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Abstract
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tasks posted on February 5th, 2026. All presented attempts were generated and typeset by
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1 Smooth shifts of the Φ4
3 measure on T3

Problem

Let T3 be the three dimensional unit size torus and let µ be the Φ4
3 measure on the space of

distributions D′(T3). Let ψ : T3 → R be a smooth function that is not identically zero and let
Tψ : D′(T3)→ D′(T3) be the shift map given by Tψ(u) = u+ψ (with the usual identification of
smooth functions as distributions). Are the measures µ and T ∗

ψµ equivalent? Here, equivalence
of measures is in the sense of having the same null sets and T ∗

ψ denotes the pushforward under
Tψ.

Solution

We separate the Gaussian case λ = 0 from the interacting case λ ̸= 0. We use the notation T ∗
ψµ

for the image (push–forward) of a measure by the shift, that is (T ∗
ψµ)(A) = µ(T−1

ψ A) for Borel
sets A ⊂ D′(T3). Throughout, equivalence means having the same null sets and µ ⊥ ν denotes
mutual singularity.

1. Gaussian case λ = 0

When λ = 0, µ = µ0 is the (massive) Gaussian free field (GFF) on T3 with covariance (m2−∆)−1.
In the massless case m = 0, one typically works with the pinned/mean-zero GFF on the closed
subspace {u : ⟨u, 1⟩ = 0}.

By the Cameron–Martin theorem, T ∗
ψµ0 is equivalent to µ0 if and only if ψ lies in the

Cameron–Martin space: ψ ∈ H1(T3) in the massive case, and ψ ∈ H1(T3) with
∫
T3 ψ = 0 in the

pinned massless case. In particular, for m > 0 every ψ ∈ C∞(T3) yields equivalence. If ψ lies
outside the Cameron–Martin space, then µ0 and T ∗

ψµ0 are mutually singular.

2. Interacting case λ ̸= 0: singularity under every nonzero smooth shift

Assume henceforth λ ̸= 0 and fix ψ ∈ C∞(T3), ψ ̸≡ 0. We implicitly restrict to the physi-
cal/stable range of couplings for which the Euclidean Φ4

3 measure is known to exist (with the
usual stochastic–quantisation sign convention this is λ > 0); the argument itself only uses the
non–vanishing of the logarithmic coefficient bλ.

Pinned/mean-zero variants. If one works with a pinned/mean-zero version of µ supported
on {u : ⟨u, 1⟩ = 0} and

∫
T3 ψ ̸= 0, then µ and T ∗

ψµ are supported on disjoint affine subspaces,
hence are singular. In the remainder we either work in the massive case, or (in the pinned case)
assume

∫
T3 ψ = 0.

The key point in d = 3 is that the logarithmic (“setting-sun”) mass renormalisation produces
a large deterministic linear term at small scales; this term is what ultimately separates µ from
its smooth shifts. The argument below uses only mollified fields at super-exponentially small
scales, together with standard renormalised model convergence results from regularity structures
(or paracontrolled calculus) for the dynamical Φ4

3 model. Crucially, we do not assume that there
exists a time-zero “renormalised cube” as a random distribution under µ (in fact, this is precisely
what fails in d = 3; see [2] for an “infinitesimal” manifestation).

2.1. Mollifiers and super-exponential scales

Fix ϱ ∈ C∞
c (R3), ϱ ≥ 0,

∫
R3 ϱ = 1, and extend it periodically to T3. For ε ∈ (0, 1) define

ϱε(x) := ε−3ϱ(x/ε) and, for w ∈ D′(T3),

wε := w ∗ ϱε ∈ C∞(T3).
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Let
εn := exp(−en), n ≥ 1, and write wn := wεn .

Then ε−1
n = ee

n and log(ε−1
n ) = en.

2.2. The renormalisation constants a and bλ

In dimension 3, renormalisation for the dynamical Φ4
3 equation involves two divergent countert-

erms:

• a Wick (tadpole) constant C1(ε) ∼ c1 ε−1,

• a logarithmic (setting-sun) mass constant C2(ε) ∼ c2 log(ε−1).

For the usual stochastic-quantisation normalisation at coupling λ, the logarithmic counterterm
enters the drift with a factor proportional to λ2, hence is nonzero for λ ̸= 0 (see e.g. [6, §10] and
the BPHZ description [4]).

For our purposes we fix deterministic constants a > 0 and bλ ̸= 0 such that, as ε ↓ 0,

C1(ε) = a ε−1 +O(1), λ2C2(ε) = bλ log(ε−1) +O(1),

where bλ ̸= 0 for λ ̸= 0.

2.3. A (log)−β-normalised cubic observable

Fix any exponent

β ∈
(1
2
, 1
)

(e.g. β =
3

4
).

For w ∈ D′(T3) define the real random variables (measurable functions of w)

Yn(w) := e−βn
〈
w3
n − 3a ee

n
wn − 9bλ e

nw, ψ
〉
. (1)

(Here ⟨·, ·⟩ denotes the distributional pairing, extending the L2 inner product.)
The next proposition is the precise substitute for the “renormalised cube exists at time zero”

claim: one does not get a convergent cubic random distribution, but one does get enough control
to deduce that Yn(u)→ 0 in probability for u ∼ µ when β > 1

2 .

Proposition 1.1 (Renormalised cubic at fixed time). Let µ be the Φ4
3 measure on T3 with λ ̸= 0,

realised as the time-marginal of a stationary solution to the renormalised stochastic quantisation
equation (see [6, 7, 5, 1]). Let u ∼ µ and define un = u ∗ ϱεn as above. Then there exist random
distributions Θn ∈ D′(T3) and a random distribution R ∈ D′(T3) such that:

(i) (Convergent remainder) One has

u3n − 3a ee
n
un − 9bλ e

n u − Θn −→ R in probability in C−3/2−κ(T3)

for every κ > 0.

(ii) (Variance blowup is only logarithmic) For every f ∈ C∞(T3) there exists Cf < ∞ such
that

E
[ ∣∣⟨Θn, f⟩

∣∣2 ] ≤ Cf e
n for all n ≥ 1.

Proof. This statement is not a new estimate. It is a convenient repackaging of standard fixed–
time estimates for the dynamical Φ4

3 model which are scattered in the literature. In order that
the present note be usable without guessing which convention for the constants is meant we spell
out precisely which results are invoked.
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We use the following three inputs.
(a) Let X denote the stationary solution of the linear equation (∂t + m2 − ∆)X = ξ on R ×
T3. The Wick powers of X and the additional stochastic diagrams entering the Da–Prato–
Debussche/regularity–structure expansion of Φ4

3 were constructed with sharp moment bounds,
for arbitrary mollifiers, in Mourrat–Weber–Xu [8, Sec. 3]. In particular the covariance estimates
in that section give the following covariance bound for the only diagram of homogeneity −3/2
(the “setting–sun” diagram). If Θ̃ε denotes this diagram mollified at scale ε, then for every
smooth f

E |⟨Θ̃ε, f⟩|2 ≤ Cf
(
1 + log ε−1

)
. (2)

For the reader who wants to see the elementary estimate behind (2) we recall it at the end of
the proof.
(b) The identification of the nonlinear solution with a finite sum of these stochastic diagrams
plus a regular remainder, uniformly for stationary initial data, is proved for the dynamical Φ4

3

equation in either of the two equivalent frameworks: see Hairer [6, Sec. 10] and the paracontrolled
solution theory / decomposition of the dynamic Φ4

3 model (Mourrat–Weber [7, Secs. 2–3]), or,
in a form stated directly for the invariant measure, Gubinelli–Hofmanová [5, Sec. 4]. With
the present normalisation of the coupling these results say the following. There is a random
distribution Θε which differs from the diagram Θ̃ε of (a) by a uniformly L2–bounded linear
combination of more regular diagrams, and there is a random distribution R such that, for every
κ > 0,

u3ε − 3C1(ε)uε − 9λ2C2(ε)uε −Θε −→ R in probability in C−3/2−κ. (3)

(The factor 9 is the usual combinatorial coefficient of the setting–sun subdiagram for the
stochastic–quantisation convention in which the drift is λu3.)
(c) Finally the invariant measures constructed in Albeverio–Kusuoka [1, Thm. 1.1 and Sec. 4]
and in Gubinelli–Hofmanová [5, Sec. 4.3] are precisely the laws of the stationary solutions to
which (b) applies. In particular all moment estimates in (a)–(b) hold with constants independent
of the time at which the solution is observed.

We now explain how (i)–(ii) follow from these references. Put ε = εn. Since C1(ε) =
aε−1 + O(1) and λ2C2(ε) = bλ log ε

−1 + O(1), and the finite parts hidden in the O(1) have
deterministic limits for a fixed mollifier (as is clear from the explicit integral formulae in the
cited references), replacing the counterterms in (3) by the leading terms changes the left–hand
side by a deterministic multiple of uεn plus a remainder tending to 0 in C−1/2−κ. Since uεnou in
the weaker spaces considered below, this contribution converges in probability to a fixed multiple
of u and can simply be incorporated into the limiting random distribution R (or, equivalently,
into the definition of R in (i)). The cited expansions are written with the factor uε in the linear
setting–sun term whereas in (1) and in (i) we have put the limiting field u. This replacement is
harmless in the topology of C−3/2−κ. Indeed stationary solutions of Φ4

3 belong almost surely to
C−1/2−η for every η > 0 (one of the basic a priori estimates in the cited works), and the standard
smoothing estimate for Besov/Hölder spaces on the torus gives, for 0 < η < 1/2,

∥uε − u∥C−3/2−κ ≤ C(u, η, κ) ε1−η.

With our choice ε = εn = exp(−en) the factor en = log ε−1
n multiplying this difference in the

setting–sun term is negligible. (In particular the pairings against smooth test functions also
converge, as used later.) After this small correction of the counterterm (3) yields precisely the
convergence stated in (i).

It remains only to record the quantitative bound (ii). The covariance estimate (2) for Θ̃ε,
together with the fact that Θε − Θ̃ε is a finite sum of more regular diagrams with uniformly
bounded second moments when tested against a smooth function (again part of (a)–(b)), yields

E
[
|⟨Θn, f⟩|2

]
≤ Cf (1 + log ε−1

n ) ≤ C ′
fe
n.
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For completeness we spell out exactly which estimate from the stochastic diagram literature
is used in the preceding line. Uniform covariance estimates for all diagrams of the dynamical
Φ4
3 model (and for arbitrary smooth mollifiers) are proved in Mourrat–Weber–Xu [8, Sec. 3].

Applying their power–counting result to the diagram of homogeneity −3/2 yields precisely the
logarithmic bound (2) when the diagram is tested against a fixed smooth function. We refer to
their dyadic summation for the short analytic proof. This completes the proof of (ii) and of the
proposition.

Lemma 1.2 (Convergence of the normalised observable under µ). Let u ∼ µ. Then Yn(u)→ 0
in probability as n→∞.

Proof. Write f = ψ and decompose, using Proposition 1.1,

Yn(u) = e−βn⟨Rn, ψ⟩ + e−βn⟨Θn, ψ⟩, Rn := u3n − 3aee
n
un − 9bλe

nu−Θn.

By Proposition 1.1(i), ⟨Rn, ψ⟩ converges in probability to ⟨R,ψ⟩, hence is tight; multiplying by
e−βn → 0 gives e−βn⟨Rn, ψ⟩ → 0 in probability. By Proposition 1.1(ii) with f = ψ,

E
[
|e−βn⟨Θn, ψ⟩|2

]
≤ Cψ e

(1−2β)n −−−→
n→∞

0 since β >
1

2
,

hence e−βn⟨Θn, ψ⟩ → 0 in L2 and therefore in probability. Combining these two terms yields
Yn(u)→ 0 in probability.

2.4. An almost sure separating set

From Lemma 1.2, we can extract a deterministic subsequence along which Yn(u) → 0 almost
surely. Indeed, choose nk ↑ ∞ such that

Pµ
(
|Ynk

(u)| > 2−k
)
≤ 2−k,

and apply Borel–Cantelli to obtain Ynk
(u)→ 0 µ-a.s. Define the measurable set

A :=
{
w ∈ D′(T3) : lim

k→∞
Ynk

(w) = 0
}
.

Then µ(A) = 1.
We shall allow ourselves in the next paragraph to pass, if necessary, to a further subsequence

of (nk) and to redefine A by the same formula for that refined subsequence (we keep the notation
nk and A). This causes no difficulty: every subsequence of a full–measure convergence subse-
quence still gives a set of µ–measure one. The refinement will be chosen so that, in addition to
Ynk

(u)→ 0, the auxiliary error terms appearing in (4) below also converge to zero almost surely.

2.5. Effect of shifting by ψ

Let v = Tψ(u) = u+ ψ. Then vn = un + ψn and

v3n − 3aee
n
vn − 9bλe

nv =
(
u3n − 3aee

n
un − 9bλe

nu
)
+ 3ψn

(
u2n − aee

n)
+ 3ψ2

nun + ψ3
n − 9bλe

nψ.

Pair with ψ and multiply by e−βn:

Yn(v) = Yn(u) + e−βn
〈
3ψn

(
u2n − aee

n)
, ψ
〉
+ e−βn

〈
3ψ2

nun + ψ3
n, ψ

〉
− 9bλe

(1−β)n⟨ψ,ψ⟩. (4)

Now:
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• Along the subsequence n = nk we have Ynk
(u)→ 0 µ-a.s. on A by definition.

• The random distributions u2n−aee
n (the renormalised square) are tight when tested against

smooth functions (this is a standard output of the Φ4
3 construction; see [6, 7, 5, 1]). Since

ψn → ψ in C∞, the scalar random variables ⟨3ψn(u2n − aee
n
), ψ⟩ are tight; multiplying by

e−βn → 0 forces the second term in (4) to converge to 0 in probability (hence, along a
further subsequence if desired, µ-a.s.).

• Since un → u in D′ and ψn → ψ in C∞, the bracket ⟨3ψ2
nun + ψ3

n, ψ⟩ is tight (indeed
convergent in probability), so the third term in (4) also tends to 0 in probability after
multiplying by e−βn.

• The last term is deterministic and diverges because bλ ̸= 0, β < 1, and ⟨ψ,ψ⟩ =∫
T3 ψ(x)

2dx > 0:
−9bλe(1−β)n⟨ψ,ψ⟩ −→ ±∞ (n→∞).

We now implement the refinement of the subsequence announced in §2.4 in a completely explicit
way. Since the second and the third terms in (4) converge to 0 in probability, a diagonal selection
and another application of the Borel–Cantelli lemma allow us (after passing to a subsequence
of the one chosen there and redefining A, without changing the notation) to find a measurable
set E with µ(E) = 1 such that, for every u ∈ E, all three random terms in (4) other than
the deterministic last one tend to 0 along n = nk. For such a u the divergent deterministic
contribution displayed in the last item forces |Ynk

(u+ ψ)| → ∞ (with a sign depending on bλ).
In particular u+ψ /∈ A because membership in A is defined by the condition Ynk

(w)→ 0. Thus

(T ∗
ψµ)(A) = µ

(
{u : u+ ψ ∈ A}

)
= 0,

whereas µ(A) = 1. We conclude that µ ⊥ T ∗
ψµ.

Theorem 1.3 (Failure of quasi-invariance under smooth shifts). Let µ be a well–defined Φ4
3

measure on T3 at a non–zero coupling λ (in the usual physical convention, λ > 0). Then for
every nonzero ψ ∈ C∞(T3) one has

µ ⊥ T ∗
ψµ.

(In the pinned/mean-zero setup, if
∫
ψ ̸= 0 the measures are trivially singular by disjoint support;

if
∫
ψ = 0 the conclusion still holds.)

Proof. The construction of the separating set in paragraphs 2.4–2.5 gives the claim: the set A
has full µ–measure whereas the shifted measure assigns it zero mass, (T ∗

ψµ)(A) = 0.

Remark 1.4. For comparison we mention that the mutual singularity of the Φ4
3 measure with

the (unshifted) Gaussian free field was proved by a different method in Barashkov–Gubinelli [3].
The small–scale observable used above is in the same spirit, but the present proof of non–quasi–
invariance under smooth deterministic translations is self–contained once the standard stochastic
estimates quoted in Proposition 1.1 are granted.
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2 A nonvanishing test vector for the twisted local Rankin–Selberg
integral

Problem

Let F be a non-archimedean local field with ring of integers o. Let Nr denote the subgroup
of GLr(F ) consisting of upper-triangular unipotent elements. Let ψ : F → C× be a nontrivial
additive character of conductor o, identified in the standard way with a generic character of
Nr. Let Π be a generic irreducible admissible representation of GLn+1(F ), realized in its ψ−1-
Whittaker model W(Π, ψ−1). Must there exist W ∈ W(Π, ψ−1) with the following property?

Let π be a generic irreducible admissible representation of GLn(F ), realized in its ψ-Whittaker
model W(π, ψ). Let q denote the conductor ideal of π, let Q ∈ F× be a generator of q−1, and
set

uQ := In+1 +QEn,n+1 ∈ GLn+1(F ),

where Ei,j is the matrix with a 1 in the (i, j)-entry and 0 elsewhere. For some V ∈ W(π, ψ),
the local Rankin–Selberg integral∫

Nn\GLn(F )
W (diag(g, 1)uQ)V (g) | det g|s−

1
2 dg

is finite and nonzero for all s ∈ C.

2.1 Setup and goal

Let F be a non-archimedean local field with ring of integers o, maximal ideal p, and a fixed
uniformizer ϖ. Write | · | for the normalized absolute value on F . For r ≥ 1 set

Gr = GLr(F ), Kr = GLr(o), Nr = {upper unitriangular matrices in Gr}.

Fix a nontrivial additive character ψ : F → C× of conductor o (so ψ is trivial on o and nontrivial
on ϖ−1o).

Let Π be an irreducible generic representation of Gn+1, and let π be an irreducible generic
representation of Gn. We work with Whittaker models

W(Π, ψ−1) = {W : Gn+1 → C smooth : W (ug) = ψ−1(u)W (g) ∀u ∈ Nn+1},

W(π, ψ) = {V : Gn → C smooth : V (ug) = ψ(u)V (g) ∀u ∈ Nn}.

Let q = pc be the (integral) conductor ideal attached to π in the discussion above, and fix a
generator

Q ∈ q−1 = p−c (so v(Q) = −c).

Define

uQ =

(
In Qen
0 1

)
∈ Gn+1,

where en is the nth standard basis column vector in Fn.
For W ∈ W(Π, ψ−1) and V ∈ W(π, ψ) consider the local Rankin–Selberg integral

Z(s,W, V ) =

∫
Nn\Gn

W

((
g 0
0 1

)
uQ

)
V (g) |det g| s−

1
2 dg, (5)

with a fixed Haar measure dg on Nn\Gn.

Claim. There exists W ∈ W(Π, ψ−1), depending only on Π (and ψ), such that for every generic
π and every choice of generator Q ∈ q−1 as above, one can choose V ∈ W(π, ψ) with Z(s,W, V )
finite and nonzero for all s ∈ C.
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2.2 Step 1: Choosing W by prescribing its restriction to the mirabolic

Let

Pn+1 =

{(
g x
0 1

)
: g ∈ Gn, x ∈ Fn

}
be the mirabolic subgroup of Gn+1. Let Sψ−1(Pn+1) denote the space of smooth functions
f : Pn+1 → C which are (Nn+1, ψ

−1)-equivariant on the left and compactly supported modulo
Nn+1.

Lemma 2.1. Define f : Pn+1 → C by

f

((
g x
0 1

))
= 1NnKn(g) · ψ−1(u(g)) · ψ−1(xn),

where 1NnKn is the indicator function of NnKn ⊂ Gn and u(g) ∈ Nn is chosen from any
decomposition g = u(g)k with k ∈ Kn (when g ∈ NnKn). Then f ∈ Sψ−1(Pn+1).

Proof. If g ∈ NnKn, the decomposition g = uk is unique up to right multiplication of u by
Nn ∩ Kn. Since ψ has conductor o, it is trivial on Nn ∩ Kn, hence ψ(u(g)) is well-defined.
Smoothness is clear.

