixed H the fam-
ily O is closed under H-conjugation and finite intersections (this reflects closure of admissible
H-sets under products and subobjects; see [2, §3]).
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Consequently, Oy has a smallest subgroup:

Ho:= () K. (22)
K<H
K—H

This subgroup is normal in H and still belongs to Oyy.
Define the index and the real permutation representation
dy :=[H : Hp) € Z>1,  p% :=R[H/Ho]
(the real vector space on the H-set of cosets, with the induced H-action).

Lemma 5.2 (Conjugation and restriction invariance). Let O be the transfer system under dis-
cussion (coming from an Ne—operad, so that the subgroups Ho of (22) are defined).

1. (Conjugation invariance.) For any g € G and L < G, conjugation induces a bijection
between subgroups of L which transfer to L and subgroups of g~ 'Lg which transfer to
g 'Lg. Consequently
(97'Lg)o =g ' Loy,

and in particular dy-1p, = dr.
2. (Restriction to subgroups.) Let H < G and let O|g denote the restricted transfer system
on H (i.e. K —o|, Liff K -0 L for K < L < H). Then for every L < H one has

Loy, = Lo and hence d(LQ‘H = d9.

Proof. (1) If K < L and K — L, closure of the transfer relation under conjugation implies
g 'Kg — g~ 'Lg. This gives a bijection between the indexing sets in the defining intersections,
SO

(¢ 'Lojo= () K= ()g'Kg= g_1< N K)g =g 'Log.
K'<g—'Lg K<L K<L
K' g 'Lg K—L K—L

Taking indices yields dg-17, = d.
(2) By definition of restriction, the collection {K < L | K —¢|,, L} coincides with {K < L |
K —o L} whenever L < H, so the defining intersections agree. O

Lemma 5.3 (Monotonicity and an orbit-count estimate). For the above transfer system let
K <HC<G.

1. One has Ko < KN Hp and hence d > [K : K N Hp].
2. The number of K-orbits in H/Hp satisfies

|H : Ho| dy
[K\H/Ho| = K:KnHo| = dx
Proof. (1) By the restriction axiom for transfer systems, from Hp — H we obtain KNHp — K.
Since K is the smallest subgroup in Ok (by the same construction (22) applied to K), we have
Ko < KN Hp. Taking indices gives dx = [K : Kp| > [K : K N Hp).

(2) Because Ho < H, the stabilizer in K of any coset in H/Hp is exactly K N Hp. Hence
every K-orbit has cardinality [K : K N Hp], so

|H : Ho|
K\H/Hp| = ————.
|[K\H/Hol |K : K N Ho|
The inequality follows from (1): |K : KN Hp| < dg and |H : Hp| = dg. O
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The O-adapted (regular) slice filtration. For each integer n define Tgn C Sp% to be the
localizing subcategory generated by the O-slice cells

Gy Ay S™5  (H<G, meZ, mdy > n). (23)

Here SV denotes the representation sphere of a (virtual) real H-representation V; for m < 0
the notation means the corresponding desuspension by the virtual representation mpg. The
full subcategories TQn form a decreasing filtration of Sp¥; in what follows we only use these
subcategories themselves.

We will use the following (well-known) result.

Lemma 5.4 (Geometric fixed points detect equivalences). A map f: X — Y in Sp© is an
equivalence if and only if @ (f) is an equivalence of spectra for every subgroup H < G.

Proof. Only the “if” direction needs proof. Let F := fib(f). Since each ® is exact, % (F) ~
fib(®(f)) ~ 0 for all H < G. By |3, Prop. 2.52|, this implies F' ~ 0, hence f is an equivalence.

O
The fixed-point characterization of O-slice connectivity.
Theorem 5.5. Let X be a connective G-spectrum and let n > 0. Then
X € Tgn — of(X)e SP>1n/ay for every H < G. (24)

Proof. Set
Pn(G) :={Y € SpY ! dH(y) e SP>n/dy for all H < G }.

Because each ®F is exact and preserves coproducts, and each Sp>y, is localizing in Sp, the class
P, (@) is a localizing subcategory of Sp©.
Step 1: Tgn C Pn(G). Since P,(G) is localizing, it suffices to check the generators (23). Fix a

generator o
Y =G, Ag S™PH  with mdyg > n.

Because n > 0 and dy > 1, this forces m > 0.
Fix K < G. A standard double-coset formula for geometric fixed points of induced spectra
(see e.g. [3, Prop. 2.46]) gives an equivalence

oX(GinrgZ) ~ ] IOWeK/WhK9), A ®8(2), (25)

lg]e K\G/H
K9<H

natural in the H-spectrum Z, where K9 := g~ 'Kg and W, M = Np(M)/M denotes the Weyl
group (the subgroup Wy K9 is viewed inside W K by conjugation with g). Applying this with
Z = S™% and using that geometric fixed points of a representation sphere are the sphere of
the fixed subrepresentation, ,
)K

@Kg(smpg) ~ Sm(pg

we obtain .
oR(Y) =~/  SX(WeK/WgKk%), A S™ERT
[9]eK\G/H
K9<H
If the indexing set is empty then this wedge is the zero spectrum (and hence is connective in every
degree), so there is nothing to prove. Otherwise smashing with X of a finite set merely produces
a finite wedge of the same sphere, and it remains to understand the dimension of (p$)%*. Since
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pg = R[H/Hp] is a permutation representation, the fixed subspace has dimension equal to the
number of orbits:
dim ((p)%") = |K9\H/Ho|.

Because K9 < H, Lemma 5.3(2) applied to K9 < H gives

d
|[K9\H/Ho| > L.
dro
By Lemma 5.2(1) we have dgs = dg, hence
dy
|KI\H/Hp| > ——.
di

Therefore every sphere summand has dimension at least m(dg/dx) > n/dk, hence at least
[n/dg] since it is integral. Thus ®¥(Y) € SP>[n/ax for all K, soY € Pp(G), and 9 C Pu(G)
follows. -

Step 2: Pn(G) C Tgn. We prove this by induction on |G|. When G = e, we have d. = 1 and
Tgn = Locgp (8™ | m > n) = Sps,,

by Lemma 5.1, so the claim is the ordinary Postnikov connectivity statement.

Assume now G # e and that the statement holds for all proper subgroups of G (with
the restricted transfer system). Let X be connective and assume X € P,(G), i.e. ®7(X) €
SP>[n/ay) for all H < G.

Let F be the family of proper subgroups of G and consider isotropy separation:

EF,ANX — X — EF A X. (26)

Step 2a: EFy N X € TQn. For each proper H < G, the restricted H-spectrum reng is

connective and satisfies the same geometric fixed-point bounds for all L < H:
o (resl X) ~ oL (X) € SP>n/d,1-

Here Tgn(SpH ) denotes the filtration for the restricted transfer system O|y; by Lemma 5.2(2)
the subgroups Lo, (and hence the integers dy ) agree with those computed in G for all L < H.
Therefore the inductive hypothesis applies and gives

rest; X € Tgn(SpH).

A G-CW filtration of EF has cells G/H x D" with H € F and r > 0. Smashing with X,
the successive cofibres in the skeletal filtration are wedges of spectra

G/Hy NS"AX ~ Gy Ay X (res% X).

Induction G4 Ag (—) is exact and preserves coproducts, hence sends localizing subcategories to

Ol
localizing subcategories; moreover it sends each O|g-slice cell Hy Ap S™PL " (with L < H) to

the corresponding O-slice cell G4 A, gme? (using Lemma 5.2(2) to identify p?lH = p9). Thus

G+ Ng (Tgn(SpH)) C Tgn(SpG)'

Since suspension preserves Tgn, each skeletal stage of EF; A X lies in Tgn. Finally, Tgn is closed
under sequential homotopy colimits (mapping telescopes) because it is closed under coproducts
and cofibres; hence the colimit EF, A X lies in Tgn(SpG).
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Step 2b: EFAX € Tgn, Set Z := EF A X. Then Z is concentrated over G:
ol (zZy~0 (H<@), 92 ~a%X).

Let ¢ := [n/dg] € Z>o. By assumption ®“(X) € Sp,, hence ®“(Z) € Sps.. By Lemma 5.1,
this implies
Y (Z) € Locsp(S™|m > c¢). (27)

Consider the exact functor
L:Sp — Sp©, L(W) := EF A €W,

where €* denotes the trivial G-action. The spectrum L(W) is concentrated over G and satisfies

PE(L(W)) ~W.

Lemma 5.6 (Spectra concentrated over G). Let C C Sp® be the full subcategory of G-spectra T
such that EF,. AT ~ 0 (equivalently ®(T) ~ 0 for every proper subgroup H < G). Then

®%.C — Sp

is an equivalence and a quasi-inverse is L(W) = EFANeW. In particular, for every Z € C there

s a natural map B
EFANe(992) — Z

which is an equivalence.

Proof. We shall use two standard pieces of equivariant stable homotopy theory. First, smashing
with EF is a smashing Bousfield localization of SpY: its local objects are precisely the spectra
T with EF, AT ~ 0, and the functor Lr(Y) = EF AY is left adjoint to the inclusion of this
full subcategory (for example [4, §3.3]). Secondly, for a finite group the geometric fixed point
functors are exact, preserve arbitrary homotopy colimits and are strong symmetric monoidal,
and for a suspension spectrum one has ® (3> A) ~ ©°(AH); we refer to [5, §V.4] (see also [3,
521).

Let us first check that the two descriptions of C agree. If T' ~ EFA T, then for every proper
H < G the preceding properties give ®(T) ~ ®H(EF) A ®H(T) ~ 0. Conversely, if all these
proper geometric fixed points vanish, the map T' — EF AT in the isotropy—separation cofibre
sequence is an equivalence after applying every ® (for H = G because ®%(EF,) ~ 0), and
hence is an equivalence by Lemma 5.4. Thus C is exactly the local subcategory for this smashing
localization.

Put L(W) = EF Ae*W. If X € C, the localization adjunction and the ordinary adjunction

e* (—)CGat for categorical fixed points give natural isomorphisms of morphism sets

[LW), X gy = [€W, X]g e = [W, X5 ]sp = [W, 29X |gp, (28)

P cat
where in the last step we used X ~ EF AX. Hence L : Sp — C is left adjoint to the restricted
functor ®C.

The unit of this adjunction is an isomorphism. Indeed the monoidality just recalled and the
calculation of the geometric fixed points of the universal spaces give natural equivalences

PCL(W) ~ ®C(EF) NG (W) ~ SOAW ~ W.

For the second equivalence note that the exact coproduct preserving functor ®“e* agrees with
the identity on all suspension spheres, and hence on all spectra by the universal property of
the stable homotopy category. Under these identifications the adjunction unit is the inverse
equivalence: for W = S it is induced by the collapse map SOEF (after applying ®%), and
since both functors are exact and preserve arbitrary coproducts while S° is a compact generator
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of Sp, the unit is an isomorphism for every W. By the triangular identity for the adjunction
(28), the counit N
ex: EFA(®YX) — X, XeC,

therefore becomes an equivalence after applying ®©. For a proper subgroup both source and
target have trivial geometric fixed points, so Lemma 5.4 shows that ex itself is an equivalence.
This counit is the displayed natural map and the two functors are quasi-inverse equivalences. [

Applying L to (27) and using exactness and coproduct preservation, we obtain
Z~L®%2) € Locg,a (L(S™) | m > c). (29)
Thus it suffices to show L(S™) e Tgn for every m > c.

Claim 5.7. If m > 0 and mdg > n, then L(S™) € 7€ (Sp®).

Proof. The generator Smeg belongs to Tgn by definition since mdg > n.
We first show EF A SmeG € Tgn. For a proper subgroup H < G, the restricted H-spectrum

O . .
resg S™Pc is connective and, for L < H,
L (resf Smpg) ~ M)

Since p& = R[G/Go] is a permutation representation, dim((p9)%) = |L\G/Go|, and Lemma 5.3(2)
(with H = G) yields |L\G/Gp| > dg/dr. Hence

m O
L (res§ S™PG) € SP>[n/dy1-

By the inductive hypothesis applied to the group H (with the restricted transfer system, and
using Lemma 5.2(2) to identify the same d;,), we conclude res Smee e Tgn(SpH ) for all proper
H < G. The same G-CW cellular argument as in Step 2a (using exactness/coproduct preserva-
tion of induction and closure under sequential homotopy colimits) then shows EF; A SmPE €

O (S G)
750 (Sp7).

Now in the cofiber sequence
EF, AS™G — S™G —y EF A S™PC,

the first two terms lie in 7€ | so the third term does as well:

EFAS™E €79, (30)

Set Zy := EF A S™G. Then Zy is concentrated over G, so ®7(Zy) ~ 0 for every proper
subgroup H < G, while
¢ (Zy) ~ SmPE)e ~ S,
since (p9)¢ = R (constant functions on G/Gp). Therefore Lemma 5.6 (applied to Zy € C)
supplies a natural equivalence

L(S™) = L(9°Zy) = Zy = EF A S™6.
Since the right-hand side lies in Tgn by (30), and Tgn is closed under equivalences, it follows
that L(S™) € Tgn. O
Now if m > ¢ = [n/dg], then m > 0 and mdg > n, so Claim 5.7 applies. Therefore all
generators in (29) lie in Tgn, hence Z € Tgn.

Step 2c¢: conclude. In (26), both end terms lie in the localizing subcategory Tgn, which is closed
under extensions, hence X € Tgn.
Combining Steps 1 and 2 proves (78). O
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Remark 5.8 (Two extremes). If O allows all transfers, then Hpo = e and dy = |H|, and
Theorem 5.5 recovers the usual regular slice-connectivity criterion. If O only allows trivial
transfers, then Hp = H and dyg = 1 for all H, and the filtration TQn reduces to the ordinary
Postnikov filtration. B
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6 Large e-light vertex subsets

Problem

For a graph G = (V, E), let Gg = (V, E(S,S)) denote the graph with the same vertex set,
but only the edges between vertices in S. Let L be the Laplacian matrix of G and let Lg be
the Laplacian of Gg. I say that a set of vertices S is e-light if the matrix e, — Lg is positive
semidefinite. Does there exist a constant ¢ > 0 so that for every graph G and every € between
0 and 1, V contains an e-light subset S of size at least ce|V|?

Solution

We prove the claim with an explicit constant ¢ = 1/256.