For equivariance, let n = ( u y0 1 ) ∈ Nn+1 with u ∈ Nn and y ∈ Fn. Then

n

(
g x
0 1

)
=

(
ug ux+ y
0 1

)
.

If g /∈ NnKn then also ug /∈ NnKn, so both sides are 0. If g ∈ NnKn, then ug ∈ NnKn and one
may take u(ug) = uu(g) (modulo Nn ∩Kn), so

ψ−1(u(ug)) = ψ−1(u)ψ−1(u(g)).

Moreover, (ux+y)n = xn+yn because u is upper unitriangular, so ψ−1((ux+y)n) = ψ−1(yn)ψ
−1(xn).

Since ψ−1(n) = ψ−1(u)ψ−1(yn) for n =

(
u y
0 1

)
∈ Nn+1, we get

f(np) = ψ−1(n)f(p) .

Finally, f is compactly supported modulo Nn+1 because modulo Nn+1 the x-variable is
irrelevant (the left Nn+1-action moves x freely), and the g-support is contained in NnKn, whose
image in Nn\Gn is compact.

The crucial representation-theoretic input is the standard fact that, for a generic Π, the
Kirillov model on the mirabolic contains all compactly supported Whittaker functions on Pn+1.

Lemma 2.2 (Compact Kirillov model on Pn+1). Let Π be irreducible generic. The restriction
map

resPn+1 :W(Π, ψ−1) −→ C∞(Nn+1\Pn+1, ψ
−1), W 7→W |Pn+1 ,

has image containing Sψ−1(Pn+1). In particular, for the f of Lemma 2.1 there exists W ∈
W(Π, ψ−1) such that W |Pn+1 = f .

Reference. This is the classical “compact Kirillov model” statement; see Gelfand–Kazhdan [3]
and the mirabolic/derivative formalism in Zelevinsky [5], or the discussion of mirabolic restriction
in Matringe [4, §2].

Fix once and for all such a Whittaker function W ∈ W(Π, ψ−1) with W |Pn+1 = f . This W
depends only on Π (and ψ), not on π or Q.

9



2.3 Step 2: Reducing (5) to a compact integral on Kn

For g ∈ Gn we have (
g 0
0 1

)
uQ =

(
g Qgen
0 1

)
∈ Pn+1.

Hence, by the choice W |Pn+1 = f ,

W

((
g 0
0 1

)
uQ

)
= 1NnKn(g) · ψ−1(u(g)) · ψ−1(Qgn,n). (6)

Insert (6) into (5). If g ∈ NnKn and we write g = u(g)k with k ∈ Kn, then | det g| = 1 and,
using the Whittaker property V (u(g)k) = ψ(u(g))V (k),

ψ−1(u(g))V (g) = ψ−1(u(g))ψ(u(g))V (k) = V (k).

Thus the integrand in (5) is supported on NnKn and the s-factor drops out. Transporting the
quotient measure from Nn\(NnKn) ≃ (Nn ∩Kn)\Kn gives

Z(s,W, V ) = IQ(V ) :=

∫
(Nn∩Kn)\Kn

ψ−1(Qkn,n)V (k) dk. (7)

In particular, Z(s,W, V ) is independent of s, and finiteness is automatic because the domain of
integration is compact.

The remaining task is to show IQ(V ) ̸= 0.

2.4 Step 3: Fourier projection and the weak kernel on Gn

For the rest of the proof put H = Nn ∩Kn. If Q is the chosen generator of p−c(π), write

L(V ) =

∫
H\Kn

ψ(−Qknn)V (k)dk. (8)

We shall use two standard facts. First, for x = (x1, . . . , xn−1) ∈ Fn−1 put u(x) = In +∑n−1
i=1 xiEin. If a = (a1, . . . , an−1) ∈ Fn−1 and W ∈ W(π, ψ), define

(PaW )(g) =

∫
on−1

W (gu(x))ψ

(
−Q

n−1∑
i=1

aixi

)
dx. (9)

(The Haar measure gives volume 1 to o.) Then PaW ∈ W(π, ψ) and a change of variables
k 7→ ku(x) in (8) gives the projection formula

L(PaW ) =

∫
H\Kn

kni≡ai (modpc(π)), i<n

ψ(−Qknn)W (k)dk. (10)

Indeed the inner integrals are
∫
o ψ(Q(kni− ai)x)dx, equal to 1 or 0 according as kni− ai ∈ pc(π)

or not.
The proof of non–vanishing for ramified representations rests on a standard piece of local

newform theory. We isolate it in the following form. Recall that H = Nn ∩Kn.

Proposition 2.3 (compact test vector on Kn). Assume that n ≥ 2 and that the conductor
exponent c = c(π) is positive. There is an integer m0 = m0(π) ≥ c with the following property.
For every m ≥ m0 one can find a Whittaker function V H

m ∈ W(π, ψ) whose restriction to
Kn is described as follows (we normalize it by a non–zero scalar which we take to be 1). Let
w ∈ Kn be the permutation matrix interchanging the last two columns. For a coset of H\Kn with

10



kn,n−1 ∈ o× choose the representative for which, after multiplication on the left by an element
of H,

kw =

(
h 0
r a′

)
(11)

(h ∈ Gn−1, r = (r1, . . . , rn−1) ∈ F n−1, a′ ∈ F×). Then

V H
m (k) =

1, h ∈ 1 + pmMn−1(o), r ∈ (pm)n−1, a′ ∈ 1 + p c,

0, otherwise
(12)

on all such cosets. (On cosets for which kn,n−1 /∈ o× no assertion is made.) In particular the
subset Cm ⊂ H\Kn cut out by the three congruence conditions in (12) is a non–empty compact
open set of positive measure and V H

m is its characteristic function on the part of the quotient
which will occur below.

References. This is the familiar construction of the normalised Howe vector (or partial Bessel
function). We recall the precise results in the literature from which the stated form fol-
lows. Let Kn(r) = 1 + p rMn(o) and set Jr = d rKn(r)d

− r for the standard diagonal d =
diag(1, ϖ2, . . . , ϖ2n); let ψr be Howe’s character of Jr. Rodier’s approximation theorem for
Whittaker models, in the form used by Cogdell and Piatetski–Shapiro, asserts that for ev-
ery irreducible generic representation there are, for all sufficiently large r, vectors vr with
π(j)vr = ψr(j)vr for j ∈ Jr and with Whittaker value normalized by Wvr(1) = 1; see [1,
§7]. Such a vector is called a Howe vector. The values of a normalized Howe vector on the big
Bruhat cell were computed explicitly by Baruch.

In the notation above, Baruch [1, §7] shows that, after taking r = m larger than the conductor
exponent and translating the statement to the compact quotient H\Kn, the restriction of Wvm

is exactly the characteristic described in (12). The multiplication on the left by H used to put a
representative in the form (11) is by elementary row operations (possible precisely when kn,n−1

is a unit), and it introduces no character because ψ is trivial on H ⊂ Kn. For the reader who
wants a detailed verification of this translation of notation, Baruch [1, §7] proves that if a Howe
vector is non–zero at a point of the form (11) with k ∈ Kn, then the three congruences in (12)
are necessary, and in that case the value is the constant used for the normalization. This is
precisely the assertion above. Finally, choosing h = 1, r = 0 and a′ = 1 shows that Cm is
non–empty (it contains the coset of the permutation matrix w).

2.5 Step 4: construction of the test vector in the ramified case

We now finish the proof under the assumptions n ≥ 2 and c(π) > 0. Pick m ≥ m0(π) and let
V0 = V H

m be the Whittaker function furnished by Proposition 2.3. We use the Fourier–projection
(9) exactly as in Step 3. Take

a1 = · · · = an−2 = 0, an−1 = 1,

and put V = PaV0. By the projection formula (10) and by the definition of V0,

L(V ) =

∫
H\Kn

kn,n−1≡1, kni∈pc (i<n−1)

ψ(−Qknn)V0(k)dk

=

∫
Cm

ψ(−Qknn)dk. (13)

(The congruences are modulo p c.) Indeed, on the domain of the first integral the condition
kn,n−1 ≡ 1 (mod pc) is exactly a′ ∈ 1+ pc in (12), and the characteristic property of V0 imposes
the other two congruences which define Cm; outside Cm in this domain the integrand is zero.

11



On Cm the last entry knn = rn−1 lies in pm. Since v(Q) = −c and m ≥ c, we have Qknn ∈ o
and the additive character is equal to 1 there. The right–hand side of (13) is therefore just the
positive Haar measure of the non–empty compact open set Cm; in particular it is different from
zero. With the Whittaker function W on the Gn+1 side fixed in Step 1, the Rankin–Selberg
integral is finite and non–vanishing (and, as noted in Step 2, independent of s) in the present
ramified case.

2.6 Step 5: the exceptional cases

It remains to treat the two small cases omitted above.
The case n = 1. Then G1 = F× and a generic representation is a quasi-character χ. The
compact integral furnished by Step 2 is the classical Gauss integral∫

o×
χ(u)ψ(−Qu)d×u

(up to the harmless choice of Haar measure, and in the unramified case simply the volume of
o× because an unramified character is trivial on the units). For the reader’s convenience let us
recall why the ramified Gauss sum is non-zero. If the conductor exponent of χ is c > 0, then,
with the multiplicative measure normalised in the usual way, the last integral is a non-zero scalar
multiple of the finite sum

G(χ, ψ) =
∑

u∈(o/p c)×

χ(u)ψ(ϖ−cu). (14)

(We have chosen the generator Q = ϖ−c.) Extend the function u 7→ χ(u) by 0 to the finite ring
Rc = o/p c. Its additive Fourier transform is

f̂(t) =
∑
u∈R×

c

χ(u)ψ(ϖ−ctu) (t ∈ Rc).

For t divisible by ϖ the character in the summand factors through a proper quotient of Rc,
and the primitivity of χ (it is non-trivial on 1 + p c−1) shows by summing over the cosets of the
kernel that f̂(t) = 0. On the other hand the finite Fourier transform on the additive group of
Rc is an isomorphism, so f̂ is not the zero function because f is not. Hence some value with
t ∈ R×

c is non-zero. For such a unit t the change of variables u 7→ tu gives f̂(t) = χ(t)−1G(χ, ψ),
and consequently the Gauss sum (14) itself is non-zero. Thus a suitable choice of the Whittaker
function V = χ supplies the desired test vector in rank one.
The case n ≥ 2 and c(π) = 0. Here π is spherical. Let v◦ be a non-zero Kn–fixed vector
and let W ◦ be the associated Whittaker function normalized by W ◦(1) = 1. For every k ∈ Kn

we have W ◦(k) = Λ(π(k)v◦) = Λ(v◦) = 1. Since a generator Q of the inverse conductor is a
unit and our additive character is trivial on o, the factor ψ(−Qknn) is also identically 1 on Kn.
Thus (8) is simply the (positive) volume of the compact space H\Kn, and the same V gives a
non-vanishing Rankin–Selberg integral for all s.

Combining the ramified construction with these two observations completes the proof of the
claim stated in the problem. The Whittaker function W on the Gn+1 side was fixed once and
for all, independently of the representation π of Gn, and for every generator Q of the inverse
conductor ideal we have exhibited a Whittaker function V such that Z(s,W, V ) = L(V ) ̸= 0 for
all complex s.
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3 A Markov chain from interpolation polynomials?

Problem

Let λ = (λ1 > · · · > λn ≥ 0) be a partition with distinct parts. Assume moreover that λ is
restricted, in the sense that it has a unique part of size 0 and no part of size 1. Does there exist
a nontrivial Markov chain on Sn(λ) whose stationary distribution is given by

F ∗
µ(x1, . . . , xn; q = 1, t)

P ∗
λ (x1, . . . , xn; q = 1, t)

for µ ∈ Sn(λ)

where F ∗
µ(x1, . . . , xn; q, t) and P ∗

λ (x1, . . . , xn; q, t) are the interpolation ASEP polynomial and
interpolation Macdonald polynomial, respectively? If so, prove that the Markov chain you con-
struct has the desired stationary distribution. By “nontrivial” we mean that the transition prob-
abilities of the Markov chain should not be described using the polynomials F ∗

µ(x1, . . . , xn; q, t).

Solution

It may be useful first of all to say in which sense the question can be read. I shall explain that,
with the notation which is written in the statement, it is not a well posed question. In particular
it has a negative answer if one interprets it as a statement which should be true for arbitrary
numerical values of the variables.

Let me recall a small amount of notation from the paper which is quoted in the question. In
H. Ben Dali–L. K. Williams, A combinatorial formula for interpolation Macdonald polynomials,
arXiv:2510.02587, the letter f∗µ is used for the interpolation ASEP polynomial. Their “Main
theorem”, Theorem 1.3 in § 1 says that this polynomial is equal to the generating series F ∗

µ of
signed multiline queues. I shall use the letter f∗µ below. The same paper contains a factorisation
which is special to the specialisation q = 1. More precisely, if Supp(µ) = {i : µi > 0} and if
ℓ(λ) denotes the number of non–zero parts of the partition, Theorem 7.1, equations (7.1)–(7.2),
of loc. cit. asserts that for every subset S ⊂ {1, . . . , n} of cardinality ℓ(λ)

∑
µ∈Sn(λ),Supp(µ)=S

f∗µ(x1, . . . , xn; 1, t) =
∏
i∈S

(
xi −

t#(Sc∩{1,...,i−1})

tn−1

)
λ1∏
j=2

e∗λ′j
(x1, . . . , xn; t) (15)

and that the interpolation Macdonald polynomial is

P ∗
λ (x1, . . . , xn; 1, t) =

λ1∏
j=1

e∗λ′j
(x1, . . . , xn; t). (16)

Here λ′ is the conjugate partition and

e∗k(x1, . . . , xn; t) =
∑

S⊂{1,...,n}
|S|=k

∏
i∈S

(
xi −

t#(Sc∩{1,...,i−1})

tn−1

)
(17)

(this is the definition immediately preceding Theorem 7.1). I shall use these formulas only in the
very small example below. The equality between the symbols F ∗

µ which occur in the statement
of the present problem and the polynomials f∗µ is precisely the “Main theorem” just cited.

Recall what a Markov chain on a finite set means. Its transition matrix has non–negative
real entries and its stationary distribution is a probability vector, i.e. a list of non–negative real
numbers which add up to 1. In the problem, however, the symbols x1, . . . , xn and t are left as
indeterminates. Over the field of rational functions in these indeterminates there is no notion
of “non–negative”, and consequently the words Markov chain and probability distribution do
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not have a mathematical meaning. One might try to repair the statement by demanding that,
after every real specialisation of the variables for which the denominator in (3) is non–zero, the
displayed formula should give the stationary probabilities of a stochastic matrix depending on
the same parameters. With this (the most generous) interpretation the assertion is simply false.
The obstruction already appears for the smallest restricted partition.

Indeed take n = 2 and λ = (2, 0). This partition has distinct parts, contains a unique zero
and has no part equal to 1. In this case ℓ(λ) = 1 and, for a fixed support, there is only one
permutation of λ. Formula (15) therefore gives the individual interpolation ASEP polynomials
themselves. Since λ′ = (1, 1), from (15)–(17) we obtain

f∗(2,0)(x1, x2; 1, t) = (x1 − t−1) e∗1(x1, x2; t), (18)

f∗(0,2)(x1, x2; 1, t) = (x2 − 1) e∗1(x1, x2; t), (19)

where
e∗1(x1, x2; t) = (x1 − t−1) + (x2 − 1). (20)

Equation (16) gives at the same time P ∗
(2,0) = (e∗1)

2. Hence the putative stationary weights in
(3) would have to be

π(2, 0) =
x1 − t−1

x1 + x2 − 1− t−1
, π(0, 2) =

x2 − 1

x1 + x2 − 1− t−1
. (21)

Now specialise the (so far completely arbitrary) parameters to real numbers, for instance

t = 2, x1 = 0, x2 = 10.

The denominator in (21) is then 17/2, and the two numbers in (21) are respectively

π(2, 0) = − 1

17
, π(0, 2) =

18

17
.

They add up to 1, as they should algebraically, but they are not a probability vector: one
entry is negative (and the other is bigger than 1). No stochastic matrix on the two–point
set S2(2, 0) = {(2, 0), (0, 2)} can have such a stationary distribution, because the stationary
distribution of a finite Markov chain is always a list of non–negative real numbers.

This example shows two things. First, if the problem is read literally, with xi and t re-
garded as formal variables, the phrase “Markov chain with stationary distribution” has no de-
fined meaning. Secondly, under the natural alternative reading that a single statement should
hold for arbitrary numerical values of the parameters, the answer is negative (already for the
restricted partition (2, 0)). To obtain a genuine and non–trivial problem one would have to
add extra hypotheses, for example a specified real chamber of the parameters in which all the
quantities in in the target are known to be non–negative, and then give an explicit stochastic
rule in that chamber. Such additional data are not part of the question as stated, so no Markov
chain satisfying the requested property can be constructed from the present formulation.
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4 Finite additive convolution and a harmonic-mean inequality
for Φn

Problem

Let p(x) and q(x) be two monic polynomials of degree n:

p(x) =

n∑
k=0

akx
n−k and q(x) =

n∑
k=0

bkx
n−k

where a0 = b0 = 1. Define p⊞n q(x) to be the polynomial

(p⊞n q)(x) =
n∑
k=0

ckx
n−k

where the coefficients ck are given by the formula:

ck =
∑
i+j=k

(n− i)!(n− j)!
n!(n− k)!

aibj

for k = 0, 1, . . . , n. For a monic polynomial p(x) =
∏
i≤n(x− λi), define

Φn(p) :=
∑
i≤n

(
∑
j ̸=i

1

λi − λj
)2

and Φn(p) := ∞ if p has a multiple root. Is it true that if p(x) and q(x) are monic real-rooted
polynomials of degree n, then

1

Φn(p⊞n q)
≥ 1

Φn(p)
+

1

Φn(q)
?

Solution

We give a self-contained proof. The few coefficient identities and conventions used later are
recorded explicitly.

0. Two conventions (extension to non-monic/leading-zero inputs; n ≥ 2)

Throughout let n ≥ 2 and put m := n− 1.

Extension of ⊞n to degree ≤ n (leading zeros allowed). For a polynomial f of degree
≤ n, write it in the degree-n coefficient array form

f(x) =
n∑
k=0

αkx
n−k (so α0 = 0 is allowed).

Given two such arrays (αk)nk=0 and (βk)
n
k=0, define their ⊞n-convolution by the same coefficient

rule

(f ⊞n g)(x) :=

n∑
k=0

γkx
n−k, γk :=

∑
i+j=k

(n− i)!(n− j)!
n!(n− k)!

αiβj .

This is bilinear in the arrays and agrees with the original definition when both inputs are monic
of degree n (then α0 = β0 = 1). We will use this extension whenever one of the inputs has
leading coefficient 0 in degree n (e.g. Rp in the centered case, or ℓj in degree m).
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Remark on n = 1. For n = 1 one has Φ1(p) = 0 for every monic linear polynomial, so 1/Φ1

is not meaningful; hence we restrict to n ≥ 2.

1. The En transform and the basic identities

For a nonnegative integer r and k ≥ 0 write the falling factorial

rk := r(r − 1) · · · (r − k + 1), r0 := 1.

If f(x) =
∑r

k=0 αkx
r−k has degree at most r define

Er(f)(t) :=
r∑

k=0

αk
tk

rk
. (2.1)

Then the convolution is equivalently:

En(p⊞n q) =
(
En(p) En(q)

)
≤n, (2.2)

where the right-hand side multiplies the two polynomials in t and discards terms of degree > n.
We use (2.2) also for the leading-zero extension described above; the convention (2.1) makes this
unambiguous and all formulas below are linear in coefficients.

Translations. If pa(x) = p(x− a) and qb(x) = q(x− b), then

pa ⊞n qb(x) = (p⊞n q)(x− a− b). (2.3)

Proof (coefficient check, included for normalization). Write p(x) =
∑n

k=0 αkx
n−k. Taylor’s

formula gives that the coefficient of xn−k in p(x− a) equals

k∑
j=0

(−a)j

j!
αk−j(n− k + j)j .

Dividing by nk gives exactly the coefficient of tk in e−at En(p)(t), hence

En(pa) = (e−at En(p))≤n.

Applying (2.2) yields (2.3), since discarding terms before multiplying cannot affect degrees ≤ n.
□

Derivatives and the polar part. Define

rp :=
1

n
p′, Rp := p− x rp, (2.4)

and similarly for q. Then, with m = n− 1,

1

n
(p⊞n q)

′ = rp ⊞m rq, (2.5)

and
(p⊞n q)− x

1

n
(p⊞n q)

′ = (Rp ⊞n q) + (p⊞n Rq). (2.6)

Proof (sketch; both are coefficient checks from (2.2)). For (2.5), view rp as degree-m; its nor-
malized coefficients (2.1) are those of p with the last one missing, so multiplying the truncated
E-polynomials gives the derivative identity. For (2.6), compare the coefficient of xn−k on both
sides: the left coefficient is

k

n

∑
i+j=k

nk

ninj
aibj ,

while the right-hand side produces the same sum split into i/n and j/n contributions. □

17



2. Centering and the critical values wi(p)

By (2.3) we may translate p and q independently. We therefore assume from now on that p and
q are centered, i.e. the coefficient of xn−1 in each is 0 (equivalently the sum of roots of each is
0). Then Rp has degree at most m− 1 and, regarded as a degree-m polynomial, it has leading
coefficient 0.

Assume p has simple real zeros and is centered. Let rp = p′/n and denote its zeros by

ν1 < ν2 < · · · < νm (m = n− 1).

Define
wi(p) := −

Rp(νi)

r′p(νi)
. (2.7)

Lemma 4.1 (Residue formula for Φn). If p has simple real zeros and is centered, then all wi(p)
are positive and

Φn(p) =
n

4

m∑
i=1

1

wi(p)
. (2.8)

Proof. Consider the rational function

p′′(z)2

4 p′(z) p(z)
.

At a zero λ of p, the residue is
(
p′′(λ)/(2p′(λ))

)2, and these are precisely the summands defining
Φn(p). The other finite poles are the zeros νi of p′, and the residue there is

p′′(νi)

4p(νi)
=
n r′p(νi)

4Rp(νi)
.

The function is O(z−3) at infinity, hence the residue at infinity is 0. Therefore the sum of
residues is 0, yielding (2.8) after rewriting with wi(p). The sign in (2.7) (and thus positivity of
wi(p)) can also be read off from the local extrema: each νi is a strict maximum or minimum of
a real–rooted simple polynomial. At a maximum one has p(νi) > 0 and p′′(νi) < 0, and at a
minimum the signs are reversed, so −Rp(νi)/r′p(νi) > 0. □

3. Tracking the w’s through convolution: the transport computation

Let p and q be centered with simple real zeros. Keep νi for the zeros of rp and define

r =
1

n
(p⊞n q)

′ = rp ⊞m rq, (2.9)

and write the zeros of r as µ1 < · · · < µm. For each νj define the monic degree-(m − 1)
polynomial

ℓj(x) :=
rp(x)

x− νj
. (2.10)

Define the m×m matrix

Kij :=
(ℓj ⊞m rq)(µi)

r′(µi)
. (2.11)

Here ℓj is used in ⊞m as a degree-m polynomial with leading coefficient 0, per the extension
stated in Section 0.
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Lemma 4.2 (Transport identity). With the above notation,

−(Rp ⊞n q)(µi)

r′(µi)
=

m∑
j=1

Kij wj(p) (i = 1, . . . ,m). (2.12)

The analogous identity with p and q interchanged also holds.

Proof. We spell out the coefficient computation, because the step where ⊞n becomes ⊞m is
precisely where padding matters.

Write p(x) =
∑n

k=0 akx
n−k and set Ak := ak/n

k; define Bk similarly from q. For 1 ≤ I ≤ m,
the coefficient of xn−1−I in Rp ⊞n q, divided by (n− 1)I , equals∑

i+j=I+1

i AiBj . (2.13)

Indeed this is the definition (2.2), with the coefficient (i/n)ai of Rp in place of ai, and using
nI+1 = n(n− 1)I .

Now regard Rp as a degree-m polynomial with leading coefficient 0 (valid since p is centered).
Its normalized coefficient of ts for s ≥ 1 is (s+ 1)As+1. The coefficient of xm−I in the order-m
convolution Rp ⊞m rq, again divided by (n− 1)I , equals∑

s+j=I

(s+ 1)As+1Bj =
∑

i+j=I+1

i AiBj . (2.14)

(The i = 1 term is absent because A1 = 0 for centered p; for I = 0 the leading coefficients on
the two sides are likewise 0.) Comparing (2.13) and (2.14) yields the crucial padded identity

Rp ⊞n q = Rp ⊞m rq as polynomials of degree at most m. (2.15)

Next, since deg(Rp) ≤ m− 1, Lagrange interpolation at the nodes νj gives

Rp(x) =
m∑
j=1

Rp(νj)
rp(x)

r′p(νj)(x− νj)
= −

m∑
j=1

wj(p) ℓj(x). (2.16)

Convolution of order m is linear in the first factor; combining (2.15) and (2.16) and evaluating
at x = µi gives (2.12) with Kij as in (2.11). □

4. The matrix K is doubly stochastic, and why

Lemma 4.3 (Doubly stochasticity). Assume r in (2.9) has real simple zeros. Then K satisfies

Kij ≥ 0,
∑
i

Kij = 1,
∑
j

Kij = 1. (2.17)

The equalities do not use reality of the zeros.

Proof. Column sums. Fix j and consider the rational function

ℓj ⊞m rq
r

.

As a degree-m polynomial, ℓj has leading coefficient 0 and coefficient 1 at xm−1. The convolution
ℓj ⊞m rq therefore has leading coefficient 0 at xm and leading coefficient 1 at xm−1 (a coefficient
check from (2.2) with k = 1). Thus the numerator has degree m − 1 with leading coefficient 1
at xm−1, while r is monic of degree m. Hence the partial fraction expansion is

ℓj ⊞m rq
r

(x) =

m∑
i=1

Kij

x− µi
,
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and the expansion at infinity begins with 1/x. Therefore
∑

iKij = 1.
Row sums. Use the identity

∑m
j=1 ℓj = r′p (obtained by writing rp(x) =

∏
j(x − νj) and

differentiating), and claim
m∑
j=1

(ℓj ⊞m rq) = r′. (2.18)

This is again a coefficient check using Em. Let Em(rp)(t) = A(t) and Em(rq)(t) = B(t). Then
the normalized coefficient polynomial of the leading-zero derivative r′p in degree m is (tA(t))≤m.
After convolution with rq it becomes (tA(t)B(t))≤m. On the other hand Em(r) = (A(t)B(t))≤m
by (2.2), and the leading-zero derivative of r has normalized polynomial (t(A(t)B(t))≤m)≤m.
These coincide because any terms of A(t)B(t) of degree > m disappear after multiplying by t
and truncating to degree m. Thus (2.18) holds. Evaluating (2.18) at x = µi gives

m∑
j=1

(ℓj ⊞m rq)(µi) = r′(µi),

and dividing by r′(µi) yields
∑

jKij = 1.
Nonnegativity. Assume (for the moment) that the interlacing–preservation theorem of the

next subsection is known for simple polynomials of the same (actual) degree. There is a small
point of interpretation here, because in our application ℓj has degree m− 1 (it is being padded
by a zero leading coefficient in the order–m convolution). We record explicitly the standard
limiting device which reduces this case to the theorem just quoted.

For ε > 0 put
ℓ
(ε)
j (x) := ℓj(x) + ε rp(x).

Then ℓ(ε)j has real zeros – namely νk for k ̸= j and the additional zero νj − 1/ε – and is in non–
strict proper position with rp. If one wants the hypotheses of the interlacing theorem literally,
move the common zeros by arbitrarily small alternating perturbations (and divide by the positive
leading coefficient) to obtain simple degree–m polynomials which interlace rp; after applying the
theorem to those polynomials and to rq, let the perturbations tend to zero. By continuity of the
zeros (Hurwitz’s theorem, or elementary continuity of the roots as functions of the coefficients)
it follows that ℓ(ε)j ⊞m rq interlaces r = rp ⊞m rq. Finally we let ε ↓ 0 and use bilinearity of the
convolution to get the desired interlacing of ℓj ⊞m rq with r (allowing coincidences).

Since the coefficient of ℓj ⊞m rq at xm−1 is positive, such an interlacing (even with coinci-
dences) implies that (ℓj⊞m rq)(µi) has the same sign as r′(µi), or is zero, and hence Kij ≥ 0.

5. Real-rootedness and interlacing preservation for ⊞n (non-circular)

We now prove the following key theorem. The proof proceeds by a self-contained induction and,
at the same time, supplies the deferred nonnegativity of K in all degrees.

Obreschkoff (Hermite–Kakeya–Obreschkoff) theorem. Let f, g be real polynomials of
degree n without common zeros and with leading coefficients of the same sign. Then the zeros
of f and g interlace if and only if every nontrivial linear combination af + bg has only real zeros.
(Proof: consider R = f/g; interlacing⇔ R strictly monotone between poles; strict monotonicity
⇔ every horizontal line meets the graph n times.)

Theorem 4.4 (Real-rootedness and interlacing preservation). If p, q are monic real-rooted poly-
nomials of degree n, then so does p⊞n q. Moreover, if p1, p2 are two such polynomials and their
zeros interlace, then p1 ⊞n q and p2 ⊞n q interlace.
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Proof. We first treat monic polynomials of exact degree n with simple zeros. Multiplying an
input by a non–zero constant does not change its zeros (and merely scales the convolution in
that factor), and polynomials with multiple zeros will be recovered at the end by approximation.

For the real–rootedness assertion translations allow us to assume that p and q are centered;
once it is proved in that situation formula (2.3) removes the centering. We prove, by induction
on n, the slightly stronger statement that simple inputs give simple outputs. Simultaneously we
use that in all smaller degrees the matrices of Lemma 4.3 are non–negative; this non–negativity
was reduced in Lemma 4.3 to the interlacing part of the theorem in the smaller degree and is
therefore part of the induction hypothesis.

Base n = 1 is trivial. Assume these assertions known up to degree n−1. Let p, q be centered
of degree n with simple real zeros, and define rp = p′/n, rq = q′/n. By the induction hypothesis,

r = rp ⊞n−1 rq

has real simple zeros µ1 < · · · < µn−1. Also, by the induction hypothesis again, the matrices
K, K̃ arising from the degree n− 1 derivative convolution are nonnegative doubly stochastic, so
(Kwp)i + (K̃wq)i > 0.

Lemma 4.2 applied to both (Rp ⊞n q) and (p⊞n Rq) together with the split (2.6) yields, at
the points µi,

(p⊞n q)(µi) = − r′(µi)
(
(Kwp)i + (K̃wq)i

)
. (2.19)

The parenthesized quantity is strictly positive. For a monic degree-(n−1) polynomial r the sign
of r′(µi) is (−1)(n−1)−i; hence the values (p⊞n q)(µi) alternate in sign.

A monic polynomial of degree n whose derivative has real simple zeros and whose val-
ues at these critical points alternate in sign has n real simple zeros (one in each interval
(−∞, µ1), (µ1, µ2), . . . , (µn−1,∞)). Indeed the sign just computed gives (p ⊞n q)(µn−1) < 0
while the polynomial is positive for large positive x, and (p⊞n q)(µ1) has sign (−1)n−1, opposite
to the sign (−1)n at large negative x; between two consecutive critical points the derivative has
a fixed sign, so the alternation yields exactly one crossing in each interval and none at a critical
point. Thus p⊞n q is real-rooted in the centered case, hence in general by (2.3).

This completes the induction for real-rootedness.
To prove interlacing preservation, let p1, p2 be two interlacing degree-n polynomials. By

Obreschkoff, every linear combination h = ap1 + bp2 is real-rooted. If the leading coefficient of
h is non–zero we divide by it and apply the real–rootedness part just proved (multiplying the
convolution afterwards by the same constant); if the leading coefficient vanishes we approximate,
say, by ap1 + (b+ ε)p2 and pass to the limit. Consequently

(ap1 + bp2)⊞n q

is real-rooted for all a, b. By linearity of ⊞n in the first factor,

(ap1 + bp2)⊞n q = a(p1 ⊞n q) + b(p2 ⊞n q).

Hence every linear combination of p1 ⊞n q and p2 ⊞n q is real-rooted. Applying the Obreschkoff
theorem in this limiting form (equivalently, factoring out any common zeros first) yields that
p1 ⊞n q and p2 ⊞n q interlace.

It remains only to spell out the harmless limiting convention that was used in Lemma 4.3.
The passage from simple to multiple roots in the real–rootedness assertion itself is obtained
by the same coefficientwise approximation, since the set of real–rooted polynomials is closed.
The interlacing theorem just proved for simple polynomials with non–zero leading coefficient
also covers the padded leading–zero inputs occurring there: the approximation ℓ

(ε)
j = ℓj +

εrp (together with an arbitrarily small perturbation to remove common zeros) reduces that
situation to the strict case, and bilinearity plus continuity of the roots allow one to pass to the
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limit. Multiple common roots in the statement of the theorem itself are dealt with by the same
perturbation.

Finally, the nonnegativity part of Lemma 4.3 now holds in every degree, because it was
reduced to interlacing preservation in the relevant lower degree, which we have proved by induc-
tion.

6. The key decomposition of the convolved critical values

Keep p, q centered and simple, and keep the notation above. For the convolved polynomial define
its w-numbers by

wi(p⊞n q) := −
(p⊞n q − x r)(µi)

r′(µi)
. (2.20)

Then by (2.6) and Lemma 4.2 (and its p↔ q analogue),

wi(p⊞n q) = (Kwp)i + (K̃wq)i, (2.21)

where K, K̃ are nonnegative doubly stochastic matrices and wp, wq are the vectors of w-numbers
of p and q.

7. The one-line estimate and conclusion

Define

Ap :=
m∑
i=1

1

wi(p)
, Aq :=

m∑
i=1

1

wi(q)
,

and similarly for p⊞nq. If Si := (Kwp)i, then by Jensen’s inequality for the convex function x 7→
1/x (using the row sums of K to form convex combinations and the column sums afterwards),

m∑
i=1

1

Si
≤

m∑
i=1

1

wi(p)
= Ap, (2.22)

and similarly for Ti := (K̃wq)i one has
∑

i 1/Ti ≤ Aq.
For positive S, T and every real α,

1

S + T
≤ α2

S
+

(1− α)2

T
, (2.23)

since the difference is (αT − (1−α)S)2/(ST (S+T )). Summing (2.23) with S = Si, T = Ti and
using (2.21) and (2.22) yields

m∑
i=1

1

wi(p⊞n q)
≤ α2Ap + (1− α)2Aq.

Choosing α = Aq/(Ap +Aq) gives
m∑
i=1

1

wi(p⊞n q)
≤ ApAq
Ap +Aq

. (2.24)

By Lemma 4.1,

Φn(p) =
n

4
Ap, Φn(q) =

n

4
Aq, Φn(p⊞n q) =

n

4

m∑
i=1

1

wi(p⊞n q)
.

Multiplying (2.24) by n/4 and inverting gives

1

Φn(p⊞n q)
≥ 1

Φn(p)
+

1

Φn(q)
.

This proves the inequality for centered simple-rooted polynomials.
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8. Removing centering and multiple roots

If the roots are not centered, translate p and q to make them centered, apply the proved in-
equality, and translate back using (2.3). The value of Φn is unchanged by a common translation
of the roots.

If a polynomial has a multiple root we interpret 1/Φn as 0. Choose sequences p(s), q(s) of
monic real–rooted polynomials with simple roots converging coefficientwise to the given ones.
The map (p, q) 7→ p ⊞n q is polynomial in the coefficients, hence continuous, and for simple
polynomials the quantities in (2.8) are continuous functions of the roots. Moreover (2.8) shows
that as two roots of a real–rooted polynomial coalesce the sum defining Φn tends to +∞, so its
reciprocal tends to 0. Applying the proved inequality to p(s), q(s) and taking lim inf therefore
gives the desired inequality in the limit. In particular, if the right–hand side has a positive limit
the convolved polynomials cannot acquire a multiple root in the limit (otherwise the left–hand
side would tend to 0), and if the right–hand side tends to 0 the estimate is immediate. Thus the
convention on multiple roots is consistent and the inequality survives passage to the limit.

Conclusion

For all n ≥ 2 and all monic real-rooted degree-n polynomials p, q (with Φn = ∞ on multiple
roots),

1

Φn(p⊞n q)
≥ 1

Φn(p)
+

1

Φn(q)
.
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5 The O-adapted slice filtration and a geometric fixed-point cri-
terion for slice connectivity

Problem

Fix a finite group G. Let O denote an incomplete transfer system associated to an N∞ operad.
Define the slice filtration on the G-equivariant stable category adapted to O and state and
prove a characterization of the O-slice connectivity of a connective G-spectrum in terms of the
geometric fixed points.

Solution

Conventions. By a localizing subcategory of a stable category we mean a full subcategory
closed under equivalences, cofibres (hence suspensions), extensions, and arbitrary coproducts
(not necessarily under inverse suspension). For a collection of objects C we write Loc⟨C⟩ for the
smallest localizing subcategory containing C.

We write ΦH : SpG → Sp for geometric H-fixed points. When we speak of the connectivity
of ΦH(X) we mean the connectivity of the underlying nonequivariant spectrum. Let Sp≥k ⊂ Sp
denote the usual full subcategory of k-connective spectra.

A G-spectrum X will be called connective if ΦH(X) ∈ Sp≥0 for every H ≤ G.

Lemma 5.1 (Connective spectra are generated by spheres). For every integer c ≥ 0 one has

LocSp⟨Sm | m ≥ c ⟩ = Sp≥c.

Proof. Since Sp≥c is closed under coproducts, cofibres, and extensions, and contains Sm for all
m ≥ c, it contains LocSp⟨Sm | m ≥ c ⟩. Thus

LocSp⟨Sm | m ≥ c ⟩ ⊆ Sp≥c.

Conversely, let X ∈ Sp≥c. By the standard cellular approximation theorem for spectra (see [1,
§ III.2]) one can build a CW–approximation of X using only cells in degrees ≥ c: start with
X−1 = 0 and inductively construct a sequence

X−1 −→ X0 −→ X1 −→ · · · −→ X

so that Xr → X is (c + r)-connective and Xr is obtained from Xr−1 by attaching a wedge of
spheres

∨
ΣmS0 with m ≥ c + r (e.g. by killing the kernel of πc+r(Xr−1) → πc+r(X) and then

surjecting onto πc+r+1(X)). Taking the sequential homotopy colimit (mapping telescope) yields
an equivalence

hocolim
r

Xr ≃ X.

Each Xr lies in LocSp⟨Sm | m ≥ c ⟩, and this subcategory is closed under sequential homotopy
colimits because in a stable category hocolimrXr ≃ cofib

(⊕
rXr

1−shift−−−−→
⊕

rXr

)
is built from

coproducts and a cofiber. Hence X ∈ LocSp⟨Sm | m ≥ c ⟩.

Transfer systems from N∞-operads. Write K → H for the relation in the transfer system.
For each H ≤ G set

OH := {K ≤ H | K → H }.

If O comes from an N∞-operad (equivalently an indexing system), then for each fixed H the fam-
ily OH is closed under H-conjugation and finite intersections (this reflects closure of admissible
H-sets under products and subobjects; see [2, §3]).

24



Consequently, OH has a smallest subgroup:

HO :=
⋂
K≤H
K→H

K. (22)

This subgroup is normal in H and still belongs to OH .
Define the index and the real permutation representation

dH := [H : HO] ∈ Z≥1, ρOH := R[H/HO]

(the real vector space on the H-set of cosets, with the induced H-action).