Throughout we write n = |V|. Some degenerate cases are immediate and will be set aside.
If n = 0 the assertion is vacuous. If € = 0 the empty set is 0-light and has the required size. If
the graph has no edges (so that its Laplacian is the zero matrix), then Lg = 0 for every S and
we may simply take all vertices. Thus in the main part of the proof we assume n > 1, ¢ € (0, 1],
and that the Laplacian has positive rank. All Loewner inequalities and traces below are taken
on the subspace range(L) = (ker L)+, and I denotes the identity on that space. The exceptional
cases are revisited in Step 6.

Step 1: Normalization on the Laplacian range. Let ker L be the space of vectors that
are constant on each connected component of G. Let LT be the Moore-Penrose pseudoinverse,
and define

L7Y2 = (L2,

Then L~'/? acts as the inverse square root on range(L) = (ker L) and as 0 on ker L.
For an edge e = {u, v} define the rank-one edge Laplacian

Le = (eu - ev)(eu - eU)T7

so that L = ) . Le. All sums over edges below are taken with multiplicity if the graph has
parallel edges. Define
Ae = L7V2L.L7V2

Each A, is positive semidefinite on range(L), whose dimension is d := rank(L) < n. Moreover,
on range(L) we have

A= L‘1/2<Z Le)L_1/2 =LV = (31)
eck eck
Also, for any S C V,
L™YV2Ler=1/2 = Z Ae on range(L). (32)
ecE(S,S)

Therefore, it suffices to find S such that on range(L),

Yo Aozl (33)

because then (32) implies L™Y/2LgL~Y? < €I, i.c.

xTLSm < ex' Lz for all x 1 ker L.
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If P= L Y2LY2 = [Y/2L=1/2 denotes the orthogonal projection onto range(L), the displayed
Loewner inequality is equivalent to 27 Lgx < ez’ Lx for every x € range(L) by taking z = L'2g
(where L2 denotes the positive square root of L, acting as zero on ker L) in the quadratic form.
Vectors in ker L are constant on each connected component and are therefore also annihilated
by Lg; by symmetry no mixed terms occur between range(L) and ker L. Hence the inequality
holds for all z € RV, which is exactly eL — Lg > 0.

Step 2: A one-sided BSS barrier lemma. The following lemma is a one-sided variant of
the barrier method introduced by Batson, Spielman and Srivastava [1]; we give a complete proof
for the reader’s convenience. For a PSD matrix M > 0 on a d-dimensional space and a scalar
u > Amax (M), define the potential

(M) := tr (ul — M)~ L.

Lemma 6.1 (One-sided barrier). Assume M < ul, let v’ > u, and put U := (u'I — M)~*. If
B > 0 satisfies

tr(BU?)
©y (M) — oy (M)

then M + B < u'I and ®,(M + B) < ®,(M).

tr(BU) + < 1, (34)

Proof. Let K := BY2UB'Y2 = 0. The hypothesis (34) implies tr(K) < 1: the second summand
there is non-negative, and if it were zero then the positive semidefinite matrix BY/2U2B1/2
would have trace zero and hence vanish; since U is invertible on our space this forces B = 0.
Consequently every eigenvalue of K is < 1, so in particular ||K|| < 1 and (I — K) is invertible.
By the Sherman—Morrison—Woodbury identity (which can be verified by multiplying the two

sides),
(W'I—M - B)™' =U + U BY*(I - K)~'BY?1,

sou'l —M — B> 0,ie. M+ B<ul.

Taking traces, using cyclicity of the trace and the elementary fact that tr(XC) < tr(YC)
whenever 0 < X <Y and C = 0, together with (I — K)™! < (1 — trK)~'I (valid for PSD K
with trK < 1), we obtain
tr(BU?)

(I)u/(M-i—B) < (I)u/(M) + T(BU)

A short rearrangement shows that (34) is equivalent to the bound that the right-hand side is at
most ®,(M). This yields @,/ (M + B) < &,(M). O

We will also use the following inequality: if v’ = u + ¢, then
Oy (M) — @y (M) > Str(u'IT—M)"2=5tr(U?). (35)

Indeed, diagonalizing M with eigenvalues \; gives

5 )
By (M) — By (M) = >y 2
; (u =AW = Aj) ; (u' = Aj)?
Step 3: A partial coloring process. Fix e € (0,1] and set

ri= [186—‘ , ug 1= %, 0= %, k= {ZJ ) (36)

We will color k vertices, one at a time, using r colors.
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At time ¢t (0 < ¢t < k), let T C V be the set of colored vertices, |T'| = ¢, and col : T" —
{1,...,r} the coloring. Define the PSD matrix (on range(L))

Mt = Z Auv- (37>
wel
u,veT
col(u)=col(v)
Thus M; contains the contributions from edges whose endpoints are already colored and share
the same color.
Let R := V \ T be the uncolored vertices, m := |R| =n —t. Forv € R and v € {1,...,r}
define the prospective increment obtained by coloring v with ~:

ueTl
col(u)=y
wel

Then if we color v with color ~y, we have M; 1 = M; + By.

Step 4: Inductive barrier invariant. Let u; := ug + td. We maintain the invariant

d
My <ud  and By (M) < By(0) = (39)
0

This holds at ¢ = 0 since My = 0.
Assume it holds for some t < k. Set u = ug, v’ = upy1 = up + 9, and

U:= (u'I - M)t

We claim there exists a choice of (v,7) € R x {1,...,r} for which the barrier condition (34)
holds with M = M; and B = By.

Consider the average over a uniformly random pair (v,~):

1 - tr(B) U2
mr é; [tr(BgU) * cbu(Mt() — @u?(Mt)] . (40)

Observe that

ZZT:BJZ Z AuijAe:I on range(L),

vERy=1 weFl eelR
ueT, vER

because the left-hand side is a sub-sum of the PSD matrices {A.} in (31). If X <Y and C > 0,
then tr(XC) < tr(YC) because tr(CY/2(Y — X)C'?) > 0. Applying this observation with
C = U and with C = U? (both positive semidefinite) we get

S w(BU) <tx(U), > tr(BJU?) < tr(U?).
v,y v,y

Therefore (40) is at most
tr(U) tr(U?)
mr mr (CIJU(Mt) — ‘I’u'(Mt)) '

By the inductive hypothesis, tr(U) = &,/ (M;) < &, (M;) < d/ug; the middle inequality uses
that, for fixed My, the function s — ®4(M;) decreases as the barrier level s increases. By (35),

(41)

Oy (My) — @y (M) > 5tr(U?),
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so (in the non-trivial case d > 0, where tr(U?) > 0) the second term in (41) is at most 1/(dmr).
Hence the average (40) is at most
d/ug 1
+ .
mr  dmr
Aslong as t < k = |n/4], we have m =n —t > 3n/4 and d < n. Using the choices (36), we
bound

(42)

d/ug < n/(e/2) 1 1 1 1

mr — (3n/4)-(16/¢) 6’ omr — (g/n)- (3n/4) - (16/e) ~ 12’

so the average (42) is < 1. Therefore there exists at least one pair (v,~) for which (34) holds.
Applying Lemma 6.1 yields

d
Mipr <upprl  and @y, (Miy) < @y, (My) < w0

Thus the invariant (39) propagates to t + 1, completing the induction for ¢t = 0,1,..., k.

Step 5: Extracting a large e-light set. After k steps, the colored set T' (with |T'| = k) is

partitioned into r color classes Si,...,.S,. By definition of M,
T T
My, = Z Z Ay = E:L_l/ngaL_l/2 on range(L).
a=1 wv€E(Sq,Sa) a=1

From the invariant, My < upl with up = ug + kd < /2 + /4 = 3¢/4. Since each summand is
PSD, each is dominated by the sum. Let S be the largest color class. Then

3
L Y2LgL7V2 < My, < ZE I <el onrange(L).
As explained in Step 1, this implies Lg < ¢eL, i.e. eL — Lg = 0, so S is e-light.

Step 6: Size lower bound. Among the k colored vertices, the largest color class has size at
least k/r. If n > 4, then k = |n/4] > n/8. Also,

16 16 32
r=|—|<—+1< —.
€ € €
Hence " g
§| > By B _ en
r 32/e 256
The construction above was used only under the standing assumptions made at the beginning
(in particular that the graph has at least one edge). If the graph is edgeless, taking S = V is
trivially e-light. It remains to look at small values of n: for 1 < n < 3 any single vertex set
S = {v} has Lg = 0 and hence is e-light, and it satisfies |S| = 1 > en/256 because ¢ < 1. The
cases n = 0 or € = 0 were disposed of at the start. Thus in all cases there exists an e-light set
S with

&
IS| > 256 V.

This proves the statement with the universal constant ¢ = 1/256.
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7 Uniform lattices with 2—torsion arising as fundamental groups
of closed manifolds with Q—acyclic universal cover

Problem

Suppose that I' is a uniform lattice in a real semisimple group, and that I' contains some 2—
torsion. Is it possible for I' to be the fundamental group of a compact manifold without boundary
whose universal cover is acyclic over the rational numbers Q7

Solution

We construct a uniform lattice I in a real semisimple group, containing a central element of
order 2, and a closed manifold M with 71 (M) = I such that M is Q-acyclic.

7.0.1 Step 0: A torsion—free uniform lattice in SO™(n,1)

Fix an odd integer n = 2m+1 > 5. It is classical that there exist closed hyperbolic n—manifolds
in every dimension. For example, standard arithmetic constructions using anisotropic quadratic
forms over totally real fields give compact hyperbolic orbifolds in all dimensions (see [1] and
the discussion in [4, Ch. II]). Passing to the identity component and using Selberg’s lemma [6]
we obtain a torsion—free finite index subgroup. Thus we may choose a torsion—free cocompact
lattice
L < SO"(n,1)

such that

N = L\H" (43)

is a closed orientable hyperbolic n—manifold (hence an aspherical K(L,1)).

7.0.2 Step 1: The spin-lift lattice with central 2—torsion
Consider the spin covering
1 —s {#1} — Spin(n,1) £ SOT(n,1) — 1.

Define
I := p~Y(L) < Spin(n,1).

Then I' is discrete and cocompact in Spin(n, 1) (because p is a finite covering and L is discrete and
cocompact in SOT(n, 1)). Thus I is a uniform lattice in the real semisimple group Spin(n, 1). We
shall use below that I' is finitely presented; this follows for lattices in Lie groups (for instance from
the theorem of Borel-Serre on arithmetic groups, or from the fact that a compact fundamental
domain gives a finite presentation, cf. [4, Ch. I, Thm. 4.7]).

Let z := —1 € Spin(n, 1) be the nontrivial element of the kernel. Then z € I is central and
has order 2, hence I' contains 2—torsion.

Remark 7.1 (Only 2-torsion). Since L is torsion—free, any finite order element v € T" satisfies
p(y) € L finite order, hence p(y) = 1 and v € ker(p) = {£1}. Therefore the only nontrivial
finite order element in I' is the central involution z.

7.0.3 Step 2: A projective QI'-Poincaré complex by extension of scalars

Let QI' be the rational group ring, and define the central idempotent

1
e = ;ZEQF.

We now relate the corner algebra e(QI')e to QL.
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Lemma 7.2 (The corner algebra). There is a canonical ring isomorphism
¢(QD)e = QL,
and eQT is free as a left module over e(QT)e.

Proof. Choose a set-theoretic section s : L — I' of the projection p|r : I' = L (i.e. p(s(\)) = A).
Since ker(p) = {£1} = (z) is central, there is a 2—cocycle € : L x L — {0,1} such that

s(N)s() = sO) =00,
Multiplying by e kills the ambiguity 25(*#) because ez = e. Hence in QI' we have

(es(M)(es(u) = es(Ns(u) = es(h) =M = es(h).

Thus the rule A — e s(\) defines a multiplicative map QL — e(QI')e sending the group basis
of L to elements of the corner. If §'(A) = s(A\)2°™) is another section, then es’(\) = es()), so
the resulting map is independent of the choice of section. It is an isomorphism for the following
elementary reason. The elements {s(\),zs(A) | A € L} are pairwise distinct and form a subset
of the group basis of QI'; hence a relation ) ayes(A) = 0 would give > axs(A) + > arzs(A) =0
and all ay are zero. Thus the displayed map identifies the bases {A\} and {es(A)} of the two
Q-vector spaces, and it is onto because every element of the corner is a Q—linear combination
of the es(\).

For the module statement we use that the idempotent e is central. Consequently eQI' = eQIl'e
(for ex = exe). Thus, viewed as a left module over the corner algebra e(QI')e, the module eQT'
is just the regular module of this ring, in particular it is free of rank one. This proves the
lemma. O

Now fix a finite CW structure on N and let ¢; be the number of i—cells. The universal cover
N ~ H" is contractible, so the cellular chain complex C*(]\Nf ;Q) is a finite free chain complex
of right QL—modules which resolves the trivial right QL—module Q. We extend scalars along
QL = ¢(QI')e by tensoring with the (QL, QI')-bimodule eQI":

P, = C'*(]\Nf; Q) ®qr, eQT.
Then each chain group is
P = (eQ)*  (0<i<n), (44)
hence P, is a finite chain complex of finitely generated projective right QI'-modules.

>~

Lemma 7.3 (Homology of P.). The complex Py is acyclic in positive degrees and has Ho(Px)
Q with the trivial I'-action. More precisely,

Hi(P,) =0 (i>0), HyP) = Q.

Proof. Because eQI is free as a left QL-module (Lemma 7.2), it is flat, so tensoring the exact
augmented cellular complex of N over QL preserves exactness in positive degrees. Thus H;(Py) =
0 for ¢ > 0 and

Ho(P:) = Q®qr eQI' = Q®or QL = Q

as a vector space (using the corner isomorphism of Lemma 7.2 in the middle).
It remains to identify the residual right action of I". Let [1 ® e] be the generator displayed
above. If v = s(u)z¢ € T then, in the tensor product over QL,

L@ey=[l@es(u)=] = [1oes(u)] =[1-p@e = [1®¢,

because the augmentation makes 1-u = 1 and ez = e. Thus the right action is trivial and
Hy(P,) = Q as a trivial right I'-module. O
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For later use we make explicit that induction by the central idempotent is compatible with
the duality which enters the definition of a symmetric Poincaré complex. Recall that our chain
modules are right modules and that the dual of a right module is again regarded as a right
module by means of the standard involution on the group ring.

Lemma 7.4 (Induction and duality). Let A = QI and put Ay = eAe(= eA). Via Lemma 7.2
we identify Ay with QL. The functor

— ®qr eA: Proj(QL) — Proj(A)

identifies the category of finitely generated projective right QL-modules with the full subcategory
of finitely generated projective right A—modules P satisfying Pe = P. Under this identification
the duality P — Homyu (P, A) (with the involution convention just mentioned) corresponds to
the usual duality over QL. Consequently a symmetric Poincaré chain equivalence on a finite
projective QL—complex tensors to a symmetric Poincaré chain equivalence on the induced A-
comple.