Lemma 5.2 (Conjugation and restriction invariance). Let O be the transfer system under dis-
cussion (coming from an N∞–operad, so that the subgroups HO of (22) are defined).

1. (Conjugation invariance.) For any g ∈ G and L ≤ G, conjugation induces a bijection
between subgroups of L which transfer to L and subgroups of g−1Lg which transfer to
g−1Lg. Consequently

(g−1Lg)O = g−1LOg,

and in particular dg−1Lg = dL.

2. (Restriction to subgroups.) Let H ≤ G and let O|H denote the restricted transfer system
on H (i.e. K →O|H L iff K →O L for K ≤ L ≤ H). Then for every L ≤ H one has

LO|H = LO and hence d
O|H
L = dOL .

Proof. (1) If K ≤ L and K → L, closure of the transfer relation under conjugation implies
g−1Kg → g−1Lg. This gives a bijection between the indexing sets in the defining intersections,
so

(g−1Lg)O =
⋂

K′≤g−1Lg
K′→g−1Lg

K ′ =
⋂
K≤L
K→L

g−1Kg = g−1
( ⋂
K≤L
K→L

K
)
g = g−1LOg.

Taking indices yields dg−1Lg = dL.
(2) By definition of restriction, the collection {K ≤ L | K →O|H L} coincides with {K ≤ L |

K →O L} whenever L ≤ H, so the defining intersections agree.

Lemma 5.3 (Monotonicity and an orbit-count estimate). For the above transfer system let
K ≤ H ≤ G.

1. One has KO ≤ K ∩HO and hence dK ≥ [K : K ∩HO].

2. The number of K-orbits in H/HO satisfies∣∣K\H/HO
∣∣ = |H : HO|
|K : K ∩HO|

≥ dH
dK

.

Proof. (1) By the restriction axiom for transfer systems, from HO → H we obtain K∩HO → K.
Since KO is the smallest subgroup in OK (by the same construction (22) applied to K), we have
KO ≤ K ∩HO. Taking indices gives dK = [K : KO] ≥ [K : K ∩HO].

(2) Because HO ⊴ H, the stabilizer in K of any coset in H/HO is exactly K ∩HO. Hence
every K-orbit has cardinality [K : K ∩HO], so∣∣K\H/HO

∣∣ = |H : HO|
|K : K ∩HO|

.

The inequality follows from (1): |K : K ∩HO| ≤ dK and |H : HO| = dH .
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The O-adapted (regular) slice filtration. For each integer n define τO≥n ⊂ SpG to be the
localizing subcategory generated by the O-slice cells

G+ ∧H Smρ
O
H (H ≤ G, m ∈ Z, mdH ≥ n). (23)

Here SV denotes the representation sphere of a (virtual) real H-representation V ; for m < 0
the notation means the corresponding desuspension by the virtual representation mρOH . The
full subcategories τO≥n form a decreasing filtration of SpG; in what follows we only use these
subcategories themselves.

We will use the following (well-known) result.

Lemma 5.4 (Geometric fixed points detect equivalences). A map f : X → Y in SpG is an
equivalence if and only if ΦH(f) is an equivalence of spectra for every subgroup H ≤ G.

Proof. Only the “if” direction needs proof. Let F := fib(f). Since each ΦH is exact, ΦH(F ) ≃
fib(ΦH(f)) ≃ 0 for all H ≤ G. By [3, Prop. 2.52], this implies F ≃ 0, hence f is an equivalence.

The fixed-point characterization of O-slice connectivity.

Theorem 5.5. Let X be a connective G-spectrum and let n ≥ 0. Then

X ∈ τO≥n ⇐⇒ ΦH(X) ∈ Sp≥⌈n/dH⌉ for every H ≤ G. (24)

Proof. Set
Pn(G) :=

{
Y ∈ SpG

∣∣ΦH(Y ) ∈ Sp≥⌈n/dH⌉ for all H ≤ G
}
.

Because each ΦH is exact and preserves coproducts, and each Sp≥k is localizing in Sp, the class
Pn(G) is a localizing subcategory of SpG.
Step 1: τO≥n ⊆ Pn(G). Since Pn(G) is localizing, it suffices to check the generators (23). Fix a
generator

Y = G+ ∧H Smρ
O
H with mdH ≥ n.

Because n ≥ 0 and dH ≥ 1, this forces m ≥ 0.
Fix K ≤ G. A standard double-coset formula for geometric fixed points of induced spectra

(see e.g. [3, Prop. 2.46]) gives an equivalence

ΦK(G+ ∧H Z) ≃
∨

[g]∈K\G/H
Kg≤H

Σ∞(WGK/WHK
g)+ ∧ ΦK

g
(Z), (25)

natural in the H-spectrum Z, where Kg := g−1Kg and WLM = NL(M)/M denotes the Weyl
group (the subgroup WHK

g is viewed inside WGK by conjugation with g). Applying this with
Z = Smρ

O
H and using that geometric fixed points of a representation sphere are the sphere of

the fixed subrepresentation,
ΦK

g
(Smρ

O
H ) ≃ Sm(ρOH)K

g

,

we obtain
ΦK(Y ) ≃

∨
[g]∈K\G/H
Kg≤H

Σ∞(WGK/WHK
g)+ ∧ Sm(ρOH)K

g

.

If the indexing set is empty then this wedge is the zero spectrum (and hence is connective in every
degree), so there is nothing to prove. Otherwise smashing with Σ∞ of a finite set merely produces
a finite wedge of the same sphere, and it remains to understand the dimension of (ρOH)

Kg . Since
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ρOH = R[H/HO] is a permutation representation, the fixed subspace has dimension equal to the
number of orbits:

dim
(
(ρOH)

Kg)
=
∣∣Kg\H/HO

∣∣.
Because Kg ≤ H, Lemma 5.3(2) applied to Kg ≤ H gives

∣∣Kg\H/HO
∣∣ ≥ dH

dKg
.

By Lemma 5.2(1) we have dKg = dK , hence

∣∣Kg\H/HO
∣∣ ≥ dH

dK
.

Therefore every sphere summand has dimension at least m(dH/dK) ≥ n/dK , hence at least
⌈n/dK⌉ since it is integral. Thus ΦK(Y ) ∈ Sp≥⌈n/dK⌉ for all K, so Y ∈ Pn(G), and τO≥n ⊆ Pn(G)
follows.
Step 2: Pn(G) ⊆ τO≥n. We prove this by induction on |G|. When G = e, we have de = 1 and

τO≥n = LocSp⟨Sm | m ≥ n ⟩ = Sp≥n

by Lemma 5.1, so the claim is the ordinary Postnikov connectivity statement.
Assume now G ̸= e and that the statement holds for all proper subgroups of G (with

the restricted transfer system). Let X be connective and assume X ∈ Pn(G), i.e. ΦH(X) ∈
Sp≥⌈n/dH⌉ for all H ≤ G.

Let F be the family of proper subgroups of G and consider isotropy separation:

EF+ ∧X −→ X −→ ẼF ∧X. (26)

Step 2a: EF+ ∧ X ∈ τO≥n. For each proper H < G, the restricted H-spectrum resGH X is
connective and satisfies the same geometric fixed-point bounds for all L ≤ H:

ΦL(resGH X) ≃ ΦL(X) ∈ Sp≥⌈n/dL⌉.

Here τO≥n(Sp
H) denotes the filtration for the restricted transfer system O|H ; by Lemma 5.2(2)

the subgroups LO|H (and hence the integers dL) agree with those computed in G for all L ≤ H.
Therefore the inductive hypothesis applies and gives

resGH X ∈ τO≥n(SpH).

A G-CW filtration of EF has cells G/H ×Dr with H ∈ F and r ≥ 0. Smashing with X,
the successive cofibres in the skeletal filtration are wedges of spectra

G/H+ ∧ Sr ∧X ≃ G+ ∧H Σr(resGH X).

Induction G+ ∧H (−) is exact and preserves coproducts, hence sends localizing subcategories to
localizing subcategories; moreover it sends each O|H -slice cell H+ ∧L Smρ

O|H
L (with L ≤ H) to

the corresponding O-slice cell G+ ∧L Smρ
O
L (using Lemma 5.2(2) to identify ρO|H

L = ρOL ). Thus

G+ ∧H
(
τO≥n(Sp

H)
)
⊆ τO≥n(SpG).

Since suspension preserves τO≥n, each skeletal stage of EF+∧X lies in τO≥n. Finally, τO≥n is closed
under sequential homotopy colimits (mapping telescopes) because it is closed under coproducts
and cofibres; hence the colimit EF+ ∧X lies in τO≥n(Sp

G).
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Step 2b: ẼF ∧X ∈ τO≥n. Set Z := ẼF ∧X. Then Z is concentrated over G:

ΦH(Z) ≃ 0 (H < G), ΦG(Z) ≃ ΦG(X).

Let c := ⌈n/dG⌉ ∈ Z≥0. By assumption ΦG(X) ∈ Sp≥c, hence ΦG(Z) ∈ Sp≥c. By Lemma 5.1,
this implies

ΦG(Z) ∈ LocSp⟨Sm | m ≥ c ⟩. (27)

Consider the exact functor

L : Sp→ SpG, L(W ) := ẼF ∧ ϵ∗W,

where ϵ∗ denotes the trivial G-action. The spectrum L(W ) is concentrated over G and satisfies
ΦG(L(W )) ≃W .

Lemma 5.6 (Spectra concentrated over G). Let C ⊂ SpG be the full subcategory of G-spectra T
such that EF+ ∧ T ≃ 0 (equivalently ΦH(T ) ≃ 0 for every proper subgroup H < G). Then

ΦG : C −→ Sp

is an equivalence and a quasi-inverse is L(W ) = ẼF ∧ ϵ∗W . In particular, for every Z ∈ C there
is a natural map

ẼF ∧ ϵ∗(ΦGZ) −→ Z

which is an equivalence.

Proof. We shall use two standard pieces of equivariant stable homotopy theory. First, smashing
with ẼF is a smashing Bousfield localization of SpG: its local objects are precisely the spectra
T with EF+ ∧ T ≃ 0, and the functor LF (Y ) = ẼF ∧ Y is left adjoint to the inclusion of this
full subcategory (for example [4, §3.3]). Secondly, for a finite group the geometric fixed point
functors are exact, preserve arbitrary homotopy colimits and are strong symmetric monoidal,
and for a suspension spectrum one has ΦH(Σ∞A) ≃ Σ∞(AH); we refer to [5, §V.4] (see also [3,
§2]).

Let us first check that the two descriptions of C agree. If T ≃ ẼF ∧T , then for every proper
H < G the preceding properties give ΦH(T ) ≃ ΦH(ẼF) ∧ ΦH(T ) ≃ 0. Conversely, if all these
proper geometric fixed points vanish, the map T −→ ẼF ∧ T in the isotropy–separation cofibre
sequence is an equivalence after applying every ΦH (for H = G because ΦG(EF+) ≃ 0), and
hence is an equivalence by Lemma 5.4. Thus C is exactly the local subcategory for this smashing
localization.

Put L(W ) = ẼF ∧ ϵ∗W . If X ∈ C, the localization adjunction and the ordinary adjunction
ϵ∗ ⊣ (−)Gcat for categorical fixed points give natural isomorphisms of morphism sets

[L(W ), X ]SpG
∼= [ ϵ∗W,X ]SpG

∼= [W,XG
cat ]Sp = [W,ΦGX ]Sp, (28)

where in the last step we used X ≃ ẼF ∧X. Hence L : Sp→ C is left adjoint to the restricted
functor ΦG.

The unit of this adjunction is an isomorphism. Indeed the monoidality just recalled and the
calculation of the geometric fixed points of the universal spaces give natural equivalences

ΦGL(W ) ≃ ΦG(ẼF) ∧ ΦG(ϵ∗W ) ≃ S0 ∧W ≃ W.

For the second equivalence note that the exact coproduct–preserving functor ΦGϵ∗ agrees with
the identity on all suspension spheres, and hence on all spectra by the universal property of
the stable homotopy category. Under these identifications the adjunction unit is the inverse
equivalence: for W = S0 it is induced by the collapse map S0oẼF (after applying ΦG), and
since both functors are exact and preserve arbitrary coproducts while S0 is a compact generator
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of Sp, the unit is an isomorphism for every W . By the triangular identity for the adjunction
(28), the counit

ϵX : ẼF ∧ ϵ∗(ΦGX) −→ X, X ∈ C,

therefore becomes an equivalence after applying ΦG. For a proper subgroup both source and
target have trivial geometric fixed points, so Lemma 5.4 shows that ϵX itself is an equivalence.
This counit is the displayed natural map and the two functors are quasi–inverse equivalences.

Applying L to (27) and using exactness and coproduct preservation, we obtain

Z ≃ L(ΦGZ) ∈ LocSpG⟨L(S
m) | m ≥ c ⟩. (29)

Thus it suffices to show L(Sm) ∈ τO≥n for every m ≥ c.

Claim 5.7. If m ≥ 0 and mdG ≥ n, then L(Sm) ∈ τO≥n(SpG).

Proof. The generator SmρOG belongs to τO≥n by definition since mdG ≥ n.
We first show EF+∧Smρ

O
G ∈ τO≥n. For a proper subgroup H < G, the restricted H-spectrum

resGH S
mρOG is connective and, for L ≤ H,

ΦL(resGH S
mρOG ) ≃ Sm(ρOG)L .

Since ρOG = R[G/GO] is a permutation representation, dim((ρOG)
L) = |L\G/GO|, and Lemma 5.3(2)

(with H = G) yields |L\G/GO| ≥ dG/dL. Hence

ΦL(resGH S
mρOG ) ∈ Sp≥⌈n/dL⌉.

By the inductive hypothesis applied to the group H (with the restricted transfer system, and
using Lemma 5.2(2) to identify the same dL), we conclude resGH S

mρOG ∈ τO≥n(SpH) for all proper
H < G. The same G-CW cellular argument as in Step 2a (using exactness/coproduct preserva-
tion of induction and closure under sequential homotopy colimits) then shows EF+ ∧ Smρ

O
G ∈

τO≥n(Sp
G).

Now in the cofiber sequence

EF+ ∧ Smρ
O
G −→ Smρ

O
G −→ ẼF ∧ SmρOG ,

the first two terms lie in τO≥n, so the third term does as well:

ẼF ∧ SmρOG ∈ τO≥n. (30)

Set Z0 := ẼF ∧ SmρOG . Then Z0 is concentrated over G, so ΦH(Z0) ≃ 0 for every proper
subgroup H < G, while

ΦG(Z0) ≃ Sm(ρOG)G ≃ Sm,

since (ρOG)
G ∼= R (constant functions on G/GO). Therefore Lemma 5.6 (applied to Z0 ∈ C)

supplies a natural equivalence

L(Sm) = L(ΦGZ0)
≃−−→ Z0 = ẼF ∧ SmρOG .

Since the right-hand side lies in τO≥n by (30), and τO≥n is closed under equivalences, it follows
that L(Sm) ∈ τO≥n.

Now if m ≥ c = ⌈n/dG⌉, then m ≥ 0 and mdG ≥ n, so Claim 5.7 applies. Therefore all
generators in (29) lie in τO≥n, hence Z ∈ τO≥n.
Step 2c: conclude. In (26), both end terms lie in the localizing subcategory τO≥n, which is closed
under extensions, hence X ∈ τO≥n.

Combining Steps 1 and 2 proves (78).
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Remark 5.8 (Two extremes). If O allows all transfers, then HO = e and dH = |H|, and
Theorem 5.5 recovers the usual regular slice-connectivity criterion. If O only allows trivial
transfers, then HO = H and dH = 1 for all H, and the filtration τO≥n reduces to the ordinary
Postnikov filtration.
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6 Large ε-light vertex subsets

Problem

For a graph G = (V,E), let GS = (V,E(S, S)) denote the graph with the same vertex set,
but only the edges between vertices in S. Let L be the Laplacian matrix of G and let LS be
the Laplacian of GS . I say that a set of vertices S is ϵ-light if the matrix ϵL − LS is positive
semidefinite. Does there exist a constant c > 0 so that for every graph G and every ϵ between
0 and 1, V contains an ϵ-light subset S of size at least cϵ|V |?

Solution

We prove the claim with an explicit constant c = 1/256.
Throughout we write n = |V |. Some degenerate cases are immediate and will be set aside.

If n = 0 the assertion is vacuous. If ε = 0 the empty set is 0–light and has the required size. If
the graph has no edges (so that its Laplacian is the zero matrix), then LS = 0 for every S and
we may simply take all vertices. Thus in the main part of the proof we assume n ≥ 1, ε ∈ (0, 1],
and that the Laplacian has positive rank. All Loewner inequalities and traces below are taken
on the subspace range(L) = (kerL)⊥, and I denotes the identity on that space. The exceptional
cases are revisited in Step 6.

Step 1: Normalization on the Laplacian range. Let kerL be the space of vectors that
are constant on each connected component of G. Let L† be the Moore–Penrose pseudoinverse,
and define

L−1/2 := (L†)1/2.

Then L−1/2 acts as the inverse square root on range(L) = (kerL)⊥ and as 0 on kerL.
For an edge e = {u, v} define the rank-one edge Laplacian

Le := (eu − ev)(eu − ev)⊤,

so that L =
∑

e∈E Le. All sums over edges below are taken with multiplicity if the graph has
parallel edges. Define

Ae := L−1/2LeL
−1/2.

Each Ae is positive semidefinite on range(L), whose dimension is d := rank(L) ≤ n. Moreover,
on range(L) we have ∑

e∈E
Ae = L−1/2

(∑
e∈E

Le

)
L−1/2 = L−1/2LL−1/2 = I. (31)

Also, for any S ⊆ V ,

L−1/2LSL
−1/2 =

∑
e∈E(S,S)

Ae on range(L). (32)

Therefore, it suffices to find S such that on range(L),∑
e∈E(S,S)

Ae ⪯ εI, (33)

because then (32) implies L−1/2LSL
−1/2 ⪯ εI, i.e.

x⊤LSx ≤ ε x⊤Lx for all x ⊥ kerL.
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If P = L−1/2L1/2 = L1/2L−1/2 denotes the orthogonal projection onto range(L), the displayed
Loewner inequality is equivalent to xTLSx ≤ εxTLx for every x ∈ range(L) by taking z = L1/2x
(where L1/2 denotes the positive square root of L, acting as zero on kerL) in the quadratic form.
Vectors in kerL are constant on each connected component and are therefore also annihilated
by LS ; by symmetry no mixed terms occur between range(L) and kerL. Hence the inequality
holds for all x ∈ RV , which is exactly εL− LS ⪰ 0.

Step 2: A one-sided BSS barrier lemma. The following lemma is a one–sided variant of
the barrier method introduced by Batson, Spielman and Srivastava [1]; we give a complete proof
for the reader’s convenience. For a PSD matrix M ⪰ 0 on a d-dimensional space and a scalar
u > λmax(M), define the potential

Φu(M) := tr (uI −M)−1.

Lemma 6.1 (One-sided barrier). Assume M ≺ uI, let u′ > u, and put U := (u′I −M)−1. If
B ⪰ 0 satisfies

tr(BU) +
tr(BU2)

Φu(M)− Φu′(M)
≤ 1, (34)

then M +B ≺ u′I and Φu′(M +B) ≤ Φu(M).

Proof. Let K := B1/2UB1/2 ⪰ 0. The hypothesis (34) implies tr(K) < 1: the second summand
there is non–negative, and if it were zero then the positive semidefinite matrix B1/2U2B1/2

would have trace zero and hence vanish; since U is invertible on our space this forces B = 0.
Consequently every eigenvalue of K is < 1, so in particular ∥K∥ < 1 and (I −K) is invertible.
By the Sherman–Morrison–Woodbury identity (which can be verified by multiplying the two
sides),

(u′I −M −B)−1 = U + U B1/2(I −K)−1B1/2U,

so u′I −M −B ≻ 0, i.e. M +B ≺ u′I.
Taking traces, using cyclicity of the trace and the elementary fact that tr(XC) ≤ tr(Y C)

whenever 0 ⪯ X ⪯ Y and C ⪰ 0, together with (I −K)−1 ⪯ (1 − trK)−1I (valid for PSD K
with trK < 1), we obtain

Φu′(M +B) ≤ Φu′(M) +
tr(BU2)

1− tr(BU)
.

A short rearrangement shows that (34) is equivalent to the bound that the right-hand side is at
most Φu(M). This yields Φu′(M +B) ≤ Φu(M).

We will also use the following inequality: if u′ = u+ δ, then

Φu(M)− Φu′(M) ≥ δ tr (u′I −M)−2 = δ tr(U2). (35)

Indeed, diagonalizing M with eigenvalues λj gives

Φu(M)− Φu′(M) =
∑
j

δ

(u− λj)(u′ − λj)
≥
∑
j

δ

(u′ − λj)2
.

Step 3: A partial coloring process. Fix ε ∈ (0, 1] and set

r :=

⌈
16

ε

⌉
, u0 :=

ε

2
, δ :=

ε

n
, k :=

⌊n
4

⌋
. (36)

We will color k vertices, one at a time, using r colors.
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At time t (0 ≤ t ≤ k), let T ⊆ V be the set of colored vertices, |T | = t, and col : T →
{1, . . . , r} the coloring. Define the PSD matrix (on range(L))

Mt :=
∑
uv∈E
u,v∈T

col(u)=col(v)

Auv. (37)

Thus Mt contains the contributions from edges whose endpoints are already colored and share
the same color.

Let R := V \ T be the uncolored vertices, m := |R| = n − t. For v ∈ R and γ ∈ {1, . . . , r}
define the prospective increment obtained by coloring v with γ:

Bγ
v :=

∑
u∈T

col(u)=γ
uv∈E

Auv. (38)

Then if we color v with color γ, we have Mt+1 =Mt +Bγ
v .

Step 4: Inductive barrier invariant. Let ut := u0 + tδ. We maintain the invariant

Mt ≺ utI and Φut(Mt) ≤ Φu0(0) =
d

u0
. (39)

This holds at t = 0 since M0 = 0.
Assume it holds for some t < k. Set u = ut, u′ = ut+1 = ut + δ, and

U := (u′I −Mt)
−1.

We claim there exists a choice of (v, γ) ∈ R × {1, . . . , r} for which the barrier condition (34)
holds with M =Mt and B = Bγ

v .
Consider the average over a uniformly random pair (v, γ):

1

mr

∑
v∈R

r∑
γ=1

[
tr(Bγ

vU) +
tr(Bγ

vU2)

Φu(Mt)− Φu′(Mt)

]
. (40)

Observe that ∑
v∈R

r∑
γ=1

Bγ
v =

∑
uv∈E

u∈T, v∈R

Auv ⪯
∑
e∈E

Ae = I on range(L),

because the left-hand side is a sub-sum of the PSD matrices {Ae} in (31). If X ⪯ Y and C ⪰ 0,
then tr(XC) ≤ tr(Y C) because tr(C1/2(Y − X)C1/2) ≥ 0. Applying this observation with
C = U and with C = U2 (both positive semidefinite) we get∑

v,γ

tr(Bγ
vU) ≤ tr(U),

∑
v,γ

tr(Bγ
vU

2) ≤ tr(U2).

Therefore (40) is at most
tr(U)

mr
+

tr(U2)

mr
(
Φu(Mt)− Φu′(Mt)

) . (41)

By the inductive hypothesis, tr(U) = Φu′(Mt) ≤ Φu(Mt) ≤ d/u0; the middle inequality uses
that, for fixed Mt, the function s 7→ Φs(Mt) decreases as the barrier level s increases. By (35),

Φu(Mt)− Φu′(Mt) ≥ δ tr(U2),

33



so (in the non-trivial case d > 0, where tr(U2) > 0) the second term in (41) is at most 1/(δmr).
Hence the average (40) is at most

d/u0
mr

+
1

δmr
. (42)

As long as t < k = ⌊n/4⌋, we have m = n− t ≥ 3n/4 and d ≤ n. Using the choices (36), we
bound

d/u0
mr

≤ n/(ε/2)

(3n/4) · (16/ε)
=

1

6
,

1

δmr
≤ 1

(ε/n) · (3n/4) · (16/ε)
=

1

12
,

so the average (42) is < 1. Therefore there exists at least one pair (v, γ) for which (34) holds.
Applying Lemma 6.1 yields

Mt+1 ≺ ut+1I and Φut+1(Mt+1) ≤ Φut(Mt) ≤
d

u0
.

Thus the invariant (39) propagates to t+ 1, completing the induction for t = 0, 1, . . . , k.

Step 5: Extracting a large ε-light set. After k steps, the colored set T (with |T | = k) is
partitioned into r color classes S1, . . . , Sr. By definition of Mk,

Mk =

r∑
a=1

∑
uv∈E(Sa,Sa)

Auv =

r∑
a=1

L−1/2LSaL
−1/2 on range(L).

From the invariant, Mk ⪯ ukI with uk = u0 + kδ ≤ ε/2 + ε/4 = 3ε/4. Since each summand is
PSD, each is dominated by the sum. Let S be the largest color class. Then

L−1/2LSL
−1/2 ⪯Mk ⪯

3ε

4
I ⪯ εI on range(L).

As explained in Step 1, this implies LS ⪯ εL, i.e. εL− LS ⪰ 0, so S is ε-light.

Step 6: Size lower bound. Among the k colored vertices, the largest color class has size at
least k/r. If n ≥ 4, then k = ⌊n/4⌋ ≥ n/8. Also,

r =

⌈
16

ε

⌉
≤ 16

ε
+ 1 ≤ 32

ε
.

Hence
|S| ≥ k

r
≥ n/8

32/ε
=

εn

256
.

The construction above was used only under the standing assumptions made at the beginning
(in particular that the graph has at least one edge). If the graph is edgeless, taking S = V is
trivially ε–light. It remains to look at small values of n: for 1 ≤ n ≤ 3 any single vertex set
S = {v} has LS = 0 and hence is ε–light, and it satisfies |S| = 1 ≥ εn/256 because ε ≤ 1. The
cases n = 0 or ε = 0 were disposed of at the start. Thus in all cases there exists an ε-light set
S with

|S| ≥ ε

256
|V |.

This proves the statement with the universal constant c = 1/256.
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7 Uniform lattices with 2–torsion arising as fundamental groups
of closed manifolds with Q–acyclic universal cover

Problem

Suppose that Γ is a uniform lattice in a real semisimple group, and that Γ contains some 2–
torsion. Is it possible for Γ to be the fundamental group of a compact manifold without boundary
whose universal cover is acyclic over the rational numbers Q?

Solution

We construct a uniform lattice Γ in a real semisimple group, containing a central element of
order 2, and a closed manifold M with π1(M) ∼= Γ such that M̃ is Q–acyclic.

7.0.1 Step 0: A torsion–free uniform lattice in SO+(n, 1)

Fix an odd integer n = 2m+1 ≥ 5. It is classical that there exist closed hyperbolic n–manifolds
in every dimension. For example, standard arithmetic constructions using anisotropic quadratic
forms over totally real fields give compact hyperbolic orbifolds in all dimensions (see [1] and
the discussion in [4, Ch. II]). Passing to the identity component and using Selberg’s lemma [6]
we obtain a torsion–free finite index subgroup. Thus we may choose a torsion–free cocompact
lattice

L < SO+(n, 1)

such that
N = L\Hn (43)

is a closed orientable hyperbolic n–manifold (hence an aspherical K(L, 1)).

7.0.2 Step 1: The spin–lift lattice with central 2–torsion

Consider the spin covering

1 −→ {±1} −→ Spin(n, 1)
p−→ SO+(n, 1) −→ 1.

Define
Γ := p−1(L) < Spin(n, 1).

Then Γ is discrete and cocompact in Spin(n, 1) (because p is a finite covering and L is discrete and
cocompact in SO+(n, 1)). Thus Γ is a uniform lattice in the real semisimple group Spin(n, 1). We
shall use below that Γ is finitely presented; this follows for lattices in Lie groups (for instance from
the theorem of Borel–Serre on arithmetic groups, or from the fact that a compact fundamental
domain gives a finite presentation, cf. [4, Ch. II, Thm. 4.7]).

Let z := −1 ∈ Spin(n, 1) be the nontrivial element of the kernel. Then z ∈ Γ is central and
has order 2, hence Γ contains 2–torsion.

Remark 7.1 (Only 2–torsion). Since L is torsion–free, any finite order element γ ∈ Γ satisfies
p(γ) ∈ L finite order, hence p(γ) = 1 and γ ∈ ker(p) = {±1}. Therefore the only nontrivial
finite order element in Γ is the central involution z.

7.0.3 Step 2: A projective QΓ–Poincaré complex by extension of scalars

Let QΓ be the rational group ring, and define the central idempotent

e :=
1 + z

2
∈ QΓ.

We now relate the corner algebra e(QΓ)e to QL.

35



Lemma 7.2 (The corner algebra). There is a canonical ring isomorphism

e(QΓ)e ∼= QL,

and eQΓ is free as a left module over e(QΓ)e.

Proof. Choose a set–theoretic section s : L→ Γ of the projection p|Γ : Γ→ L (i.e. p(s(λ)) = λ).
Since ker(p) = {±1} = ⟨z⟩ is central, there is a 2–cocycle ε : L× L→ {0, 1} such that

s(λ)s(µ) = s(λµ) zε(λ,µ).

Multiplying by e kills the ambiguity zε(λ,µ) because ez = e. Hence in QΓ we have

(e s(λ))(e s(µ)) = e s(λ)s(µ) = e s(λµ) zε(λ,µ) = e s(λµ).

Thus the rule λ 7→ e s(λ) defines a multiplicative map QL → e(QΓ)e sending the group basis
of L to elements of the corner. If s′(λ) = s(λ)zδ(λ) is another section, then e s′(λ) = e s(λ), so
the resulting map is independent of the choice of section. It is an isomorphism for the following
elementary reason. The elements {s(λ), zs(λ) | λ ∈ L} are pairwise distinct and form a subset
of the group basis of QΓ; hence a relation

∑
aλes(λ) = 0 would give

∑
aλs(λ)+

∑
aλzs(λ) = 0

and all aλ are zero. Thus the displayed map identifies the bases {λ} and {es(λ)} of the two
Q–vector spaces, and it is onto because every element of the corner is a Q–linear combination
of the es(λ).

For the module statement we use that the idempotent e is central. Consequently eQΓ = eQΓe
(for ex = exe). Thus, viewed as a left module over the corner algebra e(QΓ)e, the module eQΓ
is just the regular module of this ring, in particular it is free of rank one. This proves the
lemma.

Now fix a finite CW structure on N and let ci be the number of i–cells. The universal cover
Ñ ≃ Hn is contractible, so the cellular chain complex C∗(Ñ ;Q) is a finite free chain complex
of right QL–modules which resolves the trivial right QL–module Q. We extend scalars along
QL ∼= e(QΓ)e by tensoring with the (QL,QΓ)–bimodule eQΓ:

P∗ := C∗(Ñ ;Q)⊗QL eQΓ.

Then each chain group is
Pi ∼= (eQΓ)ci (0 ≤ i ≤ n), (44)

hence P∗ is a finite chain complex of finitely generated projective right QΓ–modules.

Lemma 7.3 (Homology of P∗). The complex P∗ is acyclic in positive degrees and has H0(P∗) ∼=
Q with the trivial Γ–action. More precisely,

Hi(P∗) = 0 (i > 0), H0(P∗) ∼= Q.

Proof. Because eQΓ is free as a left QL–module (Lemma 7.2), it is flat, so tensoring the exact
augmented cellular complex of Ñ over QL preserves exactness in positive degrees. ThusHi(P∗) =
0 for i > 0 and

H0(P∗) ∼= Q⊗QL eQΓ ∼= Q⊗QL QL ∼= Q

as a vector space (using the corner isomorphism of Lemma 7.2 in the middle).
It remains to identify the residual right action of Γ. Let [1 ⊗ e] be the generator displayed

above. If γ = s(µ)zϵ ∈ Γ then, in the tensor product over QL,

[1⊗ e]γ = [1⊗ es(µ)zϵ] = [1⊗ es(µ)] = [1 · µ⊗ e] = [1⊗ e],

because the augmentation makes 1 · µ = 1 and ez = e. Thus the right action is trivial and
H0(P∗) ∼= Q as a trivial right Γ–module.
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For later use we make explicit that induction by the central idempotent is compatible with
the duality which enters the definition of a symmetric Poincaré complex. Recall that our chain
modules are right modules and that the dual of a right module is again regarded as a right
module by means of the standard involution on the group ring.

Lemma 7.4 (Induction and duality). Let A = QΓ and put A+ = eAe(= eA). Via Lemma 7.2
we identify A+ with QL. The functor

−⊗QL eA : Proj(QL) −→ Proj(A)

identifies the category of finitely generated projective right QL–modules with the full subcategory
of finitely generated projective right A–modules P satisfying Pe = P . Under this identification
the duality P 7→ HomA(P,A) (with the involution convention just mentioned) corresponds to
the usual duality over QL. Consequently a symmetric Poincaré chain equivalence on a finite
projective QL–complex tensors to a symmetric Poincaré chain equivalence on the induced A–
complex.

Proof. Because e is a central idempotent the ring A is the direct product eA× (1− e)A, and a
right A–module is the same thing as a pair of modules over the two factors. The induction functor
sends a QL(= A+)–module C to the pair (C, 0); the inverse on the indicated full subcategory is
P 7→ Pe = P . Projectivity and exactness are preserved by this equivalence.

It remains only to note that the duals match. If P = Pe and f : P → A is A–linear, then
f(P ) = f(Pe) = f(P )e ⊂ Ae = eA; hence

HomA(P,A) = HomA(P, eA) = HomeAe(Pe, eAe).

Via the isomorphism eAe ∼= QL this is precisely the ordinary dual of the corresponding QL–
module, and the involutions agree because e∗ = e. Applying the equivalence degreewise to a
chain complex shows that a chain equivalence and its adjoint remain such after tensoring, which
is the Poincaré assertion.

The manifold N determines an n–dimensional (symmetric) Poincaré chain complex structure
on C∗(Ñ ;Q) over QL (coming from the fundamental class and a cellular diagonal approxima-
tion). By Lemma 7.4 and the exactness of −⊗QL eQΓ this Poincaré structure extends to P∗ by
extension of scalars. Thus:

Proposition 7.5 (A projective QΓ–Poincaré complex). The chain complex P∗ is a finite n–
dimensional projective Poincaré chain complex over QΓ with H0(P∗) ∼= Q and Hi(P∗) = 0 for
i > 0.

It is useful to keep track of orientations for the later surgery step. The orientation mod-
ule of this Poincaré complex (and hence of all subsequent Q–Poincaré spaces we construct) is
trivial: the manifold N is orientable and the homomorphism Γ → SO+(n, 1) factors through
the orientation–preserving group, while the central element z acts trivially on the fundamental
class.

7.0.4 Step 3: Vanishing of Wall’s finiteness obstruction and realization by a finite
CW complex

We now compute the Wall finiteness obstruction and then appeal to the standard realization
theorem over subrings of Q.

The Wall finiteness obstruction of a finitely dominated CW complex (or, equivalently, of a
finite projective chain complex modeling its universal cover) lies in the reduced group K̃0(QΓ).
In our setting it is represented by the alternating sum of chain modules:

o(P∗) =
n∑
i=0

(−1)i[Pi] =
n∑
i=0

(−1)ici [eQΓ] = χ(N) [eQΓ] ∈ K0(QΓ). (45)
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Since N is a closed orientable manifold of odd dimension n, we have χ(N) = 0. Therefore
o(P∗) = 0 already in K0(QΓ), hence also in K̃0(QΓ).

We shall use the following precise form of Wall’s realization theorem. Recall that Γ is finitely
presented (Step 1).

Theorem 7.6 (Wall–Ranicki realization over localizations). Let R ⊂ Q be a subring and let π
be a finitely presented group. Let C∗ be a finite chain complex of finitely generated projective
right Rπ–modules, concentrated in degrees 0, . . . , n, with Hi(C∗) = 0 for i > 0 and H0(C∗) ∼= R
(trivial action). Its Wall obstruction is the class

∑
(−1)i[Ci] ∈ K̃0(Rπ). If this class is zero,

then there exists a finite connected CW complex X with π1(X) ∼= π such that

C∗(X̃;R) ≃ C∗

as chain complexes of Rπ–modules. If in addition C∗ carries an n–dimensional symmetric
Poincaré chain–complex structure, X may be chosen to be a finite R–Poincaré complex of formal
dimension n (elementary algebraic expansions do not change the Poincaré type).

For the reader’s convenience let us also indicate references for this statement. Wall constructs,
from an algebraic Rπ–complex (for R a localization of Z, in particular a subring of Q), a finitely
dominated CW complex with the prescribed cellular Rπ–chains and proves that the obstruction
above is the only one to making it finite; see Wall [8, Thm. F and §§ 2–5]. The algebraic
reformulation for projective complexes, and the fact that elementary expansions do not change
symmetric structures, is spelled out in Ranicki [5]. Let us also make explicit the small piece
of algebra which allows one to pass from rational matrices to honest cell attachments. If the
obstruction vanishes, adding finitely many elementary contractible projective complexes replaces
a finite projective resolution by a based free resolution. Choose a finite presentation of π and
choose the bases in degrees 0 and 1 (and a relator summand in degree 2) so that the corresponding
part of the differential is the cellular differential of the presentation 2–complex. By elementary
changes of basis over Rπ one may further suppose that any additional basis vectors in degree
2 have zero boundary (the relator columns already generate ker ∂1). In the present paper we
only need the case R = Q. The remaining boundary matrices have entries in Qπ, and then
there is a simple simultaneous clearing of denominators: writing these matrices in the chosen
bases, pick diagonal change–of–basis matrices Ti (with non–zero integer entries) inductively for
i ≥ 2, starting with T0 = T1 = 1, so that T−1

i−1∂iTi has coefficients in Zπ for every i (for a fixed
Ti−1 one merely takes the entries of the diagonal of Ti large enough to clear the denominators
in each column). The conjugated complex is isomorphic to the original over Rπ. Wall’s cellular
realization then starts from the presentation 2–complex for π and attaches cells in dimensions
≥ 3 to realize this integral free complex up to R–chain equivalence; the relative Hurewicz theorem
identifies the necessary homotopy and homology classes.

Proposition 7.7 (Realization by a finite CW complex). There exists a finite CW complex X
with π1(X) ∼= Γ such that, as chain complexes of right QΓ–modules,

C∗(X̃;Q) ≃ P∗. (46)

Moreover X is a finite Q–Poincaré complex of formal dimension n, and X̃ is Q–acyclic in
positive degrees.

Proof. The computation (45) gives a vanishing obstruction. Applying Theorem 7.6 with R = Q,
π = Γ and C∗ = P∗ yields a finite CW complex whose cellular rational chain complex is
chain–homotopy equivalent to P∗. The last assertions follow from the Poincaré structure on P∗
(Proposition 7.5) and from Lemma 7.3.

For later use let us spell out explicitly why the finite complex just obtained is a genuine
Poincaré space (and not merely a complex with the right algebraic chains). The symmetric
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Poincaré chain equivalence on the finite projective resolution P∗ is equivalent to the following
cohomological statement: there is a class

α ∈ Hn(Γ;Q)

whose cap product induces isomorphisms H i(Γ;M)
∼=−→ Hn−i(Γ;M) (with the usual orientation

twist) for every QΓ–module M . This is simply another way of expressing the algebraic Poincaré
condition; see for example Brown’s discussion of duality over coefficient rings in [2, Ch. VIII,
§§ 9–10] or Ranicki [5].