Proof. Because e is a central idempotent the ring A is the direct product eA x (1 —e)A, and a
right A-module is the same thing as a pair of modules over the two factors. The induction functor
sends a QL(= Ay )-module C to the pair (C,0); the inverse on the indicated full subcategory is
P — Pe = P. Projectivity and exactness are preserved by this equivalence.

It remains only to note that the duals match. If P = Pe and f : P — A is A-linear, then
f(P)= f(Pe) = f(P)e C Ae = eA; hence

Hom4 (P, A) = Hom4 (P, eA) = Home ¢ (Pe, eAe).

Via the isomorphism eAe = QL this is precisely the ordinary dual of the corresponding QL—
module, and the involutions agree because e¢* = e. Applying the equivalence degreewise to a
chain complex shows that a chain equivalence and its adjoint remain such after tensoring, which
is the Poincaré assertion. O

The manifold N determines an n—dimensional (symmetric) Poincaré chain complex structure
on C (Nf ;Q) over QL (coming from the fundamental class and a cellular diagonal approxima-
tion). By Lemma 7.4 and the exactness of — ®qr, eQI" this Poincaré structure extends to P, by
extension of scalars. Thus:

Proposition 7.5 (A projective QI'-Poincaré complex). The chain complex P, is a finite n—
dimensional projective Poincaré chain complex over QI' with Ho(Py) = Q and H;(P.) = 0 for
1> 0.

It is useful to keep track of orientations for the later surgery step. The orientation mod-
ule of this Poincaré complex (and hence of all subsequent Q-Poincaré spaces we construct) is
trivial: the manifold N is orientable and the homomorphism I' — SO™(n, 1) factors through
the orientation—preserving group, while the central element z acts trivially on the fundamental
class.

7.0.4 Step 3: Vanishing of Wall’s finiteness obstruction and realization by a finite
CW complex

We now compute the Wall finiteness obstruction and then appeal to the standard realization
theorem over subrings of Q.

The Wall finiteness obstruction of a finitely dominated CW complex (or, equivalently, of a
finite projective chain complex modeling its universal cover) lies in the reduced group I?o (QT).
In our setting it is represented by the alternating sum of chain modules:

n n
o(P.) = > (1)'[P] = Y (~1)'c; [eQI] = x(N)[eQI' € Ko(Q). (45)

i=0 1=0
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Since N is a closed orientable manifold of odd dimension n, we have yx(N) = 0. Therefore
o(Py) = 0 already in Ko(QI"), hence also in Ky(QI).

We shall use the following precise form of Wall’s realization theorem. Recall that T is finitely
presented (Step 1).

Theorem 7.6 (Wall-Ranicki realization over localizations). Let R C Q be a subring and let 7
be a finitely presented group. Let C, be a finite chain complex of finitely generated projective
right Rm—modules, concentrated in degrees 0,...,n, with H;(Cy) =0 fori >0 and Ho(Csx) = R
(trivial action). Its Wall obstruction is the class 3(—1)/[Ci] € Ko(Rx). If this class is zero,
then there exists a finite connected CW complex X with m1(X) = 7 such that

C.(X;R) ~ C,

as chain complexes of Rm—modules. If in addition Cy carries an n—dimensional symmetric
Poincaré chain—complex structure, X may be chosen to be a finite R—Poincaré complex of formal
dimension n (elementary algebraic expansions do not change the Poincaré type).

For the reader’s convenience let us also indicate references for this statement. Wall constructs,
from an algebraic Rm—complex (for R a localization of Z, in particular a subring of Q), a finitely
dominated CW complex with the prescribed cellular Rmr—chains and proves that the obstruction
above is the only one to making it finite; see Wall [8, Thm. F and §§ 2-5|. The algebraic
reformulation for projective complexes, and the fact that elementary expansions do not change
symmetric structures, is spelled out in Ranicki [5]. Let us also make explicit the small piece
of algebra which allows one to pass from rational matrices to honest cell attachments. If the
obstruction vanishes, adding finitely many elementary contractible projective complexes replaces
a finite projective resolution by a based free resolution. Choose a finite presentation of 7 and
choose the bases in degrees 0 and 1 (and a relator summand in degree 2) so that the corresponding
part of the differential is the cellular differential of the presentation 2—complex. By elementary
changes of basis over Rm one may further suppose that any additional basis vectors in degree
2 have zero boundary (the relator columns already generate ker d;). In the present paper we
only need the case R = Q. The remaining boundary matrices have entries in Qm, and then
there is a simple simultaneous clearing of denominators: writing these matrices in the chosen
bases, pick diagonal change—of-basis matrices T; (with non—zero integer entries) inductively for
1 > 2, starting with Ty = 71 = 1, so that Ti__llﬁiTi has coefficients in Zm for every i (for a fixed
T;—1 one merely takes the entries of the diagonal of T; large enough to clear the denominators
in each column). The conjugated complex is isomorphic to the original over Rw. Wall’s cellular
realization then starts from the presentation 2—complex for 7 and attaches cells in dimensions
> 3 to realize this integral free complex up to R—chain equivalence; the relative Hurewicz theorem
identifies the necessary homotopy and homology classes.

Proposition 7.7 (Realization by a finite CW complex). There exists a finite CW complex X
with m1(X) 2 T such that, as chain complezes of right Q' -modules,

C.(X;Q) ~ P.. (46)

Moreover X is a finite Q—Poincaré complex of formal dimension n, and X is Q-acyclic in
positive degrees.

Proof. The computation (45) gives a vanishing obstruction. Applying Theorem 7.6 with R = Q,
m = I' and Cy = P, yields a finite CW complex whose cellular rational chain complex is
chain-homotopy equivalent to P,. The last assertions follow from the Poincaré structure on P,
(Proposition 7.5) and from Lemma 7.3. O

For later use let us spell out explicitly why the finite complex just obtained is a genuine
Poincaré space (and not merely a complex with the right algebraic chains). The symmetric
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Poincaré chain equivalence on the finite projective resolution P, is equivalent to the following
cohomological statement: there is a class

a € Hn(r) Q)

whose cap product induces isomorphisms H*(I'; M) = H,,_;(T'; M) (with the usual orientation
twist) for every QI'-module M. This is simply another way of expressing the algebraic Poincaré
condition; see for example Brown’s discussion of duality over coefficient rings in [2, Ch. VIII,
§§ 9-10] or Ranicki [5].

Since C(X;Q) is a free resolution of the trivial module, the classifying map induces isomor-
phisms H,(X; M) = H,(I'; M) and H*(X; M) = H*(I'; M) for every local system of Q-vector
spaces M. Let [X] € H,(X;Q) be the image of a under this identification (equivalently, using
the rational homology equivalence g : X — N constructed in Step 4, the inverse image of the
hyperbolic fundamental class). By the naturality of the cap product, capping with [X] yields
the Poincaré duality isomorphisms on X with arbitrary local coefficients. Thus X is a finite Q—
Poincaré complex of formal dimension n, and the duality agrees with the algebraic symmetric
structure transported from P.

7.0.5 Step 4: construction of a geometric rational normal invariant

The point at which one has to be a little careful is the passage from the algebraic Poincaré
complex of Step 2 to a datum to which the (geometric) surgery machine applies. We give the
details here. We shall exhibit an honest stable real vector bundle over the finite complex X
which is a rational reduction of the Spivak normal fibration of X, and we shall check that the
algebraic normal complex associated to it is exactly the one obtained by tensoring the normal
complex of the hyperbolic manifold N with the idempotent module.

We begin by fixing a map to the hyperbolic manifold. Let cx : X — BT be the classifying
map of the universal covering of the finite complex furnished by Proposition 7.7. Since C(X; Q)
is a free resolution of the trivial QI'-module, cx induces isomorphisms on homology with trivial
rational coefficients. The extension 1 — {£1} —» T’ 5Hrp 1 gives a map of classifying spaces
Bp : BI' — BL and, because the order of the kernel is invertible in Q, the transfer (or the
Lyndon—Hochschild—Serre spectral sequence) shows that Bp is a Q-homology equivalence [2,
Ch. VII, § 6|. Finally BL is (canonically up to homotopy) the aspherical manifold N = L\H".
We choose once and for all a cellular representative of the composite

g: X X, pr 22, B~ N, (47)

It is a rational homology equivalence. Orient X in such a way that g.[X] = [N] in H,(—; Q).
Let vy be the stable normal bundle of the smooth manifold N and put

{=g'vn (48)

(up to adding a trivial summand in order to have an honest vector bundle of large rank over the
finite skeleton of BO). We shall use the following elementary fact, which is often left implicit in
accounts of rational surgery.

Lemma 7.8 (Rational reductions of the Spivak fibration). Let Y™ be a finite Q—Poincaré com-
plex and let ) be an oriented stable real vector bundle over Y. Denote by U € H"(T(n); Q)
the rational Thom class (r = rankn). Then there is, after adding a trivial summand to n if
necessary, a stable map of spectra

p: ST — T(n) (49)

such that the Hurewicz image of p is the Thom image of the fundamental class of Y (over Q).
Consequently (n,p) is a Q-normal invariant of Y : the sphere fibration of n is fibre homotopy
equivalent to the Spivak normal fibration after rationalization and the cap product with the Thom
class realizes the prescribed Poincaré duality.
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Proof. We spell out the standard facts which enter. First of all a finite R—Poincaré complex
(with R a localization of Z) has an R—Spivak normal fibration: this is a stable oriented spherical
fibration 1/5 over Y together with an R-local Thom-Pontryagin collapse ¢, : S"% — T(vy)
whose cap product realizes the Poincaré fundamental class. The construction and uniqueness
are due to Spivak and Wall; for localizations see Sullivan’s notes on localization and, in the form
used in surgery with fundamental group, Hausmann |3, § 1, Prop. 1.1 and Cor. 1.4] or Ranicki
[5, Ch. 9, esp. §§9.2-9.3]. We shall use this result with R = Q.

We next recall why such a fibration is automatically reducible after rationalization. Let BSG
denote the classifying space of stable oriented spherical fibrations (the identity component of the
stable group of homotopy self-equivalences of spheres). For i > 0 one has m;(BSG) = 7% |, the
stable homotopy groups of spheres. By Serre’s theorem these groups are finite. Consequently
the rationalization BSG|q) is contractible (the spaces involved are nilpotent). If 7 is an oriented
stable real vector bundle over Y, its underlying stable sphere fibration is classified by the com-
posite Y — BO — BSG,; after rationalization this map is null. The same is true for the Spivak
fibration, and there is therefore a fibre-homotopy equivalence of stable spherical fibrations over
Y

J(M)©) = vy (o) (50)

(The choice is unique up to homotopy.) Stabilizing by adding a trivial bundle we may suppose
that the two representatives have the same fibre dimension, say 7.

The equivalence (50) induces a rational equivalence of Thom spectra and carries the rational
Thom class of the Spivak fibration to a Thom class U € H"(T'(n); Q). Composing the Spivak
collapse ¢, with the inverse Thom-space equivalence gives a stable map in the rational stable
category S (’5;” — T'(n)(0). Since Thom spaces of bundles over finite complexes are finite spectra,
such a rational map can be represented by an honest stable map after multiplying by a non—
zero integer: the stable Hurewicz theorem (or, equivalently, the Atiyah—Hirzebruch spectral
sequence together with the finiteness of the stable stems; see [7, Ch. IX, Thm. 3.1|) shows
that 7 (F) ® Q = H.(E;Q) for finite spectra. We choose a representative and, if necessary,
rescale the Thom class by the inverse integer (over the coefficient field Q). This gives the map
(49). By construction its Hurewicz image is precisely the Thom image of [Y], and capping with
the Thom class (equivalently, transporting the Thom class of the Spivak fibration) yields the
Poincaré duality isomorphisms with arbitrary local systems of Q—vector spaces. Thus (7, p) is a
rational reduction of the Spivak fibration, i.e. a Q—normal invariant in the sense used in rational
surgery. O

We apply the lemma to the bundle £ = ¢g*vy. It remains to check that this geometric
invariant is compatible with the algebraic calculations of Step 5. We make this explicit because
the idempotent construction is slightly unusual.

Proposition 7.9 (Identification with the idempotent normal complex). Let the chain equiva-
lence (46) be chosen as follows. Lift the map (47) to a cellular p—equivariant map of universal
covers g : X — N = H"; it induces a chain map of right QI'—complexes

C.(X;Q) — C.(N;Q) ®gz eQI' = P, (51)

(the module eQI is just the reqular QL—module with the right action inflated along p, so the
formula is the evident one). Since both complexes are projective resolutions of the trivial module,
the comparison theorem shows that (51) is a chain—homotopy equivalence; we take this as the
equivalence in (46). With this choice the algebraic normal structure on Cy(X;Q) associated, in
Ranicki’s sense, to the rational normal invariant (§,p) of Lemma 7.8 is exactly the structure
obtained from the mormal complex of the manifold N by tensoring over QL with the bimodule

eQr'.
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Proof. Only naturality has to be checked. The cellular symmetric Poincaré structure on C, (Kf Q)
is obtained from a diagonal approximation and from the fundamental class of INV; the algebraic
normal structure associated to vy is represented by a Thom cocycle for this bundle. Pulling
the Thom cocycle back by g gives the Thom cocycle of £, and our orientation of X was cho-
sen so that fundamental classes correspond. The diagonal approximation on X may be taken
cellularly natural with respect to g (two choices give chain-homotopic symmetric structures).
Ranicki’s “symmetric construction” and his definition of an algebraic normal complex are func-
torial for exact functors of projective module categories compatible with involution and for maps
of spaces: see [5, Chs. 1-3|. Applying this functoriality to the exact functor — ®gz, eQI' and to
the chain equivalence (51) gives the asserted identification. Concretely, on the level of modules
the equality follows from the identities es(Ap) = es(A\)s(u) (Lemma 7.2), and on homology from
the naturality of cap product. O

In particular the finite Poincaré complex X constructed in Step 3 is equipped with an ex-
plicit stable vector bundle (indeed the pull-back of a bundle from a manifold) representing the
algebraic normal datum whose surgery obstruction we compute next. This fills the gap between
the idempotent algebra and the geometric input required by the rational surgery theorem.

7.0.6 Step 5: Vanishing of the rational surgery obstruction

Let n =2m + 1 > 5. Given an n—dimensional Q-Poincaré complex X with fundamental group
I' and a chosen normal invariant, there is a surgery obstruction in the (quadratic/symmetric)
L-group L!(QT) for the standard involution (we are in the orientable, trivial-orientation case);
if it vanishes then X is normally cobordant to a closed manifold, and in fact can be realized by
a closed manifold mapping to X inducing m—isomorphism and QI'-homology equivalence. This
is the rational surgery theorem in the presence of fundamental group, due to Hausmann and
Ranicki (building on Sullivan-Wall), see [3, 5].

The key point in this construction is that the surgery obstruction of this normal datum
is zero for a very concrete reason. Because the idempotent e is central (and is fixed by the
involution) the rational group ring splits as a product of rings with involution

QI 2 eQl'e x (1 —€)QI'(1 —e),

and algebraic L-theory is additive for such products. The normal complex chosen in Step 4
was obtained on the projective complex P,. The finite CW complex X of Step 3 has cellular
chains free over QI', but the chain equivalence (46) is obtained from P, by adding elementary
(contractible) summands. In the cobordism group L!(QI') such summands represent the zero
element. Consequently the surgery obstruction of X is represented by the induced normal
complex on Py, and all of its chain modules are of the form (eQI')%; the class therefore lies
entirely in the first factor of the displayed product. Under the ring isomorphism eQI'e = QL
this first component is precisely the result of tensoring the identity normal complex of the
manifold N with the bimodule eQI".

Now the identity normal map idy : N — N has surgery obstruction 0 € L?(QL) (indeed it
is already a manifold). Algebraic surgery is functorial for exact functors of projective module
categories compatible with duality: applying — ®qr, eQI' to a null-cobordism of the identity
normal complex gives a null-cobordism of the induced normal complex (see Ranicki [5]). Thus
the component of the obstruction in L (eQT'e) is zero, and hence the obstruction of X in L (QI)
is zero as well.

7.0.7 Step 6: Rational surgery produces a closed manifold with Q—acyclic universal
cover

We now apply the rational surgery theorem.
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Theorem 7.10 (Rational surgery realization). Let R C Q be a subring (equivalently a localiza-
tion of Z) and let Y2 be a finite connected R—Poincaré complex, ¢ > 5, with fundamental group
w. Suppose that Y is equipped with an R—normal invariant: by this we mean, in the topologi-
cal language, a stable real vector bundle (or stable spherical fibration) over Y together with an
R-Thom class whose cap product realizes the Poincaré fundamental class, and in the algebraic
language equivalently an algebraic normal structure on the symmetric chain complex C*(EN/; R)
in Ranicki’s sense. Associated to this datum is a surgery obstruction

o(Y) € L} (Rn)

(for the standard orientation character). If o(Y) = 0, then there exists a closed smooth q-
manifold M and a normal map f: M — Y representing the chosen invariant such that

w1 (M) i>71'1(Y):7r, f« : Hi(M; Rm) i)H*(Y;RTF).

In dimensions ¢ Z 0 (mod 4) no further numerical conditions occur; in dimension 4k the equality
of the signature with the Hirzebruch L—class determined by the chosen Pontryagin data is the
additional requirement built into the choice of normal invariant.

For the reader who wants precise sources we spell out where this statement is proved. Haus-
mann constructs, for localizations of Z, normal maps which are homology equivalences modulo
the chosen localization and develops the corresponding obstruction theory in [3, §§ 1-3]. The
translation between such (localized) normal invariants and algebraic normal complexes, and the
functoriality of the obstruction under exact functors of module categories, is part of Ranicki’s
algebraic surgery framework; see [5|. Because in our application the normal invariant is repre-
sented by an honest stable vector bundle (Lemma 7.8 and Proposition 7.9) the output of the
theorem may be taken in the smooth category.

We apply Theorem 7.10 with R =Q, ¢g=n=2m+ 1, # =T, and Y = X equipped with the
normal invariant chosen in Step 4. The obstruction vanishes by Step 5. Hence we obtain:

Proposition 7.11. There exists a closed smooth n—manifold M and a map f : M — X inducing
an isomorphism on m and an isomorphism on QI'-homology:

m(M) S m(X)=T,  H,(M;QI') = H,(X;Qr).

7.0.8 Step 7: The universal cover of M is Q—acyclic

Let ]7: M — X be the lift of f to universal covers. Recall that with our convention of cellular
right T'-modules the chain complex computing homology of a connected complex with coefficients
in the left regular module QI' is Cy(Y;Z) ®@zr QI for such a complex Y, which identifies (by
choosing one lift of each cell) with the ordinary cellular complex of the universal cover with
rational coefficients. Thus the QI'-homology equivalence in Proposition 7.11 is equivalently the
statement that f induces an isomorphism
H,(M;Q) — H.(X;Q).
Using Proposition 7.7 and Lemma 7.3 we have
Q? /l: - 07

Hi(X;Q) = Hi(P.) = {0 i>0.

Therefore

so the universal cover M is Q—acyclic in positive degrees.
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7.0.9 Conclusion

We have produced, for each odd n = 2m + 1 > 5, a uniform lattice I' < Spin(n, 1) containing
the central involution z = —1 and a closed smooth n—manifold M with w1 (M) = I" such that
M is acyclic over Q.

Theorem 7.12. Yes: there exist uniform lattices I' in real semisimple groups containing 2—
torsion which occur as the fundamental groups of closed manifolds whose universal covers are
Q-acyclic.

7.0.10 Compatibility with complete Euler characteristic obstructions

For context, we briefly explain why this example does not contradict familiar torsion/Euler
characteristic obstructions. Brown defines the complete Fuler characteristic X (I') of a group of
finite type, whose coefficients at conjugacy classes of finite order elements can be expressed, for
cocompact lattices, in terms of Euler characteristics of centralizers (see |2, Ch. IX, §7]). In many
settings, existence of a finite Q—acyclic universal cover forces these coefficients to vanish away
from the identity class.

In our example, by Remark 7.1, the only nontrivial finite order element is the central involu-
tion z, and its centralizer is all of I'. The (rational) Euler characteristic of a group with a finite
normal subgroup is multiplicative with the factor 1/|F| (Brown [2, Ch. IX, §7]); consequently

xo(l) = x(L)/2 = x(N)/2.

Equivalently, applying the Hattori-Stallings trace to the Wall element (45) shows that the
complete Euler characteristic has coefficient x(IN)/2 both at the identity class and at the class
of z (and no other finite classes). For odd n we have x(N) = 0, so the coefficient at z indeed
vanishes. In contrast, in even dimensions the Gauss—Bonnet formula for a compact hyperbolic
manifold gives x(IN) # 0, and already the finiteness obstruction (45) is detected by this trace
and is nonzero. Thus the odd—dimensional spin-lift construction gives a genuine positive answer
precisely in the case compatible with these obstructions.

References

[1] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2)
75 (1962), 485-535.

[2] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer—Verlag,
New York, 1982.

[3] J.-C. Hausmann, Manifolds with a given homology and fundamental group, Comment. Math.
Helv. 53 (1978), 113-134.

[4] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete 68, Springer—Verlag, 1972.

[5] A. Ranicki, Algebraic and Geometric Surgery, Oxford Mathematical Monographs, Oxford
University Press, 2002.

[6] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, in Contribu-
tions to Function Theory (Internat. Collog. Function Theory, Bombay, 1960), Tata Institute
of Fundamental Research, Bombay, 1960, pp. 147-164.

[7] R. M. Switzer, Algebraic Topology—Homotopy and Homology, Classics in Mathematics,
Springer-Verlag, Berlin, 2002.

[8] C. T. C. Wall, Finiteness conditions for CW complexes, Ann. of Math. (2) 81 (1965), 56—69.

43



8 Quadrivalent polyhedral Lagrangian surfaces are Lagrangian-
smoothable

Problem

A polyhedral Lagrangian surface K in R* is a finite polyhedral complex all of whose faces are
Lagrangians, and which is a topological submanifold of R*. A Lagrangian smoothing of K is a
Hamiltonian isotopy K; of smooth Lagrangian submanifolds, parameterised by (0, 1], extending
to a topological isotopy, parametrised by [0, 1], with endpoint Ky = K.

Let K be a polyhedral Lagrangian surface with the property that exactly 4 faces meet at
every vertex. Does K necessarily have a Lagrangian smoothing?

Solution

Yes. We construct explicit local smoothing models at each vertex and each edge, glue these
models into K inside pairwise disjoint affine symplectic (hence Darboux) neighborhoods chosen
compatibly from the outset, and then verify that the resulting Lagrangian isotopy has vanishing
flux and hence is Hamiltonian.

0. Conventions and standing hypotheses.

Symplectic conventions. Work in (R* w) with w exact. Fix once and for all a global primitive
A= pirdq + p2dge
in some fixed global Darboux coordinates (g1, g2, p1,p2), so d\ = w. In these coordinates
w =dp1 N dgq1 + dpa A dqgo, W(0p,,0y;) = bij, w(9y;, Op;) = —0ij.

We use the Hamiltonian convention
LXgW = — dH. (52>

(With w = > dp; A dgi, this is the convention giving Hamilton’s equations ¢; = 0H/Jp; and
pi = —0H/0q;.)

If Agtq denotes the standard primitive in some other Darboux chart, then Ag;q — A is a closed
1-form on R* and hence exact. Thus, whenever we work in a local Darboux chart, we will
freely replace the local primitive by adding an exact correction term so that all computations
ultimately refer to the same fixed global A.

Polyhedral hypotheses. We make explicit the local cell-structure properties used below.

e K C R*is a compact (or, more generally, properly embedded) topological 2-manifold
without boundary.

e K is given a face-to-face finite polyhedral structure: each 2—cell is a compact convex
polygon contained in an affine Lagrangian plane, and the intersection of any two cells is a
(possibly empty) common face of each.

e Every vertex is quadrivalent: exactly four 2—faces meet at each vertex (equivalently, the
link of each vertex in K is a 4—cycle).

Under these hypotheses, each point of the interior of an edge has a neighborhood in K home-
omorphic to a disk and modeled by exactly two faces meeting along that edge (no “branching”
along edges). Likewise, at a vertex, the four incident faces appear as four planar sectors meeting
cyclically.

1. Linear normal form at a quadrivalent vertex, including all sign patterns.
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Let x be a vertex of K, and let 1,2, (3,14 be the four oriented edge rays emanating from x,
numbered in cyclic order in the link. Let

Pi = <li,li+1> (Z mod 4)

denote the affine Lagrangian planes of the four incident faces (after translating = to the origin
we identify these planes with linear Lagrangian subspaces). Each incident face is a planar sector
in P; bounded by [; and l; 1.

Lemma 8.1 (Eliminating coplanar adjacencies). Let K C (R* w) be a polyhedral Lagrangian
surface, and let x be a vertex with emanating rays l,ls, 13,14 in cyclic order, and P; = (I;,li41)
as above.

Assume that two adjacent faces are coplanar, i.e. P; = P;y1 for some i. Then x is not a
genuine quadrivalent singularity of the underlying embedded surface K : after a cyclic relabeling
(so Py = P,), exactly one of the following holds.

(a) Py = Py = P3 = Py (so x is a smooth point of K ).

(b) I and I3 are collinear (opposite rays on a line £) and Ps = Py (so x lies in the interior of
a geometric edge of K ).

Consequently, since the existence of a Lagrangian smoothing depends only on the subset K and
not on the chosen polyhedral structure, one may, without loss of generality, discard such inessen-
tial vertices and assume in the vertex analysis that no two adjacent faces are coplanar.

Proof. By cyclic relabeling assume P; = P» =: L. Choose nonzero vectors v; € l;. Then
vy, V9,v3 € L.

First suppose that v; and v3 are linearly independent. Then L = (v1,vs). Since Py = (v4,v1)
is Lagrangian, w(vg,v1) = 0, and since P3 = (vs,v4) is Lagrangian, w(vg,v3) = 0. Hence vy is
w-orthogonal to (v1,vs3) = L, i.e. vg € L¥. Because L is Lagrangian, L* = L, so vy € L. It
follows that P; = (vs,v4) C L and Py = (v4,v1) C L, hence P3 = Py = L, proving (a). Since K
is a topological 2-manifold and lies in the affine plane L near x, x is a smooth point.

Now suppose that v; and wvs are linearly dependent. Then [; and I3 are collinear, hence
opposite rays on a common line ¢. Therefore

P3 = (l3,1a) = ({,la) = (l1,la) = P,

proving (b). The union of the two coplanar faces in P; = P, is a polyhedral half-plane in P;
bounded by ¢, and similarly the union of the two coplanar faces in P3 = P, is a half-plane in
P; bounded by £. Thus the germ at x is an “edge wedge” and x is an interior point of that
geometric edge.

In either case z is inessential as a vertex and may be removed from the polyhedral structure
without changing the subset K. O

Henceforth assume no two adjacent faces are coplanar. Fix nonzero vectors v; € l;. Then
v3 ¢ (v1,v2), SO
dim(vy, va, v3,v4) > 3. (53)

Because each P; is Lagrangian, we have
w(v1,v2) = w(ve,v3) = w(vs,v4) = w(vg,v1) = 0.

Thus the only potentially nonzero pairings among the v; are w(v1, v3) and w(ve, v4). If both were
zero, then w would vanish on (v, ve,vs,v4), making it isotropic of dimension > 3, impossible
in a symplectic 4-space. Hence at least one of w(vy,v3) or w(ve,vy4) is nonzero; after a cyclic
relabeling we may assume

w(vy,v3) # 0. (54)
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Transversality of opposite planes. Under the standing hypothesis that no adjacent faces are
coplanar, the opposite planes P; = (v1,v9) and P3 = (v3, v4) are transverse. Indeed, if P NPy #

{0} then there exists 0 # w = avs + bvy € P;. Pairing with v; gives
0=w(v,w) =aw(v,v3) +bw(vi,vs) = aw(vy, v3),

since w(v1,v4) = 0 (adjacent in the cyclic order). Thus a = 0 and w = bvy € Py, so v4 € P; and
hence Py = (v4,v1) C P1, i.e. Py and P; are coplanar, contradiction. Therefore P, N P3 = {0}.
Since P, and Ps are transverse Lagrangian planes, w induces a nondegenerate pairing

wlpsxp, : P3x P — R, (w,u) — w(w,u),

because if w € P3 pairs trivially with all v € Py, then w € P = P;, hence w = 0.
Vertex Darboux coordinates and sign pattern. Choose a basis e; = v1, ea = vy of P;. Let f!, f?
be the w-dual basis of P with respect to the pairing w|p,xp,, i.€.

w(f? €)= 4. (55)
Write
| 2 _ 3 gl 2
vs=a1f +aaf”, vg =byfT+baf”.
Because P» = (vg,v3) is Lagrangian, w(ve,v3) = 0. Using w(es, f!) = —w(fl,e2) = 0 and
w(ea, f2) = —w(f?, ez) = —1, we obtain
0= W(’Ug, ’1)3) = a1 w(627 fl) + a2w(627 f2) = —ay,

s0 ag = 0 and hence v3 = ay f1. Similarly, since Py = (v4,v1) is Lagrangian we have w(vq,v4) = 0,
and using w(ey, f!) = —1 and w(ey, f?) = 0 we get by = 0, hence vy = by f2.
Thus v3 is a nonzero scalar multiple of f!' and vy is a nonzero scalar multiple of f2. Define

the vertex sign pattern

o1 :=sign(ay) € {£1}, (56)

o9 = sign(by) € {£1}.