Since C∗(X̃;Q) is a free resolution of the trivial module, the classifying map induces isomor-
phisms H∗(X;M) ∼= H∗(Γ;M) and H∗(X;M) ∼= H∗(Γ;M) for every local system of Q–vector
spaces M . Let [X] ∈ Hn(X;Q) be the image of α under this identification (equivalently, using
the rational homology equivalence g : X → N constructed in Step 4, the inverse image of the
hyperbolic fundamental class). By the naturality of the cap product, capping with [X] yields
the Poincaré duality isomorphisms on X with arbitrary local coefficients. Thus X is a finite Q–
Poincaré complex of formal dimension n, and the duality agrees with the algebraic symmetric
structure transported from P∗.

7.0.5 Step 4: construction of a geometric rational normal invariant

The point at which one has to be a little careful is the passage from the algebraic Poincaré
complex of Step 2 to a datum to which the (geometric) surgery machine applies. We give the
details here. We shall exhibit an honest stable real vector bundle over the finite complex X
which is a rational reduction of the Spivak normal fibration of X, and we shall check that the
algebraic normal complex associated to it is exactly the one obtained by tensoring the normal
complex of the hyperbolic manifold N with the idempotent module.

We begin by fixing a map to the hyperbolic manifold. Let cX : X → BΓ be the classifying
map of the universal covering of the finite complex furnished by Proposition 7.7. Since C∗(X̃;Q)
is a free resolution of the trivial QΓ–module, cX induces isomorphisms on homology with trivial
rational coefficients. The extension 1 → {±1} → Γ

p→ L → 1 gives a map of classifying spaces
Bp : BΓ → BL and, because the order of the kernel is invertible in Q, the transfer (or the
Lyndon–Hochschild–Serre spectral sequence) shows that Bp is a Q–homology equivalence [2,
Ch. VII, § 6]. Finally BL is (canonically up to homotopy) the aspherical manifold N = L\Hn.
We choose once and for all a cellular representative of the composite

g : X
cX−−−→ BΓ

Bp−−−→ BL ≃ N. (47)

It is a rational homology equivalence. Orient X in such a way that g∗[X] = [N ] in Hn(−;Q).
Let νN be the stable normal bundle of the smooth manifold N and put

ξ := g∗νN (48)

(up to adding a trivial summand in order to have an honest vector bundle of large rank over the
finite skeleton of BO). We shall use the following elementary fact, which is often left implicit in
accounts of rational surgery.

Lemma 7.8 (Rational reductions of the Spivak fibration). Let Y n be a finite Q–Poincaré com-
plex and let η be an oriented stable real vector bundle over Y . Denote by U ∈ Hr(T (η);Q)
the rational Thom class (r = rank η). Then there is, after adding a trivial summand to η if
necessary, a stable map of spectra

ρ : Sn+r −→ T (η) (49)

such that the Hurewicz image of ρ is the Thom image of the fundamental class of Y (over Q).
Consequently (η, ρ) is a Q–normal invariant of Y : the sphere fibration of η is fibre homotopy
equivalent to the Spivak normal fibration after rationalization and the cap product with the Thom
class realizes the prescribed Poincaré duality.
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Proof. We spell out the standard facts which enter. First of all a finite R–Poincaré complex
(with R a localization of Z) has an R–Spivak normal fibration: this is a stable oriented spherical
fibration νRY over Y together with an R–local Thom–Pontryagin collapse cν : S n+k → T (νY )
whose cap product realizes the Poincaré fundamental class. The construction and uniqueness
are due to Spivak and Wall; for localizations see Sullivan’s notes on localization and, in the form
used in surgery with fundamental group, Hausmann [3, § 1, Prop. 1.1 and Cor. 1.4] or Ranicki
[5, Ch. 9, esp. §§9.2–9.3]. We shall use this result with R = Q.

We next recall why such a fibration is automatically reducible after rationalization. Let BSG
denote the classifying space of stable oriented spherical fibrations (the identity component of the
stable group of homotopy self–equivalences of spheres). For i > 0 one has πi(BSG) = π Si−1, the
stable homotopy groups of spheres. By Serre’s theorem these groups are finite. Consequently
the rationalization BSG(0) is contractible (the spaces involved are nilpotent). If η is an oriented
stable real vector bundle over Y , its underlying stable sphere fibration is classified by the com-
posite Y → BO → BSG; after rationalization this map is null. The same is true for the Spivak
fibration, and there is therefore a fibre–homotopy equivalence of stable spherical fibrations over
Y

J(η)(0) ≃ νY (0). (50)

(The choice is unique up to homotopy.) Stabilizing by adding a trivial bundle we may suppose
that the two representatives have the same fibre dimension, say r.

The equivalence (50) induces a rational equivalence of Thom spectra and carries the rational
Thom class of the Spivak fibration to a Thom class U ∈ Hr(T (η);Q). Composing the Spivak
collapse cν with the inverse Thom–space equivalence gives a stable map in the rational stable
category S n+r

(0) → T (η)(0). Since Thom spaces of bundles over finite complexes are finite spectra,
such a rational map can be represented by an honest stable map after multiplying by a non–
zero integer: the stable Hurewicz theorem (or, equivalently, the Atiyah–Hirzebruch spectral
sequence together with the finiteness of the stable stems; see [7, Ch. IX, Thm. 3.1]) shows
that πs∗(E) ⊗ Q ∼= H∗(E;Q) for finite spectra. We choose a representative and, if necessary,
rescale the Thom class by the inverse integer (over the coefficient field Q). This gives the map
(49). By construction its Hurewicz image is precisely the Thom image of [Y ], and capping with
the Thom class (equivalently, transporting the Thom class of the Spivak fibration) yields the
Poincaré duality isomorphisms with arbitrary local systems of Q–vector spaces. Thus (η, ρ) is a
rational reduction of the Spivak fibration, i.e. a Q–normal invariant in the sense used in rational
surgery.

We apply the lemma to the bundle ξ = g∗νN . It remains to check that this geometric
invariant is compatible with the algebraic calculations of Step 5. We make this explicit because
the idempotent construction is slightly unusual.

Proposition 7.9 (Identification with the idempotent normal complex). Let the chain equiva-
lence (46) be chosen as follows. Lift the map (47) to a cellular p–equivariant map of universal
covers g̃ : X̃ → Ñ = Hn; it induces a chain map of right QΓ–complexes

C∗(X̃;Q) −→ C∗(Ñ ;Q)⊗QL eQΓ = P∗ (51)

(the module eQΓ is just the regular QL–module with the right action inflated along p, so the
formula is the evident one). Since both complexes are projective resolutions of the trivial module,
the comparison theorem shows that (51) is a chain–homotopy equivalence; we take this as the
equivalence in (46). With this choice the algebraic normal structure on C∗(X̃;Q) associated, in
Ranicki’s sense, to the rational normal invariant (ξ, ρ) of Lemma 7.8 is exactly the structure
obtained from the normal complex of the manifold N by tensoring over QL with the bimodule
eQΓ.
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Proof. Only naturality has to be checked. The cellular symmetric Poincaré structure on C∗(Ñ ;Q)
is obtained from a diagonal approximation and from the fundamental class of N ; the algebraic
normal structure associated to νN is represented by a Thom cocycle for this bundle. Pulling
the Thom cocycle back by g gives the Thom cocycle of ξ, and our orientation of X was cho-
sen so that fundamental classes correspond. The diagonal approximation on X may be taken
cellularly natural with respect to g (two choices give chain–homotopic symmetric structures).
Ranicki’s “symmetric construction” and his definition of an algebraic normal complex are func-
torial for exact functors of projective module categories compatible with involution and for maps
of spaces: see [5, Chs. 1–3]. Applying this functoriality to the exact functor −⊗QL eQΓ and to
the chain equivalence (51) gives the asserted identification. Concretely, on the level of modules
the equality follows from the identities es(λµ) = es(λ)s(µ) (Lemma 7.2), and on homology from
the naturality of cap product.

In particular the finite Poincaré complex X constructed in Step 3 is equipped with an ex-
plicit stable vector bundle (indeed the pull–back of a bundle from a manifold) representing the
algebraic normal datum whose surgery obstruction we compute next. This fills the gap between
the idempotent algebra and the geometric input required by the rational surgery theorem.

7.0.6 Step 5: Vanishing of the rational surgery obstruction

Let n = 2m+ 1 ≥ 5. Given an n–dimensional Q–Poincaré complex X with fundamental group
Γ and a chosen normal invariant, there is a surgery obstruction in the (quadratic/symmetric)
L–group Lhn(QΓ) for the standard involution (we are in the orientable, trivial–orientation case);
if it vanishes then X is normally cobordant to a closed manifold, and in fact can be realized by
a closed manifold mapping to X inducing π1–isomorphism and QΓ–homology equivalence. This
is the rational surgery theorem in the presence of fundamental group, due to Hausmann and
Ranicki (building on Sullivan–Wall), see [3, 5].

The key point in this construction is that the surgery obstruction of this normal datum
is zero for a very concrete reason. Because the idempotent e is central (and is fixed by the
involution) the rational group ring splits as a product of rings with involution

QΓ ∼= eQΓe× (1− e)QΓ(1− e),

and algebraic L–theory is additive for such products. The normal complex chosen in Step 4
was obtained on the projective complex P∗. The finite CW complex X of Step 3 has cellular
chains free over QΓ, but the chain equivalence (46) is obtained from P∗ by adding elementary
(contractible) summands. In the cobordism group Lhn(QΓ) such summands represent the zero
element. Consequently the surgery obstruction of X is represented by the induced normal
complex on P∗, and all of its chain modules are of the form (eQΓ)ci ; the class therefore lies
entirely in the first factor of the displayed product. Under the ring isomorphism eQΓe ∼= QL
this first component is precisely the result of tensoring the identity normal complex of the
manifold N with the bimodule eQΓ.

Now the identity normal map idN : N → N has surgery obstruction 0 ∈ Lhn(QL) (indeed it
is already a manifold). Algebraic surgery is functorial for exact functors of projective module
categories compatible with duality: applying − ⊗QL eQΓ to a null–cobordism of the identity
normal complex gives a null–cobordism of the induced normal complex (see Ranicki [5]). Thus
the component of the obstruction in Lhn(eQΓe) is zero, and hence the obstruction of X in Lhn(QΓ)
is zero as well.

7.0.7 Step 6: Rational surgery produces a closed manifold with Q–acyclic universal
cover

We now apply the rational surgery theorem.
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Theorem 7.10 (Rational surgery realization). Let R ⊂ Q be a subring (equivalently a localiza-
tion of Z) and let Y q be a finite connected R–Poincaré complex, q ≥ 5, with fundamental group
π. Suppose that Y is equipped with an R–normal invariant: by this we mean, in the topologi-
cal language, a stable real vector bundle (or stable spherical fibration) over Y together with an
R–Thom class whose cap product realizes the Poincaré fundamental class, and in the algebraic
language equivalently an algebraic normal structure on the symmetric chain complex C∗(Ỹ ;R)
in Ranicki’s sense. Associated to this datum is a surgery obstruction

σ(Y ) ∈ Lhq (Rπ)

(for the standard orientation character). If σ(Y ) = 0, then there exists a closed smooth q–
manifold M and a normal map f :M → Y representing the chosen invariant such that

π1(M)
∼=−→ π1(Y ) = π, f∗ : H∗(M ;Rπ)

∼=−→ H∗(Y ;Rπ).

In dimensions q ̸≡ 0 (mod 4) no further numerical conditions occur; in dimension 4k the equality
of the signature with the Hirzebruch L–class determined by the chosen Pontryagin data is the
additional requirement built into the choice of normal invariant.

For the reader who wants precise sources we spell out where this statement is proved. Haus-
mann constructs, for localizations of Z, normal maps which are homology equivalences modulo
the chosen localization and develops the corresponding obstruction theory in [3, §§ 1–3]. The
translation between such (localized) normal invariants and algebraic normal complexes, and the
functoriality of the obstruction under exact functors of module categories, is part of Ranicki’s
algebraic surgery framework; see [5]. Because in our application the normal invariant is repre-
sented by an honest stable vector bundle (Lemma 7.8 and Proposition 7.9) the output of the
theorem may be taken in the smooth category.
We apply Theorem 7.10 with R = Q, q = n = 2m + 1, π = Γ, and Y = X equipped with the
normal invariant chosen in Step 4. The obstruction vanishes by Step 5. Hence we obtain:

Proposition 7.11. There exists a closed smooth n–manifold M and a map f :M → X inducing
an isomorphism on π1 and an isomorphism on QΓ–homology:

π1(M)
∼=−→ π1(X) = Γ, H∗(M ;QΓ)

∼=−→ H∗(X;QΓ).

7.0.8 Step 7: The universal cover of M is Q–acyclic

Let f̃ : M̃ → X̃ be the lift of f to universal covers. Recall that with our convention of cellular
right Γ–modules the chain complex computing homology of a connected complex with coefficients
in the left regular module QΓ is C∗(Ỹ ;Z) ⊗ZΓ QΓ for such a complex Y , which identifies (by
choosing one lift of each cell) with the ordinary cellular complex of the universal cover with
rational coefficients. Thus the QΓ–homology equivalence in Proposition 7.11 is equivalently the
statement that f̃ induces an isomorphism

H∗(M̃ ;Q)
∼=−→ H∗(X̃;Q).

Using Proposition 7.7 and Lemma 7.3 we have

Hi(X̃;Q) ∼= Hi(P∗) =

{
Q, i = 0,

0, i > 0.

Therefore

Hi(M̃ ;Q) =

{
Q, i = 0,

0, i > 0,

so the universal cover M̃ is Q–acyclic in positive degrees.
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7.0.9 Conclusion

We have produced, for each odd n = 2m + 1 ≥ 5, a uniform lattice Γ < Spin(n, 1) containing
the central involution z = −1 and a closed smooth n–manifold M with π1(M) ∼= Γ such that
M̃ is acyclic over Q.

Theorem 7.12. Yes: there exist uniform lattices Γ in real semisimple groups containing 2–
torsion which occur as the fundamental groups of closed manifolds whose universal covers are
Q–acyclic.

7.0.10 Compatibility with complete Euler characteristic obstructions

For context, we briefly explain why this example does not contradict familiar torsion/Euler
characteristic obstructions. Brown defines the complete Euler characteristic χ̃(Γ) of a group of
finite type, whose coefficients at conjugacy classes of finite order elements can be expressed, for
cocompact lattices, in terms of Euler characteristics of centralizers (see [2, Ch. IX, §7]). In many
settings, existence of a finite Q–acyclic universal cover forces these coefficients to vanish away
from the identity class.

In our example, by Remark 7.1, the only nontrivial finite order element is the central involu-
tion z, and its centralizer is all of Γ. The (rational) Euler characteristic of a group with a finite
normal subgroup is multiplicative with the factor 1/|F | (Brown [2, Ch. IX, §7]); consequently

χQ(Γ) = χ(L)/2 = χ(N)/2.

Equivalently, applying the Hattori–Stallings trace to the Wall element (45) shows that the
complete Euler characteristic has coefficient χ(N)/2 both at the identity class and at the class
of z (and no other finite classes). For odd n we have χ(N) = 0, so the coefficient at z indeed
vanishes. In contrast, in even dimensions the Gauss–Bonnet formula for a compact hyperbolic
manifold gives χ(N) ̸= 0, and already the finiteness obstruction (45) is detected by this trace
and is nonzero. Thus the odd–dimensional spin–lift construction gives a genuine positive answer
precisely in the case compatible with these obstructions.
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8 Quadrivalent polyhedral Lagrangian surfaces are Lagrangian-
smoothable

Problem

A polyhedral Lagrangian surface K in R4 is a finite polyhedral complex all of whose faces are
Lagrangians, and which is a topological submanifold of R4. A Lagrangian smoothing of K is a
Hamiltonian isotopy Kt of smooth Lagrangian submanifolds, parameterised by (0, 1], extending
to a topological isotopy, parametrised by [0, 1], with endpoint K0 = K.

Let K be a polyhedral Lagrangian surface with the property that exactly 4 faces meet at
every vertex. Does K necessarily have a Lagrangian smoothing?

Solution

Yes. We construct explicit local smoothing models at each vertex and each edge, glue these
models into K inside pairwise disjoint affine symplectic (hence Darboux) neighborhoods chosen
compatibly from the outset, and then verify that the resulting Lagrangian isotopy has vanishing
flux and hence is Hamiltonian.

0. Conventions and standing hypotheses.
Symplectic conventions. Work in (R4, ω) with ω exact. Fix once and for all a global primitive

λ := p1 dq1 + p2 dq2

in some fixed global Darboux coordinates (q1, q2, p1, p2), so dλ = ω. In these coordinates

ω = dp1 ∧ dq1 + dp2 ∧ dq2, ω(∂pi , ∂qj ) = δij , ω(∂qi , ∂pj ) = −δij .

We use the Hamiltonian convention
ιXH

ω = − dH. (52)

(With ω =
∑
dpi ∧ dqi, this is the convention giving Hamilton’s equations q̇i = ∂H/∂pi and

ṗi = −∂H/∂qi.)
If λstd denotes the standard primitive in some other Darboux chart, then λstd−λ is a closed

1–form on R4 and hence exact. Thus, whenever we work in a local Darboux chart, we will
freely replace the local primitive by adding an exact correction term so that all computations
ultimately refer to the same fixed global λ.
Polyhedral hypotheses. We make explicit the local cell-structure properties used below.

• K ⊂ R4 is a compact (or, more generally, properly embedded) topological 2–manifold
without boundary.

• K is given a face-to-face finite polyhedral structure: each 2–cell is a compact convex
polygon contained in an affine Lagrangian plane, and the intersection of any two cells is a
(possibly empty) common face of each.

• Every vertex is quadrivalent : exactly four 2–faces meet at each vertex (equivalently, the
link of each vertex in K is a 4–cycle).

Under these hypotheses, each point of the interior of an edge has a neighborhood in K home-
omorphic to a disk and modeled by exactly two faces meeting along that edge (no “branching”
along edges). Likewise, at a vertex, the four incident faces appear as four planar sectors meeting
cyclically.

1. Linear normal form at a quadrivalent vertex, including all sign patterns.
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Let x be a vertex of K, and let l1, l2, l3, l4 be the four oriented edge rays emanating from x,
numbered in cyclic order in the link. Let

Pi := ⟨li, li+1⟩ (i mod 4)

denote the affine Lagrangian planes of the four incident faces (after translating x to the origin
we identify these planes with linear Lagrangian subspaces). Each incident face is a planar sector
in Pi bounded by li and li+1.

Lemma 8.1 (Eliminating coplanar adjacencies). Let K ⊂ (R4, ω) be a polyhedral Lagrangian
surface, and let x be a vertex with emanating rays l1, l2, l3, l4 in cyclic order, and Pi = ⟨li, li+1⟩
as above.

Assume that two adjacent faces are coplanar, i.e. Pi = Pi+1 for some i. Then x is not a
genuine quadrivalent singularity of the underlying embedded surface K: after a cyclic relabeling
(so P1 = P2), exactly one of the following holds.

(a) P1 = P2 = P3 = P4 (so x is a smooth point of K).

(b) l1 and l3 are collinear (opposite rays on a line ℓ) and P3 = P4 (so x lies in the interior of
a geometric edge of K).

Consequently, since the existence of a Lagrangian smoothing depends only on the subset K and
not on the chosen polyhedral structure, one may, without loss of generality, discard such inessen-
tial vertices and assume in the vertex analysis that no two adjacent faces are coplanar.

Proof. By cyclic relabeling assume P1 = P2 =: L. Choose nonzero vectors vi ∈ li. Then
v1, v2, v3 ∈ L.

First suppose that v1 and v3 are linearly independent. Then L = ⟨v1, v3⟩. Since P4 = ⟨v4, v1⟩
is Lagrangian, ω(v4, v1) = 0, and since P3 = ⟨v3, v4⟩ is Lagrangian, ω(v4, v3) = 0. Hence v4 is
ω–orthogonal to ⟨v1, v3⟩ = L, i.e. v4 ∈ Lω. Because L is Lagrangian, Lω = L, so v4 ∈ L. It
follows that P3 = ⟨v3, v4⟩ ⊂ L and P4 = ⟨v4, v1⟩ ⊂ L, hence P3 = P4 = L, proving (a). Since K
is a topological 2–manifold and lies in the affine plane L near x, x is a smooth point.