These signs are determined by the oriented rays I3 and l4 and cannot be changed by rescaling

rays, since only positive rescalings of half-lines are allowed.
Rescale vz and v4 by positive factors so that vs = o1 f! and vy = o9 f2. Let (g1, g2, p1, p2) be

the linear symplectic coordinate system determined by declaring
ei = Og; fi:apiv
S0 w = dp1 Adq + dpa N dgo and Agtq = p1 dq1 + p2 dgz in these coordinates. Then the four rays

take the signed standard form
=Ry 81117 lo =Ry alha ls=Ry (018p1)7 Iy =Ry (0281?2)' (57)

In particular, there are four possible sign patterns (o1, 09) € {£1}? at a vertex.
Since each face is a planar sector bounded by the corresponding rays, after shrinking to a

small ball around z (and identifying it with its image under this affine symplectomorphism) the

polyhedral star of x is the Lagrangian cone

(u,v) — (u*, v, o1(—w)", oa(—v)"), 5T := max{s, 0}. (58)

This is the only place where the “four faces at each vertex” hypothesis is used.

2. A one-dimensional rounded corner of zero action (with a genuine construction).
We work first in the symplectic plane (]R%q )’ dpAdq), compatible with the global convention,

and we use the Liouville form A, ) := pdq (so dA(y,) = dp A dq).
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Lemma 8.2 (Embedded rounding with prescribed jets and zero Liouville action). There exists
a smooth embedded curve

/7 : R — R%qﬁn)? T (q(r)Jﬁ(r))

such that:
1. 4(r) = (0, =r) for all v < =2, and ¥(r) = (r,0) for all r > 2;

2. 4 agrees identically with these half-azes on open neighborhoods of (—oo,—2] and [2,00)
(hence all jets match at r = +2);

3. 7 1s embedded;

4. its Liouville action is zero:

/00 p(r)q (r)dr =0. (59)

Proof. Step 1: choose a base rounding with good geometry. Choose once and for all a small
number, say n = 1/4. We first construct a smooth non—decreasing function g : R — [0, co) such
that

g(r)y=0forr < —-2+mn, g(ry=rforr>2—mn, g(r)>0for —2+n<r<2-—n.

(The function may be chosen flat to infinite order at the two points where it starts and where
it joins the line 7.) In particular the identities required in (1) hold, and the stronger equalities
on the slightly larger intervals give the “open neighbourhood” property (2).

Next choose a smooth function pg : R — R such that

po(r) = —r forr < -2+4n, po(r) =0 for r > 2 —n,

and po(r) > 0 on the intermediate interval (—2+mn,2 —n). Then the curve Y (r) := (q(r), po(r))
is embedded: on the incoming axial neighbourhood it lies on the positive p—axis and on the
outgoing neighbourhood on the positive g—axis, while on the middle interval it is a graph over
the strictly increasing g—coordinate and hence has no self-intersections (nor does it meet the
axial pieces except at the transition endpoints).

Let -

Ao ::/ po(r)q (r)dr
— 0o

(the integral converges because the product Py is supported in the compact interval [—2 +
m, 2 - 77] )

Step 2: adjust the action by a compactly supported vertical perturbation. Choose a nonzero
smooth bump function ¢ : R — R supported in (—1,1) (so ¢ vanishes identically near £2), and
set

cim [ o

Since ¢ (r) > 0 throughout the support interval (—1,1) (by our choice of n = 1/4) and ¢ is not
identically zero, we can choose ¢ so that ¢ # 0 (e.g. take ¢ > 0, not identically zero).
For s € R define

Ps(r) :==po(r) +59(r),  Fs(r) = (q(r),ps(r)).

Then 7, agrees with 4y (hence with the prescribed half-axes) for |r| > 1, so the jets at r = £2
are unchanged. Moreover, the perturbation is supported in (—1,1) C (=2 + 1,2 —n) where the
g—coordinate is strictly increasing, so for every s the curve remains a graph over g on the only
region that changes and hence stays embedded.
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Finally, the action depends affinely on s:

/ﬁstj'dr:/ﬁoq'dr—l—s/aﬁ(j'dr:A0+sc.

Choose s, := —Ag/c. Then 7 := 7,, satisfies (59) and has all required properties. O

Fix such a curve J(r) = (q(r),p(r)) once and for all. For € > 0 define the rescaled curve
() = (g=(r), pe(r)) by
¢(r) =eq(r/e),  pe(r) =ep(r/e), (60)

and define the € = 0 limit to be the union of half-axes

qo(r)=r",  po(r)=(-1)".
Then for each € > 0, . is smooth and embedded, equals the coordinate half-axes for |r| > 2¢,
and all derivatives match at the transition points r = £2¢ (because 7 was chosen to agree
identically with axes near £2).
Define .
)= [ o)) ds (61)

o0

By construction and (59), choosing the integration constant so that F. vanishes along the in-
coming axis, we have

F.(r) =0 whenever 7.(r) lies on either coordinate axis. (62)

3. Vertex smoothing model (with the vertex sign pattern).
Fix a vertex x and its Darboux coordinates (57) with sign pattern (o1, 02). For £ > 0 define
the product map
@g”l’UQ) ‘RZ2 ]R4, q)g‘”m)(u,v) = (qe(u), q:(v), o1pe(u), 0'2])5(’0)). (63)

(u,0)

This is an embedding (product of embeddings). With Asq = p1dg1 + p2dge in these vertex
coordinates,

(879) N = r1pe0) 4 (1) du + 32p:(0) . (0)
= d(o1F.(u) + 02F-(v)). (64)

Hence «1>£"1"’2) parametrizes an exact Lagrangian surface.
Moreover, for |u| > 2¢ the u—factor is already in the axial regime so F.(u) = 0 and (64)
restricts to o9 dF.(v), which will match the primitive on the corresponding edge strip. If both

|u| > 2e and |v| > 2¢ then the primitive vanishes identically. As & — 0, ploro2) converges
uniformly on compact sets to the signed cone (58).

To use this as a local replacement near x we shall not fix the parameter domain once for all
at this point. After the edge charts have been chosen (Step 4) we take a small polyhedral ball U,
in the above affine coordinates and we let D, be the inverse image, in the cone parametrisation
(58), of K NU,. The boundary of this set is then rounded slightly in the parameter plane.
What will be important for the gluing is the following elementary property, which we impose
by shrinking U, and by choosing the rounding in collars. There is a collar of 9D, which, for
the fixed scale £, lies in the union of the axial regions {|u| > 2e¢} and {|v| > 2¢¢}; moreover
the portions of the boundary that do not belong to the planned overlaps with edge strips lie
where both inequalities hold. On such collars the parametrization is literally planar (in fact
affine linear) and all jets match the adjoining pieces. In particular only a small neighbourhood
of the corner, not the whole product surface, is inserted into K. Notice that D, need not be a
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rectangle: on the collars which will overlap an edge its boundary may be a graph in the other
variable. This harmless flexibility will be used below in order that the vertex and edge images
coincide as subsets of R%.

4. Edge normal form and an edge smoothing model compatible with vertices, in-
cluding edge signs.

Linear normal form along an edge, with sign. Let P, P’ C R* be Lagrangian planes meeting
along a line £ = PN P’. Choose 0 # e € £. Choose a € P\ ¢ and b € P\ ¢ pointing to the
prescribed inward sides of the corresponding faces (these choices are well-defined up to positive
scaling). Then w(b,a) # 0, for otherwise (e, a,b) would be a 3—-dimensional isotropic subspace,
impossible in (R*, w). Define

e(P,P';a,b) := sign(w(b,a)) € {1}
By positive rescaling of a and/or b, we may and do assume
w(b,a) =e(P,P';a,b) € {£1}. (65)
Choose f € R* such that

w(f,e) =1, w(f,a) =0, w(f,b) =0. (66)

The three vectors e, a, b are linearly independent. Indeed, if (say) b belonged to the span of e and
a, then the two incident faces would lie in the same affine Lagrangian plane and the edge would be
inessential; alternatively this would contradict the preceding non—isotropy argument. The non—
degeneracy of w identifies R* with its dual. Prescribing the values in (66) on the independent
subspace (e, a,b) and extending them arbitrarily to a covector on all of R* therefore gives a
solution f; any two such solutions differ by a multiple of the common line (e) = ({e, a,b))*, and
all of them will serve our purpose. Since a vector in the span of e, a,b pairs trivially with e,
no solution lies in that span, so (e, a, f,b) is automatically a basis. With this choice the only
non—-zero pairings among the ordered quadruple are

w(f,e) =1, w(e™th,a) =1

(up to skew—symmetry). This is precisely the symplectic normal form stated below.
In the associated affine symplectic coordinates

(x,y,pz,py) (67)

defined by
=0z, a=0y, [f=0,, b=c0, (e :=¢e(P, P';a,b)),

we have w = dp, A dz + dpy A dy and Asq = p; dx + py dy, and the two incident half-planes take
the standard signed form

{pe =py=0, y>0} and {p.=0, y=0, ep, > 0}. (68)

(When € = +1 the second half-plane is p, > 0; when ¢ = —1 it is p, < 0.)
Edge data and scale functions. Fix a geometric edge e of K with endpoints x_ and x;. Let P,
and P! be the two Lagrangian face planes containing e, and let £, = P, N P, be the edge line.

Choose a nonzero tangent vector e, € ¢, pointing along the edge (any choice is fine; it only
affects the parametrization along the edge, not the subset we construct). Choose inward-pointing
transverse vectors ae € P\ £, and b, € P!\ £, and normalize them by (65); denote the resulting
sign by

ec := sign(w(be, ac)) € {£1}, W(be, ae) = ee. (69)
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Choose f, satisfying (66) for (e,a,b) = (e, ae,be) and define the associated affine symplectic
coordinates (67) on a tubular neighborhood U, of the interior of e (and, after shrinking U,, also
on endpoint collars inside Ue). In these coordinates K N U is exactly the wedge (68).

Recall that in Step 1 the non—zero vectors chosen on the vertex rays were arbitrary up to
positive scale. We now fix those choices once and for all. Thus, at each endpoint x4, when
the face P, is the one spanned by the edge under consideration and its adjacent ray, we take as
representative of that adjacent ray exactly the vector used in the vertex Darboux coordinates.
Since it points into the same inward half-plane as a. it can be written

Vadj,+ = K+ Qe + O €, (70)

with k+ > 0. In the vertex normal form at z4 we take the basis vector es to be precisely
this representative. The construction of the symplectically dual basis in Step 1 then fixes a
representative of the adjacent ray in the other face P/: it is the unique positive multiple for
which the pairing with v,qj,+ has absolute value 1. Using the normalization w(be,ac) = €. = %1
(and the fact that the pairings with the tangent direction e, vanish), this representative has the
expression

U;dj,i = K3 be + B e, (71)

for some B+ € R. Thus no extra sign is hidden in the coefficients: all kit are positive and the
only sign information of the wedge is carried by €.. (The equality of the sign e, with the vertex
sign used below is checked explicitly in the compatibility argument.)

Choose a smooth function ke(s) > 0 of the edge coordinate s = z such that k.(s) = xk_ on
a collar near z_ and k.(s) = k4 on a collar near = .

Edge smoothing strip (including the edge sign). Define
Fe(s)

oy P a0, () o), (72)

\IIE,E(‘S?T) = <S’ Iﬁ;e(S) QE(T)7 —Ee

defined on a finite strip (s,7) € I, X [—Re, Re] inside the chosen tube U, (with I, an interval
parameterizing the portion of the edge we modify, and R, chosen so that the axial regime already
holds on the boundary |r| = R, for all £ < g¢).

For all sufficiently small ¢ (and after possibly shrinking the strip once and for all) this
parametrization is an embedding. Indeed the vector d;¥. . has x—component 1 whereas 0, V¥, .
has x—component 0, so the immersion property reduces to the fact that the rounded curve =, is a
regular embedding in the (g, p)-plane. If two image points have different s—coordinates they are
obviously distinct; for fixed s the pair (g-(r),p<(r)) (and hence also (k(s)qe(r),cer(s) 1p:(r)))
determines r because 7. is embedded, so no self-intersections occur. Finally the corrective p,—
coordinate in (72) is of size O(£2) on the support of the rounding; by taking ¢ small we ensure
that the whole image lies in the prescribed tubular neighbourhood U..

With Asq = pz dx + py dy in these edge coordinates, a direct computation gives

\Ij:,e)\std = Pz ds + Dy dy
/
— (—Eeip5q5> ds + (eek™'pe) (Kgldr + K qeds)
= Ee ps(r) qé(?“) dr = d(z—jng(T)), (73)

so V.. parametrizes an ezact Lagrangian strip. The third coordinate in (72) is precisely the
correction term ensuring (73) when k. varies with s. By (62), the primitive e.F(r) vanishes
on collars where the strip has already entered the axial regime. When k. is constant (near
the endpoints), the third coordinate vanishes and the strip is simply a rescaled copy of the
one-dimensional rounding (with the correct sign e, in the p,—direction).
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Compatibility with the vertex model on an open collar. We now make explicit choices ensuring
that the vertex and edge charts match on overlaps as subsets (and with matching primitives),
not merely at the level of tangent cones.

Fix an endpoint = of the edge e. Choose the vertex Darboux coordinates at = as in Step 1
so that the edge ray corresponding to e is

l1 = R+ 8(11

(in particular, the two incident face planes along e at x are P; = (0, 0g,) and Py = (0y,, 020p,)
for the appropriate vertex sign o). In the edge coordinates (67) chosen above, e is the z—axis
and the same two faces are in the standard position (68) with edge sign e, = sign(w(be, ae)).

At the same time we recall the harmless freedom, noted in Step 1, to rescale a chosen non—
zero vector on any ray by a positive constant (and similarly to rescale the tangent vector used
to parametrize the edge). One may use this to arrange that the coordinate along the common
edge in the vertex chart has the same absolute scale as the edge coordinate—in which case the
scale factor p, below equals 1 at the endpoint. We keep a factor in the formulas to cover the
case where no such simultaneous normalization is imposed.