Now suppose that v1 and v3 are linearly dependent. Then l1 and l3 are collinear, hence
opposite rays on a common line ℓ. Therefore

P3 = ⟨l3, l4⟩ = ⟨ℓ, l4⟩ = ⟨l1, l4⟩ = P4,

proving (b). The union of the two coplanar faces in P1 = P2 is a polyhedral half-plane in P1

bounded by ℓ, and similarly the union of the two coplanar faces in P3 = P4 is a half-plane in
P3 bounded by ℓ. Thus the germ at x is an “edge wedge” and x is an interior point of that
geometric edge.

In either case x is inessential as a vertex and may be removed from the polyhedral structure
without changing the subset K.

Henceforth assume no two adjacent faces are coplanar. Fix nonzero vectors vi ∈ li. Then
v3 /∈ ⟨v1, v2⟩, so

dim⟨v1, v2, v3, v4⟩ ≥ 3. (53)

Because each Pi is Lagrangian, we have

ω(v1, v2) = ω(v2, v3) = ω(v3, v4) = ω(v4, v1) = 0.

Thus the only potentially nonzero pairings among the vi are ω(v1, v3) and ω(v2, v4). If both were
zero, then ω would vanish on ⟨v1, v2, v3, v4⟩, making it isotropic of dimension ≥ 3, impossible
in a symplectic 4–space. Hence at least one of ω(v1, v3) or ω(v2, v4) is nonzero; after a cyclic
relabeling we may assume

ω(v1, v3) ̸= 0. (54)
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Transversality of opposite planes. Under the standing hypothesis that no adjacent faces are
coplanar, the opposite planes P1 = ⟨v1, v2⟩ and P3 = ⟨v3, v4⟩ are transverse. Indeed, if P1∩P3 ̸=
{0} then there exists 0 ̸= w = av3 + bv4 ∈ P1. Pairing with v1 gives

0 = ω(v1, w) = aω(v1, v3) + b ω(v1, v4) = aω(v1, v3),

since ω(v1, v4) = 0 (adjacent in the cyclic order). Thus a = 0 and w = bv4 ∈ P1, so v4 ∈ P1 and
hence P4 = ⟨v4, v1⟩ ⊂ P1, i.e. P4 and P1 are coplanar, contradiction. Therefore P1 ∩ P3 = {0}.

Since P1 and P3 are transverse Lagrangian planes, ω induces a nondegenerate pairing

ω|P3×P1 : P3 × P1 → R, (w, u) 7→ ω(w, u),

because if w ∈ P3 pairs trivially with all u ∈ P1, then w ∈ Pω1 = P1, hence w = 0.
Vertex Darboux coordinates and sign pattern. Choose a basis e1 = v1, e2 = v2 of P1. Let f1, f2

be the ω–dual basis of P3 with respect to the pairing ω|P3×P1 , i.e.

ω(f j , ei) = δji . (55)

Write
v3 = a1f

1 + a2f
2, v4 = b1f

1 + b2f
2.

Because P2 = ⟨v2, v3⟩ is Lagrangian, ω(v2, v3) = 0. Using ω(e2, f
1) = −ω(f1, e2) = 0 and

ω(e2, f
2) = −ω(f2, e2) = −1, we obtain

0 = ω(v2, v3) = a1 ω(e2, f
1) + a2 ω(e2, f

2) = −a2,

so a2 = 0 and hence v3 = a1f
1. Similarly, since P4 = ⟨v4, v1⟩ is Lagrangian we have ω(v1, v4) = 0,

and using ω(e1, f1) = −1 and ω(e1, f2) = 0 we get b1 = 0, hence v4 = b2f
2.

Thus v3 is a nonzero scalar multiple of f1 and v4 is a nonzero scalar multiple of f2. Define
the vertex sign pattern

σ1 := sign(a1) ∈ {±1}, σ2 := sign(b2) ∈ {±1}. (56)

These signs are determined by the oriented rays l3 and l4 and cannot be changed by rescaling
rays, since only positive rescalings of half-lines are allowed.

Rescale v3 and v4 by positive factors so that v3 = σ1f
1 and v4 = σ2f

2. Let (q1, q2, p1, p2) be
the linear symplectic coordinate system determined by declaring

ei = ∂qi , f i = ∂pi ,

so ω = dp1 ∧ dq1 + dp2 ∧ dq2 and λstd = p1 dq1 + p2 dq2 in these coordinates. Then the four rays
take the signed standard form

l1 = R+ ∂q1 , l2 = R+ ∂q2 , l3 = R+ (σ1∂p1), l4 = R+ (σ2∂p2). (57)

In particular, there are four possible sign patterns (σ1, σ2) ∈ {±1}2 at a vertex.
Since each face is a planar sector bounded by the corresponding rays, after shrinking to a

small ball around x (and identifying it with its image under this affine symplectomorphism) the
polyhedral star of x is the Lagrangian cone

(u, v) 7−→
(
u+, v+, σ1(−u)+, σ2(−v)+

)
, s+ := max{s, 0}. (58)

This is the only place where the “four faces at each vertex” hypothesis is used.

2. A one-dimensional rounded corner of zero action (with a genuine construction).
We work first in the symplectic plane (R2

(q,p), dp∧dq), compatible with the global convention,
and we use the Liouville form λ(q,p) := p dq (so dλ(q,p) = dp ∧ dq).
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Lemma 8.2 (Embedded rounding with prescribed jets and zero Liouville action). There exists
a smooth embedded curve

γ̄ : R→ R2
(q,p), r 7→ (q̄(r), p̄(r))

such that:

1. γ̄(r) = (0,−r) for all r ≤ −2, and γ̄(r) = (r, 0) for all r ≥ 2;

2. γ̄ agrees identically with these half-axes on open neighborhoods of (−∞,−2] and [2,∞)
(hence all jets match at r = ±2);

3. γ̄ is embedded;

4. its Liouville action is zero: ∫ ∞

−∞
p̄(r) q̄′(r) dr = 0. (59)

Proof. Step 1: choose a base rounding with good geometry. Choose once and for all a small
number, say η = 1/4. We first construct a smooth non–decreasing function q̄ : R→ [0,∞) such
that

q̄(r) = 0 for r ≤ −2 + η, q̄(r) = r for r ≥ 2− η, q̄′(r) > 0 for − 2 + η < r < 2− η.

(The function may be chosen flat to infinite order at the two points where it starts and where
it joins the line r.) In particular the identities required in (1) hold, and the stronger equalities
on the slightly larger intervals give the “open neighbourhood” property (2).

Next choose a smooth function p̄0 : R→ R such that

p̄0(r) = −r for r ≤ −2 + η, p̄0(r) = 0 for r ≥ 2− η,

and p̄0(r) > 0 on the intermediate interval (−2+ η, 2− η). Then the curve γ̄0(r) := (q̄(r), p̄0(r))
is embedded: on the incoming axial neighbourhood it lies on the positive p–axis and on the
outgoing neighbourhood on the positive q–axis, while on the middle interval it is a graph over
the strictly increasing q–coordinate and hence has no self–intersections (nor does it meet the
axial pieces except at the transition endpoints).

Let
A0 :=

∫ ∞

−∞
p̄0(r) q̄

′(r) dr

(the integral converges because the product p̄0 q̄′ is supported in the compact interval [−2 +
η, 2− η].)

Step 2: adjust the action by a compactly supported vertical perturbation. Choose a nonzero
smooth bump function ϕ : R→ R supported in (−1, 1) (so ϕ vanishes identically near ±2), and
set

c :=

∫ ∞

−∞
ϕ(r) q̄′(r) dr.

Since q̄′(r) > 0 throughout the support interval (−1, 1) (by our choice of η = 1/4) and ϕ is not
identically zero, we can choose ϕ so that c ̸= 0 (e.g. take ϕ ≥ 0, not identically zero).

For s ∈ R define

p̄s(r) := p̄0(r) + s ϕ(r), γ̄s(r) := (q̄(r), p̄s(r)).

Then γ̄s agrees with γ̄0 (hence with the prescribed half-axes) for |r| ≥ 1, so the jets at r = ±2
are unchanged. Moreover, the perturbation is supported in (−1, 1) ⊂ (−2 + η, 2− η) where the
q–coordinate is strictly increasing, so for every s the curve remains a graph over q on the only
region that changes and hence stays embedded.
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Finally, the action depends affinely on s:∫
p̄s q̄

′ dr =

∫
p̄0 q̄

′ dr + s

∫
ϕ q̄′ dr = A0 + s c.

Choose s∗ := −A0/c. Then γ̄ := γ̄s∗ satisfies (59) and has all required properties.

Fix such a curve γ̄(r) = (q̄(r), p̄(r)) once and for all. For ε > 0 define the rescaled curve
γε(r) = (qε(r), pε(r)) by

qε(r) = ε q̄(r/ε), pε(r) = ε p̄(r/ε), (60)

and define the ε = 0 limit to be the union of half-axes

q0(r) = r+, p0(r) = (−r)+.

Then for each ε > 0, γε is smooth and embedded, equals the coordinate half-axes for |r| ≥ 2ε,
and all derivatives match at the transition points r = ±2ε (because γ̄ was chosen to agree
identically with axes near ±2).

Define
Fε(r) :=

∫ r

−∞
pε(s) q

′
ε(s) ds. (61)

By construction and (59), choosing the integration constant so that Fε vanishes along the in-
coming axis, we have

Fε(r) = 0 whenever γε(r) lies on either coordinate axis. (62)

3. Vertex smoothing model (with the vertex sign pattern).
Fix a vertex x and its Darboux coordinates (57) with sign pattern (σ1, σ2). For ε > 0 define

the product map

Φ(σ1,σ2)
ε : R2

(u,v) → R4, Φ(σ1,σ2)
ε (u, v) =

(
qε(u), qε(v), σ1pε(u), σ2pε(v)

)
. (63)

This is an embedding (product of embeddings). With λstd = p1 dq1 + p2 dq2 in these vertex
coordinates, (

Φ(σ1,σ2)
ε

)∗
λstd = σ1pε(u) q

′
ε(u) du+ σ2pε(v) q

′
ε(v) dv

= d
(
σ1Fε(u) + σ2Fε(v)

)
. (64)

Hence Φ
(σ1,σ2)
ε parametrizes an exact Lagrangian surface.

Moreover, for |u| ≥ 2ε the u–factor is already in the axial regime so Fε(u) = 0 and (64)
restricts to σ2 dFε(v), which will match the primitive on the corresponding edge strip. If both
|u| ≥ 2ε and |v| ≥ 2ε then the primitive vanishes identically. As ε → 0, Φ

(σ1,σ2)
ε converges

uniformly on compact sets to the signed cone (58).
To use this as a local replacement near x we shall not fix the parameter domain once for all

at this point. After the edge charts have been chosen (Step 4) we take a small polyhedral ball Ux
in the above affine coordinates and we let Dx be the inverse image, in the cone parametrisation
(58), of K ∩ Ux. The boundary of this set is then rounded slightly in the parameter plane.
What will be important for the gluing is the following elementary property, which we impose
by shrinking Ux and by choosing the rounding in collars. There is a collar of ∂Dx which, for
the fixed scale ε0, lies in the union of the axial regions {|u| ≥ 2ε0} and {|v| ≥ 2ε0}; moreover
the portions of the boundary that do not belong to the planned overlaps with edge strips lie
where both inequalities hold. On such collars the parametrization is literally planar (in fact
affine linear) and all jets match the adjoining pieces. In particular only a small neighbourhood
of the corner, not the whole product surface, is inserted into K. Notice that Dx need not be a
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rectangle: on the collars which will overlap an edge its boundary may be a graph in the other
variable. This harmless flexibility will be used below in order that the vertex and edge images
coincide as subsets of R4.

4. Edge normal form and an edge smoothing model compatible with vertices, in-
cluding edge signs.
Linear normal form along an edge, with sign. Let P, P ′ ⊂ R4 be Lagrangian planes meeting
along a line ℓ = P ∩ P ′. Choose 0 ̸= e ∈ ℓ. Choose a ∈ P \ ℓ and b ∈ P ′ \ ℓ pointing to the
prescribed inward sides of the corresponding faces (these choices are well-defined up to positive
scaling). Then ω(b, a) ̸= 0, for otherwise ⟨e, a, b⟩ would be a 3–dimensional isotropic subspace,
impossible in (R4, ω). Define

ε(P, P ′; a, b) := sign
(
ω(b, a)

)
∈ {±1}.

By positive rescaling of a and/or b, we may and do assume

ω(b, a) = ε(P, P ′; a, b) ∈ {±1}. (65)

Choose f ∈ R4 such that

ω(f, e) = 1, ω(f, a) = 0, ω(f, b) = 0. (66)

The three vectors e, a, b are linearly independent. Indeed, if (say) b belonged to the span of e and
a, then the two incident faces would lie in the same affine Lagrangian plane and the edge would be
inessential; alternatively this would contradict the preceding non–isotropy argument. The non–
degeneracy of ω identifies R4 with its dual. Prescribing the values in (66) on the independent
subspace ⟨e, a, b⟩ and extending them arbitrarily to a covector on all of R4 therefore gives a
solution f ; any two such solutions differ by a multiple of the common line ⟨e⟩ = (⟨e, a, b⟩)ω, and
all of them will serve our purpose. Since a vector in the span of e, a, b pairs trivially with e,
no solution lies in that span, so (e, a, f, b) is automatically a basis. With this choice the only
non–zero pairings among the ordered quadruple are

ω(f, e) = 1, ω(ε−1b, a) = 1

(up to skew–symmetry). This is precisely the symplectic normal form stated below.
In the associated affine symplectic coordinates

(x, y, px, py) (67)

defined by
e = ∂x, a = ∂y, f = ∂px , b = ε ∂py (ε := ε(P, P ′; a, b)),

we have ω = dpx ∧ dx+ dpy ∧ dy and λstd = px dx+ py dy, and the two incident half-planes take
the standard signed form

{px = py = 0, y ≥ 0} and {px = 0, y = 0, ε py ≥ 0}. (68)

(When ε = +1 the second half-plane is py ≥ 0; when ε = −1 it is py ≤ 0.)
Edge data and scale functions. Fix a geometric edge e of K with endpoints x− and x+. Let Pe
and P ′

e be the two Lagrangian face planes containing e, and let ℓe = Pe ∩ P ′
e be the edge line.

Choose a nonzero tangent vector ee ∈ ℓe pointing along the edge (any choice is fine; it only
affects the parametrization along the edge, not the subset we construct). Choose inward-pointing
transverse vectors ae ∈ Pe \ ℓe and be ∈ P ′

e \ ℓe, and normalize them by (65); denote the resulting
sign by

εe := sign
(
ω(be, ae)

)
∈ {±1}, ω(be, ae) = εe. (69)
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Choose fe satisfying (66) for (e, a, b) = (ee, ae, be) and define the associated affine symplectic
coordinates (67) on a tubular neighborhood Ue of the interior of e (and, after shrinking Ue, also
on endpoint collars inside Ue). In these coordinates K ∩ Ue is exactly the wedge (68).

Recall that in Step 1 the non–zero vectors chosen on the vertex rays were arbitrary up to
positive scale. We now fix those choices once and for all. Thus, at each endpoint x±, when
the face Pe is the one spanned by the edge under consideration and its adjacent ray, we take as
representative of that adjacent ray exactly the vector used in the vertex Darboux coordinates.
Since it points into the same inward half–plane as ae it can be written

vadj,± = κ± ae + α± ee, (70)

with κ± > 0. In the vertex normal form at x± we take the basis vector e2 to be precisely
this representative. The construction of the symplectically dual basis in Step 1 then fixes a
representative of the adjacent ray in the other face P ′

e: it is the unique positive multiple for
which the pairing with vadj,± has absolute value 1. Using the normalization ω(be, ae) = εe = ±1
(and the fact that the pairings with the tangent direction ee vanish), this representative has the
expression

v′adj,± = κ−1
± be + β± ee, (71)

for some β± ∈ R. Thus no extra sign is hidden in the coefficients: all κ± are positive and the
only sign information of the wedge is carried by εe. (The equality of the sign εe with the vertex
sign used below is checked explicitly in the compatibility argument.)

Choose a smooth function κe(s) > 0 of the edge coordinate s = x such that κe(s) = κ− on
a collar near x− and κe(s) = κ+ on a collar near x+.
Edge smoothing strip (including the edge sign). Define

Ψε,e(s, r) =
(
s, κe(s) qε(r), − εe

κ′e(s)

κe(s)
pε(r) qε(r), εe κe(s)

−1pε(r)
)
, (72)

defined on a finite strip (s, r) ∈ Ie × [−Re, Re] inside the chosen tube Ue (with Ie an interval
parameterizing the portion of the edge we modify, and Re chosen so that the axial regime already
holds on the boundary |r| = Re for all ε ≤ ε0).

For all sufficiently small ε (and after possibly shrinking the strip once and for all) this
parametrization is an embedding. Indeed the vector ∂sΨε,e has x–component 1 whereas ∂rΨε,e

has x–component 0, so the immersion property reduces to the fact that the rounded curve γε is a
regular embedding in the (q, p)–plane. If two image points have different s–coordinates they are
obviously distinct; for fixed s the pair (qε(r), pε(r)) (and hence also (κ(s)qε(r), εeκ(s)

−1pε(r)))
determines r because γε is embedded, so no self–intersections occur. Finally the corrective px–
coordinate in (72) is of size O(ε2) on the support of the rounding; by taking ε0 small we ensure
that the whole image lies in the prescribed tubular neighbourhood Ue.

With λstd = px dx+ py dy in these edge coordinates, a direct computation gives

Ψ∗
ε,eλstd = px ds+ py dy

=

(
−εe

κ′

κ
pεqε

)
ds+

(
εeκ

−1pε
) (
κq′εdr + κ′qεds

)
= εe pε(r) q

′
ε(r) dr = d

(
εeFε(r)

)
, (73)

so Ψε,e parametrizes an exact Lagrangian strip. The third coordinate in (72) is precisely the
correction term ensuring (73) when κe varies with s. By (62), the primitive εeFε(r) vanishes
on collars where the strip has already entered the axial regime. When κe is constant (near
the endpoints), the third coordinate vanishes and the strip is simply a rescaled copy of the
one-dimensional rounding (with the correct sign εe in the py–direction).
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Compatibility with the vertex model on an open collar. We now make explicit choices ensuring
that the vertex and edge charts match on overlaps as subsets (and with matching primitives),
not merely at the level of tangent cones.

Fix an endpoint x of the edge e. Choose the vertex Darboux coordinates at x as in Step 1
so that the edge ray corresponding to e is

l1 = R+ ∂q1

(in particular, the two incident face planes along e at x are P1 = ⟨∂q1 , ∂q2⟩ and P4 = ⟨∂q1 , σ2∂p2⟩
for the appropriate vertex sign σ2). In the edge coordinates (67) chosen above, e is the x–axis
and the same two faces are in the standard position (68) with edge sign εe = sign(ω(be, ae)).

At the same time we recall the harmless freedom, noted in Step 1, to rescale a chosen non–
zero vector on any ray by a positive constant (and similarly to rescale the tangent vector used
to parametrize the edge). One may use this to arrange that the coordinate along the common
edge in the vertex chart has the same absolute scale as the edge coordinate—in which case the
scale factor ρx below equals 1 at the endpoint. We keep a factor in the formulas to cover the
case where no such simultaneous normalization is imposed.

Because both the vertex coordinates and the edge coordinates were chosen to be affine
symplectic coordinates on R4, the transition map between them on the overlap Ux ∩ Ue is the
restriction of a linear symplectic map (after translating x to the origin). The requirement that
it preserve the two incident Lagrangian planes and the common edge line forces the transition
to have a concrete finite-dimensional form. Concretely:

Lemma 8.3 (Vertex–edge transition normal form on the wedge). Let (q1, q2, p1, p2) and (x, y, px, py)
be linear symplectic coordinates on (R4, ω) with

ω = dp1 ∧ dq1 + dp2 ∧ dq2 = dpx ∧ dx+ dpy ∧ dy.