Because both the vertex coordinates and the edge coordinates were chosen to be affine
symplectic coordinates on R, the transition map between them on the overlap U, N U, is the
restriction of a linear symplectic map (after translating = to the origin). The requirement that
it preserve the two incident Lagrangian planes and the common edge line forces the transition
to have a concrete finite-dimensional form. Concretely:

Lemma 8.3 (Vertex—edge transition normal form on the wedge). Let (g1, g2, p1,p2) and (x,y, pz, py)
be linear symplectic coordinates on (R*, w) with

w =dp1 ANdqy + dp2 N\ dga = dp; N\ dx + dpy A dy.

Assume that the common edge line is the qy—axis in the first coordinates and the x—axis in the
second, and that the two incident Lagrangian planes are

Py = {p1 =p2 =0}, Py ={p1 =q =0}

in (q,p)—coordinates and
{pe =py =0}, {pe=y=0}

in (z,y, p)-coordinates. After replacing the symplectic pair (z,p:) by (¢~ tx,cpy) for some pos-
itive constant ¢ (which leaves the two half-planes in the same normal form), there are numbers
§ € {£1}, k>0 and o, B, € R such that the coordinate change has the form

T =0q +aq+ Bp2+yp1,
y=rq+orBpr,
Pz = 5]917
Py = Kk tpy — ok p. (74)
Here 6 records the relative orientation of the two coordinates along the edge (if the positive q1—ray

is sent to the positive x—ray then § = +1). In particular, restricting to the union Py U Py (where
p1 = 0) we obtain the simpler formulas

r = 0q1 + age + [p2, Y = Kq2, py =K 'pa. (75)

Proof. We spell out the elementary linear algebra since we shall use the signs below. Let T" be
the linear change of coordinates. The conditions that T'(P;) = {p, = py = 0} imply that p, and
py contain no ¢-terms, and the condition that T'(P;) = {p, = y = 0} implies in addition that
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Pz is a non—zero multiple of p; and that y contains no ¢;— or po—term. Thus, before imposing
the symplectic equations, we may write

x=Gq + Hq + Ip1 + Jpo, y = Eq + Fp1,
Dz = Ap1, py = Cp1 + Dpa,

with A, G, E # 0. (The coefficient G has the sign of the orientation with which the edge is
parametrised in the two charts.) The equality T (dp, A dz + dpy A dy) = dp1 A dqi + dpa A dgo
is obtained by a direct comparison of coefficients:

dpy Ndx + dpy N dy = AG dp1 ANdqy + (AH + CE) dpy A dgo
+ (AJ — DF)dpy A dps + DE dps A dgo.

Hence
AG =1, AH +CFE =0, AJ — DF =0, DE =1. (76)

We are still free to rescale the edge symplectic coordinates by a positive constant, x — x/|G|,
Pz — |G| py (leaving y,p, fixed). This preserves the normal form of the two half-planes and
replaces G by § := sign(G). By the first equation in (76) the same operation then gives A = 4.
The sign of F records whether the inward half-line in the vertex face is sent to the inward half-
line in the edge chart. With our choices it is positive, and we put K := E. Set o := H, 8 :=J,
~ := I, and use the remaining equations in (76) to solve for C' and F. We obtain precisely (74).
Formula (75) is the restriction to p; = 0. O

Return to the geometric situation at the endpoint x of the edge e. Let s, € R, ¢, € {1},
a positive scale p, > 0, and K, > 0, ag, B € R be the parameters from Lemma 8.3: here s, is
the value of the edge coordinate s = x at the vertex (the affine origin in the edge chart need
not be the vertex), d, records whether the oriented edge ray in the vertex chart points in the
positive or negative s—direction, and p, accounts for a possible residual difference of scale if
one has not normalized the representative of the ray. Then, restricting the vertex smoothing
model <I>£Gl’02) to the collar where the edge-direction parameter u is already in the axial regime
(u > 2e 80 ¢(u) = u, p-(u) = 0), and using (75) (undoing the optional rescaling of the edge
coordinate recorded by p, ), we find that points of the vertex model near this edge have edge-chart
coordinates

(Sx + 5:0/)90“ + a:cQa('U) + Be (UQpa(v))v ”IQE(U)v 0, ’im_l(o-Qpa(v)))' (77)

On the other hand, on the edge collar where k. = kK, (so k., = 0) the edge strip (72) has image

(87 "idiq&‘(r)a 07 86 K/;lpa(r))'

It remains to identify the edge sign with the vertex sign. Write the chosen inward transverse
vectors in the vertex coordinates at x in the form

ae = A0y +a 9y, be = B (020p,) + ' 04y,

with A, B > 0 (adding tangent components along the edge does not change the inward half-
planes). The pairings with d,, vanish because both incident planes are Lagrangian and contain
that vector, hence

W(be,ac) = ABw(020p,,0q,) = AB 0.

After the positive rescaling used in the normalization (65) the sign is unchanged, so €. = o4 and
the last coordinate agrees. Thus the images coincide on the overlap, with the smooth change of
parameters

(5,7) = (S2 4 Gzpatt + 0z (v) + Bro2p(v), v).
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In particular, the vertex patch and the edge strip agree on an open collar in U, N U, as subsets
of R%. More precisely the primitives computed with the two local Liouville forms have the same
differential on this collar, and on the smaller axial subcollar both primitives themselves vanish
by (62); this is the fact that will be used in the global exactness argument after we have corrected
the local primitives by exact terms coming from the fixed global form A. The same argument
applies at the other endpoint .

It may be useful to spell out that we have not lost any generality by treating only the
case in which, at the vertex under consideration, the chosen edge is the ray [;. The Darboux
coordinates of Step 1 are fixed once for all at a vertex, and the other three incident edges are
the rays la,l3,1l4. On the collar of the edge lo the vertex primitive (64) reduces to o1 dFe(u)
(because the parameter v is axial), and a direct computation exactly like the one above gives

signw(o10p,,0q,) = 01.

Thus the sign e, of that edge is o1. For the edge I3 the parameter u is axial on the negative
side and the primitive reduces to o9 dF.(v); taking the inward vectors in the faces P, and P3 to
be respectively 0y, and 20y, gives signw(o20p,,0q,) = 02. Finally the edge l4 has sign o1 and
primitive o1 dF;(u). Equivalently one can cyclically relabel the four rays and repeat the proof.
Hence every incident edge of the fixed vertex coordinates is compatible with the corresponding
edge strip, the coefficient of F; being precisely the edge sign.

5. Choosing neighborhoods and gluing the global smoothing (with finite strips/disks).
Since K has finitely many vertices and edges, choose:

e for each vertex x, a small closed ball U, centered at x, such that the U, are pairwise
disjoint and such that in an affine symplectic coordinate chart on U, the germ K NU, is
exactly the planar star (58) restricted to a small disk in the (u,v)-domain;

e for each edge e, a symplectic tubular neighborhood U, of the interior of e (excluding tiny
endpoint subsegments), such that different U, are disjoint, and such that U, meets only
the two endpoint balls U,_ and U, (and only in collar overlaps).

Shrink U, and U, further so that on each overlap U, N U, we are in the collar where:
1. the corresponding k. has already become constant (equal to the endpoint value k);

2. the vertex parameter in the edge direction is already in the axial regime for the fized scale
€0;

3. the edge transverse parameter r satisfies |r| > 2¢¢ on a nonempty open subset of the
overlap (so the smoothing is stationary there for all t € (0,1] with (t) < &9).

Such choices are possible because all charts are local and we may shrink neighborhoods inde-
pendently.

Fix g9 > 0 so small that, in each chart, the vertex and edge modifications supported in
lul, [v], |r| < 2eq lie entirely inside the chosen neighborhoods. Define

e(t) :=eot, t € (0,1].
Definition of the smoothed surfaces. For each t € (0,1], define K; by replacing:

e in each U,, the polyhedral star K NU, by the image of the chosen small domain D, under
(o1(2),02(2))

=(t) composed with the inverse of the chosen affine

the vertex smoothing map ®

symplectomorphism U, — R*;
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e in each U, the wedge K N U, by the image of a finite strip I x [—R, Re] under the edge
smoothing map W, . composed with the inverse of the chosen affine symplectomorphism
U, — R,

e outside | J, U, U |, Ue, leave K unchanged.

By the compatibility established in Step 4 (explicit overlap equality on open collars), on each
nonempty overlap U, N U, the vertex patch and the edge strip define the same subset of R* and
match smoothly (their parameterizations differ only by a smooth diffeomorphism of the collar in
the parameter domain). Moreover, on the outer boundaries of U, and U, the smoothed pieces
are literally the original planar pieces because ¢.(;) and p.(;) are exactly axial there (and likewise
F() vanishes there).

Therefore, for each ¢ > 0 the set Ky is a smooth embedded Lagrangian surface.

Topological isotopy to K at t = 0. The last point which needs a little care is the choice of a
single parameter surface for all values of the smoothing parameter. In Lemma 8.3 the change of
variables on a vertex—edge collar contains the functions g. and p., so if one glued the vertex and
edge charts by that formula the gluing would depend on t. We freeze the gluing at the reference
scale t = 1 and compensate by a harmless reparametrisation of the edge strips.

Let X be the smooth surface obtained by gluing the vertex domains D, to the edge strips
I, X [~Re, R¢] by the transition maps, on the endpoint collars,

(Sa T) = Tx,l(u7 7") =Sz + 596/79[:“ + Qe (T) + /Bxgepao (7')7

where g = £(1), and by rounding these maps in the stationary axial part; outside the chosen
neighbourhoods ¥ is just the given polyhedral surface. (For the other three edges at a vertex
the notation is the analogous one from the compatibility discussion of Step 4.)

For t € (0,1] we now define an embedding f; : ¥ — R* On a vertex chart we use the
map P, as before. On an edge chart we compose W, ;) . with a small diffeomorphism of the
parameter strip which only changes the edge coordinate. Choose cut—off functions x,_, xz, of
the coordinate s, supported in the endpoint collars of I, and equal to 1 on the actual overlaps
with the vertex balls (the collars have been shrunk so that the tapering occurs outside the
overlaps). Put

Ore(s,7) == (s + Xa_ (8)(a_ [Qe(t) — o) (1) + B_ee| e(t) — Peo)(1))
+ Xag (8) (ax+ [‘k(t) - qEO](T) + /61’+56 [pe(t) - pEo](T))v T)‘

For ¢ sufficiently small this is a diffeomorphism of the strip onto itself (the shifts are O(gp) and
vanish in the axial region |r| > 2¢g). We set f; on the edge chart equal to the affine inverse of
V. (1),e ©Ote. On a collar where x, = 1 the reference transition 77 ; is thereby changed exactly
into the transition 7} ; of Step 4, so the vertex and edge formulas agree on the fixed gluing of
¥; away from the collars Oy is the identity. Since W7 Astq = d(eF:(r)) contains no ds-term,
this reparametrisation will not affect the primitive used later.

Together with the identity outside the chosen neighbourhoods these local definitions give a
smooth family of embeddings f; : ¥ — R* whose images are precisely the sets K;. The derivative
O: f+ is supported in the union of the vertex balls and edge strips.

Ast — 0", the maps f; converge uniformly on compact subsets to the obvious PL parametriza-
tion of K (because each local model converges uniformly to the corresponding cone/wedge and
the support shrinks like O(¢(t))). Thus f; extends continuously at ¢ = 0 to an embedding fp with
image K. In the sense of a family of embeddings this already gives an isotopy of the surface. If
one insists on an ambient topological isotopy of R*, the standard isotopy-extension theorem for
locally flat embedded compact submanifolds (applied to the track (¢,z) — fi(z)) promotes this
family to such an ambient isotopy. In either interpretation {Kt}te[o,l] is a topological isotopy
with endpoint Ko = K.
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6. From exactness of the deformation to a single Hamiltonian isotopy on all of (0, 1].
We use the standard exactness/flux criterion in an exact symplectic manifold, written with
the Hamiltonian convention (52) and with explicit attention to smooth dependence on t.

Lemma 8.4 (Hamiltonian criterion in the exact case). Let (M,w = d\) be an exact symplectic
manifold and let fy : ¥ — M be a smooth family of embeddings for t € (0,1] with images
Ly = fy(X) smooth Lagrangian submanifolds.

Assume:

1. there is a fized compact set C C ¥ such that Oy f; is supported in C for all t € (0,1]
(equivalently, the family is stationary on X\ C'), and the trace Ute(o 1] ft(C) is contained
in a fired compact subset of M ;

2. there is a fived closed 1-form B on ¥ and a smooth function S : (0,1] x ¥ — R such that
for each t
ft*>‘ = [+ dSy, Si = S(t, '), (78)

and Sy is independent of t on X\ C (in particular, 0¢S; is supported in C).

Then there exists a smooth function H : (0,1] x M — R with compact support contained in
a fixred compact subset of M such that the (time—dependent) Hamiltonian flow qb’;’lto (defined by
(52) ) satisfies

7},}0 (Lto) =1Ly

for all t,tg € (0,1] (in particular, {Li}e(0,1) is a Hamiltonian isotopy, generated by a single
time-dependent Hamiltonian on all of (0,1]).

Proof. Let V; be the deformation vector field along L, defined by V; o f; = 0, f;. Differentiate
(78) in t. Since f is fixed and closed, we obtain

d *
@ft A = d(0Sy).
On the other hand, by Cartan’s formula,

CIN= F (L) = FF @)+ vidd) = ANV © ) + Fi (i),

Comparing gives
fi(wiw) = d(0eSe — A(V) © fi)- (79)

Thus the 1-form ¢y, w restricted to L; is exact, with primitive
ht = (GtSt — )\(‘/t) o ft) o ftil S Coo(Lt)

By hypothesis, 9;S; and V; are supported in C, hence h; has compact support in L; (and depends
smoothly on ¢ because S and f do).

For the next step we need extensions of these functions off the moving submanifolds. We
recall explicitly the elementary fact that this can be done with smooth dependence on the
parameter. Equip M with a fixed Riemannian metric. For each compact subinterval [, 1] C (0, 1]
the map (¢,x) — fi(z) is a proper embedding of [r,1] x C, hence the normal exponential map
gives a tubular neighbourhood with projection depending smoothly on ¢. On the countable cover
{[1/(k+1),1/k]}k these neighbourhoods can be chosen compatible on overlaps and patched by
a partition of unity in the parameter (or, equivalently, by using the exponential map in the
smoothly varying normal bundle of the embedded track). Thus we obtain open sets U; and
projections m; : Uy — L; depending smoothly for all ¢ € (0, 1]; their radii may shrink as t — 0,
which is harmless. The union of all supports will still lie in a fixed compact subset of M by
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hypothesis (1). Extend h; to U; by ht := hy o m and multiply by a bump function y; supported
in Uy and equal to 1 near L;. The bump functions too can be chosen smooth in ¢ by the same
local-in—time construction, with supports contained in that fixed compact subset.

Define the Hamiltonian

Ht = =Xt iLt, H(t, ) = Ht.

Then H is smooth on (0, 1] x M and compactly supported in M.
~ Let Xp, be the Hamiltonian vector field defined by (52). Along Li, since x; = 1 and
hi|r, = ht, we have Hy|r, = —h, hence

Lxp,wlL, = —dHy|L, = dhy = w,w|L,

by (79). Thus V; — Xp, is tangent to L;. Tangential components only reparametrize Ly, so the
time-dependent Hamiltonian flow (with initial time to) carries L¢, to L; for all t,tp € (0,1]. O

Application to K;. Let ¥ and f; : ¥ — R* be as in Step 5. By construction 0,f; is supported
in a fixed compact subset C' C 3 and the family is stationary on ¥\ C; moreover all points of
f+(C) lie in the fixed finite union of vertex and edge neighborhoods chosen in Step 5, hence in
a compact subset of R%.

Fix a reference time t; = 1 and set

Bi= fiA

Since Ly, is Lagrangian, 3 is closed.

We claim that there exists a smooth function S : (0,1] x ¥ — R, supported in C' and
identically 0 on a collar of OC, such that ffA = g+ dS; for all t € (0, 1].

Indeed, cover C' by finitely many vertex charts and edge charts from Step 5, and include also
the stationary open set ¥\ C. In each vertex chart U,, let Astq denote the standard Liouville
form in the chosen vertex Darboux coordinates, and choose a smooth function G, on U, with

Astd = A + dGy
(which exists because H'(R*) = 0). Then (64) gives
JEX = d(01(x) Fugy (0) + 02(2) Fogy () — d(Ga © i) = AP on U,

where

Pz = 01(x) Fo)(u) 4+ o2 (x) Foy (v) — Gy o fi.
Similarly, in each edge chart U, choose G with A\¢¢q = A + dG. and use (73) to write
fix= d(z—:eFE(t)(r)) —d(Geo fy) =dP,. on U,

where

Pt,e = Eer(t) (7‘) — Ge o ft-

On the stationary region ¥\ C' we set P oyt = 0.
Define local difference functions

St,x = Pt,a; - Pto,acv St,e = Pt,e - Ptg,e: St,out = 0.

Then dS; .« = fi'A — fy A = fi A — B on each chart.
On any connected overlap of two charts, the difference of two such local functions has zero
differential, hence is constant. By the way the overlaps were chosen in Step 5, each overlap
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contains a nonempty open subset where the smoothing is already in the axial regime for the
fized scale €p; hence for every t € (0, 1] we have

Foy=F49) =0

on that open subset (by (62)), and also f; = fi, there (the family is stationary on the axial
collar), so G o f; = G o fi,. Therefore each local difference function Sy, vanishes on that open
subset of the overlap, forcing the overlap-constant to be 0. Thus the S; , agree on overlaps and
glue to a globally defined smooth function Sy : ¥ — R, supported in C' and identically 0 near
oC.

Moreover, since each local formula depends smoothly on ¢ and the local functions agree
identically on overlaps (not just up to a t—dependent constant), the glued map (¢, z) — S(¢, x)
is smooth on (0, 1] x X.

We have shown f\ = f+4dS; with § fixed and S; stationary on ¥\ C. Applying Lemma 8.4,
the isotopy {Kt}te(o,l} is Hamiltonian, generated by a single smooth compactly supported Hamil-
tonian H(t,-) on all of (0, 1].

Conclusion. We have constructed a family {K; : ¢t € (0,1]} of smooth embedded Lagrangian
surfaces such that:

o K; » KinC%ast— 0" and {Ki}iep,1) extends to a topological isotopy with Ko = K;

e for t > 0 the family is a Hamiltonian isotopy (indeed generated by one smooth time-
dependent Hamiltonian on (0, 1]).

It is worth pointing out that, in the compact case, the statement is consistent with the familiar
topological restrictions on Lagrangian submanifolds of the standard symplectic R%. Suppose that
K is compact and orientable. For any compatible almost—complex structure J the normal bundle
of the smoothed surface K; is J(T'K}), hence is isomorphic (as an oriented real plane bundle) to
the tangent bundle. The Euler number of the normal bundle of an oriented compact embedded
surface in R* is its self-intersection number, which is zero because Hz(R*) = 0. Consequently
X(K) = 0; in particular a quadrivalent polyhedral Lagrangian sphere cannot occur.

Therefore every quadrivalent polyhedral Lagrangian surface K C R* admits a Lagrangian
smoothing.
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9 Algebraic relations among scaled quadri-linear determinant
tensors

Problem

Let n > 5. Let A ... A" ¢ R34 be Zariski-generic. For o, 8,7,8 € [n], construct Q@79 ¢
R3x3X3%3 oo that its (7,7, k, £) entry for 1 <4, 4, k, £ < 3 is given by
aByd . .
Qg™ = det[A®)(i,:); AP (G,2); A (k,); AO (L, )]

Here A(i,:) denotes the ith row of a matrix A, and semicolon denotes vertical concatenation.
We are interested in algebraic relations on the set of tensors {Q(O‘B76) ca, B,7,0 € [n]}.

More precisely, does there exist a polynomial map F : R81n* s RN that satisfies the following
three properties?

e The map F does not depend on AD), ... AM),
e The degrees of the coordinate functions of F do not depend on n.

o Let A € R™ ™™ satisfy A\qgys 7# O for precisely o, 3,v,6 € [n] that are not identical.
Then F()\amgQ(aﬁ'y‘s) ta, B,7,0 € [n]) = 0 holds if and only if there exist u, v, w,z € (R*)"
such that A\ogys = uavgw,xs for all «, 3,7,6 € [n] that are not identical.

Solution

We give an explicit construction of such a map F (in fact, with uniform degree 5). In the proof
it is a little cleaner to work first over the algebraic closure C. At the end of the argument I
explain why, for real data, the factors which are obtained over C may in fact be chosen real. All
polynomials which occur have real (indeed integral) coefficients.

Step 0: packaging the tensors. Let

R :=[n] x {1,2,3}, s = (a,i) € R,
and write ¢(s) = a (camera index) and r(s) = i (row index). Given an array z = (wﬁ,ﬁvé)) €
€817 define a single tensor X € (C37)®4 by

. (e(8)e(t)e(u)e(v))
Xstuv = TSt (uhr () s, t,u,v € R. (80)

This identifies C81"" with CBm",
For p € {1,2,3,4}, let Flat,(X) be the mode-p flattening: it is the matrix obtained by
grouping the pth index as a row index and the other three indices as a column index. Thus

Flat,(X) € C3x(n)°,
Step 1: the polynomial map. Define F by
F(z) = (all 5 x 5 minors of Flat,(X) for p = 1,2, 3,4), (81)

where X is obtained from z via (80). Each coordinate of F is a determinant of a 5 x 5 submatrix
of a flattening, hence is a polynomial of degree 5 in the entries of x. The definition uses only
the input tensor z (and n through the index ranges), and does not involve the matrices A(®).

Step 2: genericity hypotheses on the cameras. Stack all camera rows into a single matrix
M e C34, whose rows are a, € C** (s € R),

so that the 3 x 4 block of rows indexed by {(a, 1), (a,2), (a,3)} equals A, After removing a
proper algebraic subset of (C3*4)" we may assume:
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(G1) each A(® has rank 3 (so its row space U, C C'** is a hyperplane);
(G2) M has rank 4 (equivalently, im(M) C C3" is 4-dimensional);

(G3) for every ordered triple (3,7,0) € [n]? that is not constant,
3
span{u AvAw: uwe U, veUy, we U(s}:/\ c*.

Let us spell out why this open set is non-empty. All three requirements are conditions given by
the non—vanishing of polynomial functions of the entries of the matrices. Thus it is enough to
know that none of these polynomials is identically equal to zero. For (G1) this is clear (one 3 x 3
minor of A(® has to be non—zero), and for (G2) it suffices to note, for instance, that one may
take a first camera whose three rows are the standard row vectors eq, es, e3 and a second camera
with rows eq, €9, e4 (along with arbitrary further blocks); the stacked matrix then has rank 4.

For the reader’s convenience I also record an explicit verification for (G3). Put V = C* and
fix an ordered triple of indices which is not constant. The span which occurs in (G3) is the
image of the multilinear map Ug ® U, ® Us — /\3 V, (u,v,w) — u A v A w; after bases have
been chosen in the three hyperplanes, the condition that this image have dimension four is the
non—vanishing of some 4 x 4 minor and hence is polynomial. This polynomial is not identically
zero. Indeed, if two of the hyperplanes are equal we may (after a change of coordinates) take
Ug = U, = (e1,e2,e3) and Us = (e1, €2, €4); the wedges

ea NesNey, exNegNer, esNegNey, ex/Negz/Ney

(which are obtained from suitable choices of u,v,w) already form a basis of A\*V. If the
three hyperplanes are pairwise distinct we may take Ug = (e2,e3,e4), Uy = (e1,e3,€e4) and
Us = (e1,ea,e4), from which the four basis wedges of AV are obtained just as easily (for
example eg A ez Aep, ea Aeg Aer, e3 Aeg Aey, ea AegAey). Permuting the roles of the indices
gives the remaining cases. Consequently, for every fixed triple the failure of (G3) is a proper
algebraic subset of the parameter space.

The ambient space (C3*4)™ is irreducible, and a finite intersection of non—empty Zariski open
subsets of an irreducible variety is non—empty. Thus there are cameras satisfying (G1)—(G3),
and in fact the set of such cameras is a Zariski open dense subset. All the defining polynomials
have real coefficients, so this open subset contains real points (equivalently its real points are
Euclidean dense). Hence a Zariski-generic real choice of A1), ... A satisfies (G1)-(G3).

Step 3: linear-algebra preliminaries. Let W := im(M) C C3", so dim W = 4 by (G2).

Lemma 9.1 (Cofactor vector). For any t,u,v € R there exists a (unique) vector Wiy, € C* such
that

T 1x4
det(z, at, ay, ay) = T Wy, Vo eC

Moreover, the column of Flati(Y) indexed by (t,u,v), where Vspp = det(as, ar, ay,ay), equals
M wiyy -

Proof. The map x ~ det(x, as, ay,a,) is linear in x € C'**4, hence is given by z + 2w’ for a
unique w € C*. The second claim is immediate since (det(as,at,au,av))seR = (aswg;v)SeR =
thuv-

Lemma 9.2 (Diagonal stabilizer is scalar). Assume (G1)-(G2) and let D = diag(doI3)l_; €
C3mX3n with each d, € C. If DW C W, then all d, are equal.

Proof. Since rank(M) = 4, the columns of M form a basis of W. The inclusion DW C W
therefore defines a (unique) linear endomorphism H € My(C) by

DM = MH.
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(The matrix H need not be invertible if some of the d, vanish.) Restricting to the block of rows

belonging to camera « gives
Ay A = A g,

Thus every row of A(® and hence every vector in the row space Uy, is a left eigenvector of H
with eigenvalue d,. Any two hyperplanes in C* have non-zero intersection (in fact of dimension
at least two), so if y € U, N Uy is non—zero we have yH = dny = dyy, which forces d,, = dy .
Hence all d,, are equal. O

Step 4: the tensor slice and the “easy” direction. Given scalars A € C™"*"*"*" consider
the tensor 7 € (C3")®* defined by

7;1‘/[1/[} = )\c(s)c(t)c(u)c(v) det(asv Gty A,y a’l))' (82)

This 7 is exactly the packaging (80) of the family (/\amgQ(afBV‘;))aﬁmg.

Assume first that A\ogys = uavgw,xs for all non-identical quadruples and some w,v,w,z €
(C*)™. Fix a triple (3,7, d) that is not constant. For the mode-1 flattening, the column indexed
by (t,u,v) with ¢(t) = 8, c(u) = v, c(v) = 0 equals

(7;““))361% = diag(ual3)h_; - <v5w7x5 . (thuv)) € diag(ual3)W,

by Lemma 9.1. If the suffix happens to be constant, say (3, 3, 3), the very same formula is still
valid. Indeed wyy, is then the covector associated with a; A a, A a, € /\3 Upg, so the entries of
Mwyyy in the block of rows belonging to camera [ are all zero (the determinant vanishes on the
whole hyperplane Ug); multiplying by vgwgxg diag(usl3) therefore reproduces the column of 7
as well — for the row block oo = 3 both sides are simply zero, independently of the value of Agggg.
Hence all columns of Flat,(7), for arbitrary suffixes, lie in the fixed 4-plane diag(uqI3)W, so
rank(Flat; (7)) < 4. The same argument applies to the other three flattenings. Therefore all
5 x 5 minors in (81) vanish, i.e. F(7T) = 0.

Step 5: vanishing of minors forces one-mode factorization. Assume now that F(7) =0,
i.e. every 5 x 5 minor of every Flat,(7) vanishes. Equivalently,

rank (Flat, (7)) < 4 forp=1,2,3,4. (83)
We use the standing assumption on A:
Aapys 70 iff (a, B,7,0) is not all identical. (84)

In particular, if a triple (8,7, 6) is not constant, then Ayg,5 # 0 for all a, hence the diagonal
matrix

Dgys = diag(Aagysl3)a=1 (85)
is invertible.
Fix a triple (53,7, d) that is not constant. Consider the subcollection of columns of Flat;(7)

with fixed camera suffix (5,7, d) and varying row choices within those cameras. By Lemma 9.1
these columns are precisely

Dgys - Mwyyw  with c(t) = 8, c(u) =7, c(v) =4.

Condition (G3) implies that the vectors wy,, (with this suffix) span C*: by (G1) the three rows
in each camera form a basis of the corresponding hyperplane, and the cofactor construction is
precisely the standard isomorphism A C* ~ (C*)* (we have identified a covector with a column
vector by means of the chosen coordinates). Hence these columns span Dg,sW. Therefore:

span{columns of Flaty(7) with suffix (5,7,0)} = DgsW. (86)
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Now choose three distinct cameras b, ¢, d (possible since n > 5) and let U; denote the full
column space of Flaty (7). By (86) applied to (b, ¢, d) we have DypqW C Uy, and since Dpeq is
invertible and dim W = 4, we get dim(Dp.qW) = 4. Combined with (83) for p = 1, this forces

Uy = DycaW.
Applying (86) to any non-constant triple (3,~,6) yields DgysW C Uy = DypcgW, equivalently
HpysW =W, Hpgys := DyyDgss.

But Hgys is diagonal of the form diag(hql3)p—_;. By Lemma 9.2, Hg,s must be a scalar multiple
of the identity, so there exists fg,s € C* such that

)\aﬁ’y5

= fg~s Y a.
)‘abcd fﬁv

Setting uq := Aaped gives the mode-1 factorization
Aapys = Ua 85 whenever (3,7, d) is not constant. (87)

Repeating the same argument for the other flattenings (choosing, for the reference triples,
any three distinct cameras such as the b, ¢, d above with the roles of the modes permuted) gives
vectors v, w € (C*)"—one may take for instance vg = Apgeq and wy = Apeyg—and functions g, h
such that

AaBys = VB Jars whenever («, 7, ) is not constant, (88)
Aapys = Wy hags whenever (o, 3,9) is not constant. (89)

Step 6: gluing the one-mode factorizations. Let
Ey:={(8,7,0) € [n]*: (B,7,0) is not constant}.

From (87)-(88) we produce a function of two indices. Fix (v,d) € [n]2. Choose indices ayg, Bo
such that (8y,7,d) € E1 and («ag,7,9) is not constant (e.g. if v = §, take oy # 7y and By # 7;
otherwise any choice works). Define

A B0
= 90
0 Uag Vs 50)
This is well-defined (independent of the choice): indeed, whenever both (87) and (88) apply we

have
)\aﬁ'yé _ f,B’ycS _ Jarys

UaUB vg Uy

so the quotient depends only on (7,4). In particular, for any fixed (v,0) and any /S with
(8,7,9) € E1 we may choose an index ' (different from v = § if these two are equal) for which
(a/,7,9) is not constant; applying the displayed equality to (o/, 8) shows that fg,s5/vs = 74s.
Substituting this value in (87) gives, for every « (even if (a,7,d) should be constant),

AaBys = UaVB Ts for all (B,7,0) € E; and all a. (91)

Now use (89) to split 7,5 multiplicatively. Fix § € [n] and choose ag, fp with ag # 0 and
Bo # 6. Then (ay, By, d) is not constant, so (89) applies, and moreover (Sy,y,0) € E; for every
v (since By # 6). Thus, for all v,

UagVBy Ty = AapBoyd = Wy g Bos-
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Hence 7.5 /w- is independent of v; define x5 € C* by

hocoﬁolS

T5 1= .
UaoVBo

Then 5 = wyx5, and substituting into (91) yields
AaBys = UaVURW~T§ whenever (3,7,9) € Ej. (92)

It remains to treat the triples not in Fy, i.e. (8,7,0) = (8,8, ). For a # 3, the quadruple
(o, 8,8, B) is not all identical, so Aoggg 7# 0 by (84). Fix such o # 8 and choose 1 € [n] with
n # . Then (89) (with § = 8 and («, 8, 5) not constant) gives

Aapyp = Wy haps V7. (93)

Taking v = 7 and using (92) for the quadruple («, 3,7, 8) (which has (5,7, 5) € Ej since n # 3)
yields
Wy happ = Aapns = UaVsWnTs,

50 haps = uavgrg. Plugging v = 3 into (93) gives
Aagpp = Wp happ = UaVsWsTH-
Thus the factorization holds for all quadruples that are not all identical:

AaBys = UaUBWA TS for every (a, 3,7, 6) not all identical.

Step 7: returning to real scalars. It remains only to justify the passage from the complex
argument to the real statement formulated in the problem. We shall use the following elementary
observation. Suppose that all the numbers Ag+s are real and satisfy (84), and suppose that for
some complex vectors u, v, w,x € (C*)™ the equality

AaBys = UaVUBW~ T (94)

holds for every non-identical quadruple. Then the four vectors may be chosen with real (non—
zero) entries.

For completeness I give the short proof. Choose three distinct indices p,q,r € [n] (this is
the only place where fewer than five indices would in fact have sufficed). From (94) we get, for
example,

Ua _ domr ¢ g (o ¢ [n))

Up  Appgr
and in the same way vg/vp = Apggr/Appgrs Wy/Wp = Apgyr/Apgpr and Ts/xp = Apgrs/Apgrp
are real and non—zero. (Every displayed denominator is legitimate because the corresponding
quadruple is not all identical.) Thus all entries of (say) u have the same complex phase up to
a sign, and the same is true for v,w,z. Write u, = |uple?, v, = |v,|e?®, w, = |w,|e?¥ and
T, = |zple™X. Since, for example, the product corresponding to the non-identical quadruple
(P, P, q,T), UpVpWgTyr = Appgr, 1S @ non-zero real number, the sum 6 + ¢ + ¢ + x is congruent
to 0 modulo 7 (the possible signs of the real ratios such as wq/w, and x,/z, only add integer
multiples of 7).

Define 6, = e~
and non—zero, and for every non—identical quadruple their product equals e i0+o+vtx) AaBys-
If this common factor is —1 rather than +1, we simply change the sign of one of the four real
vectors. In either case (94) holds with real factors.

2T g = e_i‘%g, Wy = e_wwy and Zs = e Xx5. These numbers are all real
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Conclusion. The map F defined by (81) is independent of the cameras, each coordinate has
degree 5 (independent of n), and for Zariski-generic AWM A™M it satisfies the desired char-
acterization. More explicitly, for every real array A obeying (84),

F((MaprsQ )0 5,5) =0 <=  Ju,v,w,z € (R*)" such that A\ygys = uavsw, s

for all non-identical quadruples. Conversely, any such real factorization (and a fortiori any
complex one) makes all the minors in (81) vanish, as was shown in Step 4. This is precisely the
polynomial map required in the statement of the problem. O
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10 Kernelized CP-ALS subproblem with missing data: matrix-
free PCG with Kronecker preconditioning

Problem

Given a d-way tensor 7 € R™*m2XX"d gych that the data is unaligned (meaning the tensor
7 has missing entries), we consider the problem of computing a CP decomposition of rank
r where some modes are infinite-dimensional and constrained to be in a Reproducing Kernel
Hilbert Space (RKHS). We want to solve this using an alternating optimization approach, and
our question is focused on the mode-k subproblem for an infinite-dimensional mode. For the
subproblem, then CP factor matrices Ay,..., Ax_1, Ak11, ..., Aq are fixed, and we are solving
for Ay.

Our notation is as follows. Let N =[], n; denote the product of all sizes. Let n = ny, be the
size of mode k, let M = H#k n; be the product of all dimensions except k, and assume n < M.
Since the data are unaligned, this means only a subset of 7’s entries are observed, and we let
q < N denote the number of observed entries. We let T € R™M denote the mode-k unfolding
of the tensor T with all missing entries set to zero. The vec operations creates a vector from a
matrix by stacking its columns, and we let S € RY*4 denote the selection matrix (a subset of
the N x N identity matrix) such that S” vec(T') selects the ¢ known entries of the tensor 7~ from
the vectorization of its mode-k unfolding. Welet Z = Ag®-- ® Ap11 @ Ap_1©---® Ay € RM*r
be the Khatri-Rao product of the factor matrices corresponding to all modes except mode k.
We let B =TZ denote the MTTKRP of the tensor 7 and Khatri-Rao product Z.

We assume A = KW where K € R™*" denotes the psd RKHS kernel matrix for mode k.
The matrix W of size n x r is the unknown for which we must solve. The system to be solved is

(Z® K)Y'SST(Zeo K) + A1, ® K)| vec(W) = (I, ® K) vec(B). (95)

Here, I, denotes the r x r identity matrix. This is a system of size nr x nr Using a standard
linear solver costs O(n3r?), and explicitly forming the matrix is an additional expense.

Explain how an iterative preconditioned conjugate gradient linear solver can be used to solve
this problem more efficiently. Explain the method and choice of preconditioner. Explain in detail
how the matrix-vector products are computed and why this works. Provide complexity analysis.
We assume n,r < ¢ < N. Avoid any computation of order N.

Solution (matrix-free PCG with Kronecker preconditioning)

We show how to solve (95) efficiently using a matrix-free preconditioned conjugate gradient
(PCG) method. The central idea is (i) to express all masked contractions using only the observed
indices, and (ii) to choose a preconditioner that is spectrally close to the true operator and admits
a fast inverse via Kronecker eigenstructure.

Observed-index notation (eliminating S and avoiding Z). Let the set of observed entries
in the mode-k unfolding be

Q= {(iéajf)}zzlv Z.K € {17 cee 7n}7 jf € {17 . aM}

(Here jy encodes the multi-index over modes # k.) For each observation ¢, define the corre-
sponding row of the Khatri-Rao product by

z{::eﬁZeRlxr, (=1,...,q,

and collect these rows into the matrix Zo € R?7*". Crucially, Zq can be formed without ever
constructing Z € RM*": for s =1,...,7r,

(2¢)s = H Am(i%)78)>

m#k

64



(0)

where (im’ )mk is the multi-index corresponding to jy. Thus Zg is only ¢ x r.
Also define the row-selection matrix R € R?*™ by

(Rg)g,ié =1, (RQ)M =0 for ¢ 75 p.

Then for any U € R™", (RQU)¢. = Uj, ..

Matrix-free operator application. It is convenient to work with matrices rather than the
vectorized unknown. For any X € R™*", define = vec(X). The Kronecker identity

(Z ® K) vec(X) = vec(KXZT) (96)
implies that the masked product SS”(Z @ K) vec(X) extracts exactly the ¢ scalars
se(X) = eg;Kng:(KX)i“-zg, (=1,...,q.
Equivalently, with 1, the r-vector of ones,
s(X) = (RoK X © Zo)1, € RY, (97)
A direct expansion shows

(Z @ K)'SST(Z ® K)vec(X)
= s¢(X) (20 ® Ke;,) = vec (K Z eiZSg(X)Zg> = vec(K R}, Diag(s(X)) Za). (98)
£=1 £=1

Therefore the full coefficient operator in (95) can be applied without forming any N- or M-
dimensional objects:

A vec(X) = vec(K R Diag(s(X)) Zo + AKX), where s(X) is given by (97). (99)

Right-hand side without forming B =T7Z. Let t € R? collect the observed tensor values
in the unfolding: ty := T;, ;,. Then the sparse MTTKRP satisfies

B =TZ = R, Diag(t) Zq € R™*", (100)
and the right-hand side becomes
b= (I, ® K)vec(B) = vec(KB). (101)

Again, no M X r matrix Z is formed, and no computation scales with N.

PCG formulation. Assume K is positive definite, or replace it by K 4+l with a small nugget
e > 0 (standard in kernel methods). Then the operator in (95) is symmetric positive definite
(SPD), and CG applies. PCG iterates on the linear system

Aw = b, w = vec(W),

using only: (i) matrix-free applications of A via (99), and (ii) applications of a preconditioner
inverse P~! described next.
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A Kronecker preconditioner from mean masking. Let p := ¢/N be the observation
density. If the observed set is approximately uniform, a common and effective approximation is

SST ~ pI.
Under this replacement,
ZoK)' (p)(Z0K)=p(Z"2)2 (KTK)=pT @ K?, T :=2'7Z cR"™".
This motivates the SPD preconditioner
P:=ploK*+ )\, ®K. (102)
The matrix I' is cheap to form without Z by the standard CP identity
D=2"7Z=(AJAq) %+ % (AL A1) * (AL A1) * - % (AT Ay), (103)

where * denotes the Hadamard product. This requires only the r x r Gram matrices of the other
modes.

Fast application of P~! via eigendecompositions. Compute once the eigendecompositions
K = U Diag(o1,...,0,) U7, I =V Diag(y1,...,%) V7,
with U € R™*" V € R™*" orthogonal and 04,7, > 0. Then (102) becomes

P=WV®U) Diag(p’ya ol —i—)\ai) VeU)T.

i=1,...,nja=1,...,r

Hence for any residual r = vec(R) with R € R™*",

~

R=UTRV, V= ue

= __ plr= yvT. 104
rraol + oo r = ved U ) (104)

Importantly, K? is never formed explicitly; only the eigenvalues O'Z-Q are used. If some o; = 0,

either add a nugget K < K + €I or restrict to range(K); in either case, P remains SPD.

Matrix-free matvec algorithm (what PCG actually computes). Given z = vec(X)
with X € R™*" compute y = Az as:

1. U+ KX.
2. For ¢ =1,...,q, compute sy < Uj, . - z¢ (rowwise dot product).
3. Accumulate G € R™*" by scatter-add:

Gi,. +=s02f (L=1,...,q), equivalently G = R, Diag(s) Zq.

4. Return y = vec(KG + \U).

The right-hand side is computed once using (100)—(101): form H = R} Diag(t) Zq by the same
scatter pattern as in step 3 (with s replaced by t), then set b = vec(K H).

Why PCG converges quickly. Let e, denote the PCG error after m iterations. Since A
and P are SPD, standard PCG theory yields

||||em|||A S 2 <ﬁ; 1) , K= K(P_1/2AP_1/2).
€ollA K

When the mask is approximately uniform random, SS7 is spectrally close to pI and thus A
is close (in a spectral sense) to the Kronecker-structured approximation (102), which typically
clusters the eigenvalues of P~1A and yields small iteration counts.
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Complexity (avoiding any O(N) work). All costs below are expressed in terms of (n,r, q)
(and small mode sizes for forming Gram matrices), and no object of size N or M is ever formed.
Precomputation.

e Build Zg € R?*" from observed multi-indices: O(gr(d — 1)) multiplications (or O(gr) if
factor rows are accessed efficiently).

e Form I' = Z7Z via (103): O( Dtk nmr?) to form each AL A, plus O((d — 1)r?)
Hadamard products.

e Eigendecompositions: O(n? + r3).

e Right-hand side b = vec(K H) with H = R}, Diag(t)Zq: O(qr + n?r).

Per PCG iteration.

e Two dense kernel multiplies (KX and KG): O(n?r) each, i.e. O(n?r) up to constants.
e Two observation-driven contractions (compute s, and scatter-add G): O(qr).

e Apply P~! via (104) (two basis changes and diagonal scaling): O(n?r + nr?).

e Vector inner products and saxpys on R™: O(nr) (lower order).

Thus one PCG iteration costs
O(qr + n’r + nrQ),

and T, iterations cost
@ (Tcg (qr + n?r + nr2)).

This is substantially smaller than the O((nr)3) cost of a dense solve, and the method never
performs any computation of order V.
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