Assume that the common edge line is the q1–axis in the first coordinates and the x–axis in the
second, and that the two incident Lagrangian planes are

P1 = {p1 = p2 = 0}, P4 = {p1 = q2 = 0}

in (q, p)–coordinates and
{px = py = 0}, {px = y = 0}

in (x, y, p)–coordinates. After replacing the symplectic pair (x, px) by (c−1x, c px) for some pos-
itive constant c (which leaves the two half–planes in the same normal form), there are numbers
δ ∈ {±1}, κ > 0 and α, β, γ ∈ R such that the coordinate change has the form

x = δq1 + α q2 + β p2 + γ p1,

y = κ q2 + δ κβ p1,

px = δ p1,

py = κ−1p2 − δακ−1p1. (74)

Here δ records the relative orientation of the two coordinates along the edge (if the positive q1–ray
is sent to the positive x–ray then δ = +1). In particular, restricting to the union P1 ∪P4 (where
p1 = 0) we obtain the simpler formulas

x = δq1 + αq2 + βp2, y = κq2, py = κ−1p2. (75)

Proof. We spell out the elementary linear algebra since we shall use the signs below. Let T be
the linear change of coordinates. The conditions that T (P1) = {px = py = 0} imply that px and
py contain no q–terms, and the condition that T (P4) = {px = y = 0} implies in addition that
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px is a non–zero multiple of p1 and that y contains no q1– or p2–term. Thus, before imposing
the symplectic equations, we may write

x = Gq1 +Hq2 + Ip1 + Jp2, y = Eq2 + Fp1,

px = Ap1, py = Cp1 +Dp2,

with A,G,E ̸= 0. (The coefficient G has the sign of the orientation with which the edge is
parametrised in the two charts.) The equality T ∗(dpx ∧ dx+ dpy ∧ dy) = dp1 ∧ dq1 + dp2 ∧ dq2
is obtained by a direct comparison of coefficients:

dpx ∧ dx+ dpy ∧ dy = AGdp1 ∧ dq1 + (AH + CE) dp1 ∧ dq2
+ (AJ −DF ) dp1 ∧ dp2 +DE dp2 ∧ dq2.

Hence
AG = 1, AH + CE = 0, AJ −DF = 0, DE = 1. (76)

We are still free to rescale the edge symplectic coordinates by a positive constant, x 7→ x/|G|,
px 7→ |G| px (leaving y, py fixed). This preserves the normal form of the two half–planes and
replaces G by δ := sign(G). By the first equation in (76) the same operation then gives A = δ.
The sign of E records whether the inward half–line in the vertex face is sent to the inward half–
line in the edge chart. With our choices it is positive, and we put κ := E. Set α := H, β := J ,
γ := I, and use the remaining equations in (76) to solve for C and F . We obtain precisely (74).
Formula (75) is the restriction to p1 = 0.

Return to the geometric situation at the endpoint x of the edge e. Let sx ∈ R, δx ∈ {±1},
a positive scale ρx > 0, and κx > 0, αx, βx ∈ R be the parameters from Lemma 8.3: here sx is
the value of the edge coordinate s = x at the vertex (the affine origin in the edge chart need
not be the vertex), δx records whether the oriented edge ray in the vertex chart points in the
positive or negative s–direction, and ρx accounts for a possible residual difference of scale if
one has not normalized the representative of the ray. Then, restricting the vertex smoothing
model Φ(σ1,σ2)

ε to the collar where the edge-direction parameter u is already in the axial regime
(u ≥ 2ε so qε(u) = u, pε(u) = 0), and using (75) (undoing the optional rescaling of the edge
coordinate recorded by ρx), we find that points of the vertex model near this edge have edge-chart
coordinates (

sx + δxρxu+ αxqε(v) + βx (σ2pε(v)), κxqε(v), 0, κ
−1
x (σ2pε(v))

)
. (77)

On the other hand, on the edge collar where κe ≡ κx (so κ′e = 0) the edge strip (72) has image(
s, κxqε(r), 0, εe κ

−1
x pε(r)

)
.

It remains to identify the edge sign with the vertex sign. Write the chosen inward transverse
vectors in the vertex coordinates at x in the form

ae = A∂q2 + α′ ∂q1 , be = B (σ2∂p2) + β′ ∂q1 ,

with A,B > 0 (adding tangent components along the edge does not change the inward half–
planes). The pairings with ∂q1 vanish because both incident planes are Lagrangian and contain
that vector, hence

ω(be, ae) = AB ω(σ2∂p2 , ∂q2) = AB σ2.

After the positive rescaling used in the normalization (65) the sign is unchanged, so εe = σ2 and
the last coordinate agrees. Thus the images coincide on the overlap, with the smooth change of
parameters

(s, r) =
(
sx + δxρxu+ αxqε(v) + βxσ2pε(v), v

)
.
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In particular, the vertex patch and the edge strip agree on an open collar in Ux ∩ Ue as subsets
of R4. More precisely the primitives computed with the two local Liouville forms have the same
differential on this collar, and on the smaller axial subcollar both primitives themselves vanish
by (62); this is the fact that will be used in the global exactness argument after we have corrected
the local primitives by exact terms coming from the fixed global form λ. The same argument
applies at the other endpoint x+.

It may be useful to spell out that we have not lost any generality by treating only the
case in which, at the vertex under consideration, the chosen edge is the ray l1. The Darboux
coordinates of Step 1 are fixed once for all at a vertex, and the other three incident edges are
the rays l2, l3, l4. On the collar of the edge l2 the vertex primitive (64) reduces to σ1 dFε(u)
(because the parameter v is axial), and a direct computation exactly like the one above gives

signω(σ1∂p1 , ∂q1) = σ1.

Thus the sign εe of that edge is σ1. For the edge l3 the parameter u is axial on the negative
side and the primitive reduces to σ2 dFε(v); taking the inward vectors in the faces P2 and P3 to
be respectively ∂q2 and σ2∂p2 gives signω(σ2∂p2 , ∂q2) = σ2. Finally the edge l4 has sign σ1 and
primitive σ1 dFε(u). Equivalently one can cyclically relabel the four rays and repeat the proof.
Hence every incident edge of the fixed vertex coordinates is compatible with the corresponding
edge strip, the coefficient of Fε being precisely the edge sign.

5. Choosing neighborhoods and gluing the global smoothing (with finite strips/disks).
Since K has finitely many vertices and edges, choose:

• for each vertex x, a small closed ball Ux centered at x, such that the Ux are pairwise
disjoint and such that in an affine symplectic coordinate chart on Ux the germ K ∩ Ux is
exactly the planar star (58) restricted to a small disk in the (u, v)–domain;

• for each edge e, a symplectic tubular neighborhood Ue of the interior of e (excluding tiny
endpoint subsegments), such that different Ue are disjoint, and such that Ue meets only
the two endpoint balls Ux− and Ux+ (and only in collar overlaps).

Shrink Ux and Ue further so that on each overlap Ux ∩ Ue we are in the collar where:

1. the corresponding κe has already become constant (equal to the endpoint value κx);

2. the vertex parameter in the edge direction is already in the axial regime for the fixed scale
ε0;

3. the edge transverse parameter r satisfies |r| ≥ 2ε0 on a nonempty open subset of the
overlap (so the smoothing is stationary there for all t ∈ (0, 1] with ε(t) ≤ ε0).

Such choices are possible because all charts are local and we may shrink neighborhoods inde-
pendently.

Fix ε0 > 0 so small that, in each chart, the vertex and edge modifications supported in
|u|, |v|, |r| < 2ε0 lie entirely inside the chosen neighborhoods. Define

ε(t) := ε0 t, t ∈ (0, 1].

Definition of the smoothed surfaces. For each t ∈ (0, 1], define Kt by replacing:

• in each Ux, the polyhedral star K ∩Ux by the image of the chosen small domain Dx under
the vertex smoothing map Φ

(σ1(x),σ2(x))
ε(t) composed with the inverse of the chosen affine

symplectomorphism Ux → R4;
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• in each Ue, the wedge K ∩ Ue by the image of a finite strip Ie × [−Re, Re] under the edge
smoothing map Ψε(t),e composed with the inverse of the chosen affine symplectomorphism
Ue → R4;

• outside
⋃
x Ux ∪

⋃
e Ue, leave K unchanged.

By the compatibility established in Step 4 (explicit overlap equality on open collars), on each
nonempty overlap Ux ∩Ue the vertex patch and the edge strip define the same subset of R4 and
match smoothly (their parameterizations differ only by a smooth diffeomorphism of the collar in
the parameter domain). Moreover, on the outer boundaries of Ux and Ue the smoothed pieces
are literally the original planar pieces because qε(t) and pε(t) are exactly axial there (and likewise
Fε(t) vanishes there).

Therefore, for each t > 0 the set Kt is a smooth embedded Lagrangian surface.
Topological isotopy to K at t = 0. The last point which needs a little care is the choice of a
single parameter surface for all values of the smoothing parameter. In Lemma 8.3 the change of
variables on a vertex–edge collar contains the functions qε and pε, so if one glued the vertex and
edge charts by that formula the gluing would depend on t. We freeze the gluing at the reference
scale t = 1 and compensate by a harmless reparametrisation of the edge strips.

Let Σ be the smooth surface obtained by gluing the vertex domains Dx to the edge strips
Ie × [−Re, Re] by the transition maps, on the endpoint collars,

(s, r) = Tx,1(u, r) := sx + δxρxu+ αxqε0(r) + βxεepε0(r),

where ε0 = ε(1), and by rounding these maps in the stationary axial part; outside the chosen
neighbourhoods Σ is just the given polyhedral surface. (For the other three edges at a vertex
the notation is the analogous one from the compatibility discussion of Step 4.)

For t ∈ (0, 1] we now define an embedding ft : Σ → R4. On a vertex chart we use the
map Φε(t) as before. On an edge chart we compose Ψε(t),e with a small diffeomorphism of the
parameter strip which only changes the edge coordinate. Choose cut–off functions χx− , χx+ of
the coordinate s, supported in the endpoint collars of Ie and equal to 1 on the actual overlaps
with the vertex balls (the collars have been shrunk so that the tapering occurs outside the
overlaps). Put

Θt,e(s, r) := (s+ χx−(s)(αx− [qε(t) − qε0 ](r) + βx−εe[pε(t) − pε0 ](r))
+ χx+(s)(αx+ [qε(t) − qε0 ](r) + βx+εe[pε(t) − pε0 ](r)), r).

For ε0 sufficiently small this is a diffeomorphism of the strip onto itself (the shifts are O(ε0) and
vanish in the axial region |r| ≥ 2ε0). We set ft on the edge chart equal to the affine inverse of
Ψε(t),e ◦Θt,e. On a collar where χx = 1 the reference transition Tx,1 is thereby changed exactly
into the transition Tx,t of Step 4, so the vertex and edge formulas agree on the fixed gluing of
Σ; away from the collars Θt,e is the identity. Since Ψ∗

ε,eλstd = d(εeFε(r)) contains no ds–term,
this reparametrisation will not affect the primitive used later.

Together with the identity outside the chosen neighbourhoods these local definitions give a
smooth family of embeddings ft : Σ→ R4 whose images are precisely the sets Kt. The derivative
∂tft is supported in the union of the vertex balls and edge strips.

As t→ 0+, the maps ft converge uniformly on compact subsets to the obvious PL parametriza-
tion of K (because each local model converges uniformly to the corresponding cone/wedge and
the support shrinks like O(ε(t))). Thus ft extends continuously at t = 0 to an embedding f0 with
image K. In the sense of a family of embeddings this already gives an isotopy of the surface. If
one insists on an ambient topological isotopy of R4, the standard isotopy–extension theorem for
locally flat embedded compact submanifolds (applied to the track (t, x) 7→ ft(x)) promotes this
family to such an ambient isotopy. In either interpretation {Kt}t∈[0,1] is a topological isotopy
with endpoint K0 = K.
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6. From exactness of the deformation to a single Hamiltonian isotopy on all of (0, 1].
We use the standard exactness/flux criterion in an exact symplectic manifold, written with

the Hamiltonian convention (52) and with explicit attention to smooth dependence on t.

Lemma 8.4 (Hamiltonian criterion in the exact case). Let (M,ω = dλ) be an exact symplectic
manifold and let ft : Σ → M be a smooth family of embeddings for t ∈ (0, 1] with images
Lt = ft(Σ) smooth Lagrangian submanifolds.

Assume:

1. there is a fixed compact set C ⊂ Σ such that ∂tft is supported in C for all t ∈ (0, 1]
(equivalently, the family is stationary on Σ \ C), and the trace

⋃
t∈(0,1] ft(C) is contained

in a fixed compact subset of M ;

2. there is a fixed closed 1–form β on Σ and a smooth function S : (0, 1]× Σ→ R such that
for each t

f∗t λ = β + dSt, St := S(t, ·), (78)

and St is independent of t on Σ \ C (in particular, ∂tSt is supported in C).

Then there exists a smooth function H : (0, 1] × M → R with compact support contained in
a fixed compact subset of M such that the (time–dependent) Hamiltonian flow ϕt,t0H (defined by
(52)) satisfies

ϕt,t0H (Lt0) = Lt

for all t, t0 ∈ (0, 1] (in particular, {Lt}t∈(0,1] is a Hamiltonian isotopy, generated by a single
time-dependent Hamiltonian on all of (0, 1]).

Proof. Let Vt be the deformation vector field along Lt, defined by Vt ◦ ft = ∂tft. Differentiate
(78) in t. Since β is fixed and closed, we obtain

d

dt
f∗t λ = d(∂tSt).

On the other hand, by Cartan’s formula,

d

dt
f∗t λ = f∗t (LVtλ) = f∗t

(
d(ιVtλ) + ιVtdλ

)
= d
(
λ(Vt) ◦ ft

)
+ f∗t (ιVtω).

Comparing gives
f∗t (ιVtω) = d

(
∂tSt − λ(Vt) ◦ ft

)
. (79)

Thus the 1–form ιVtω restricted to Lt is exact, with primitive

ht :=
(
∂tSt − λ(Vt) ◦ ft

)
◦ f−1

t ∈ C∞(Lt).

By hypothesis, ∂tSt and Vt are supported in C, hence ht has compact support in Lt (and depends
smoothly on t because S and f do).

For the next step we need extensions of these functions off the moving submanifolds. We
recall explicitly the elementary fact that this can be done with smooth dependence on the
parameter. EquipM with a fixed Riemannian metric. For each compact subinterval [τ, 1] ⊂ (0, 1]
the map (t, x) 7→ ft(x) is a proper embedding of [τ, 1] × C, hence the normal exponential map
gives a tubular neighbourhood with projection depending smoothly on t. On the countable cover
{[1/(k+ 1), 1/k]}k these neighbourhoods can be chosen compatible on overlaps and patched by
a partition of unity in the parameter (or, equivalently, by using the exponential map in the
smoothly varying normal bundle of the embedded track). Thus we obtain open sets Ut and
projections πt : Ut → Lt depending smoothly for all t ∈ (0, 1]; their radii may shrink as t → 0,
which is harmless. The union of all supports will still lie in a fixed compact subset of M by
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hypothesis (1). Extend ht to Ut by h̃t := ht ◦ πt and multiply by a bump function χt supported
in Ut and equal to 1 near Lt. The bump functions too can be chosen smooth in t by the same
local–in–time construction, with supports contained in that fixed compact subset.

Define the Hamiltonian

Ht := −χt h̃t, H(t, ·) := Ht.

Then H is smooth on (0, 1]×M and compactly supported in M .
Let XHt be the Hamiltonian vector field defined by (52). Along Lt, since χt ≡ 1 and

h̃t|Lt = ht, we have Ht|Lt = −ht, hence

ιXHt
ω|Lt = −dHt|Lt = dht = ιVtω|Lt

by (79). Thus Vt −XHt is tangent to Lt. Tangential components only reparametrize Lt, so the
time–dependent Hamiltonian flow (with initial time t0) carries Lt0 to Lt for all t, t0 ∈ (0, 1].

Application to Kt. Let Σ and ft : Σ → R4 be as in Step 5. By construction ∂tft is supported
in a fixed compact subset C ⊂ Σ and the family is stationary on Σ \ C; moreover all points of
ft(C) lie in the fixed finite union of vertex and edge neighborhoods chosen in Step 5, hence in
a compact subset of R4.

Fix a reference time t0 = 1 and set

β := f∗t0λ.

Since Lt0 is Lagrangian, β is closed.
We claim that there exists a smooth function S : (0, 1] × Σ → R, supported in C and

identically 0 on a collar of ∂C, such that f∗t λ = β + dSt for all t ∈ (0, 1].
Indeed, cover C by finitely many vertex charts and edge charts from Step 5, and include also

the stationary open set Σ \ C. In each vertex chart Ux, let λstd denote the standard Liouville
form in the chosen vertex Darboux coordinates, and choose a smooth function Gx on Ux with

λstd = λ+ dGx

(which exists because H1(R4) = 0). Then (64) gives

f∗t λ = d
(
σ1(x)Fε(t)(u) + σ2(x)Fε(t)(v)

)
− d(Gx ◦ ft) = dPt,x on Ux,

where
Pt,x := σ1(x)Fε(t)(u) + σ2(x)Fε(t)(v)−Gx ◦ ft.

Similarly, in each edge chart Ue choose Ge with λstd = λ+ dGe and use (73) to write

f∗t λ = d
(
εeFε(t)(r)

)
− d(Ge ◦ ft) = dPt,e on Ue,

where
Pt,e := εeFε(t)(r)−Ge ◦ ft.

On the stationary region Σ \ C we set Pt,out := 0.
Define local difference functions

St,x := Pt,x − Pt0,x, St,e := Pt,e − Pt0,e, St,out := 0.

Then dSt,∗ = f∗t λ− f∗t0λ = f∗t λ− β on each chart.
On any connected overlap of two charts, the difference of two such local functions has zero

differential, hence is constant. By the way the overlaps were chosen in Step 5, each overlap
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contains a nonempty open subset where the smoothing is already in the axial regime for the
fixed scale ε0; hence for every t ∈ (0, 1] we have

Fε(t) = Fε(t0) = 0

on that open subset (by (62)), and also ft = ft0 there (the family is stationary on the axial
collar), so G ◦ ft = G ◦ ft0 . Therefore each local difference function St,∗ vanishes on that open
subset of the overlap, forcing the overlap-constant to be 0. Thus the St,∗ agree on overlaps and
glue to a globally defined smooth function St : Σ → R, supported in C and identically 0 near
∂C.

Moreover, since each local formula depends smoothly on t and the local functions agree
identically on overlaps (not just up to a t–dependent constant), the glued map (t, x) 7→ S(t, x)
is smooth on (0, 1]× Σ.

We have shown f∗t λ = β+dSt with β fixed and St stationary on Σ\C. Applying Lemma 8.4,
the isotopy {Kt}t∈(0,1] is Hamiltonian, generated by a single smooth compactly supported Hamil-
tonian H(t, ·) on all of (0, 1].

Conclusion. We have constructed a family {Kt : t ∈ (0, 1]} of smooth embedded Lagrangian
surfaces such that:

• Kt → K in C0 as t→ 0+ and {Kt}t∈[0,1] extends to a topological isotopy with K0 = K;

• for t > 0 the family is a Hamiltonian isotopy (indeed generated by one smooth time-
dependent Hamiltonian on (0, 1]).

It is worth pointing out that, in the compact case, the statement is consistent with the familiar
topological restrictions on Lagrangian submanifolds of the standard symplectic R4. Suppose that
K is compact and orientable. For any compatible almost–complex structure J the normal bundle
of the smoothed surface Kt is J(TKt), hence is isomorphic (as an oriented real plane bundle) to
the tangent bundle. The Euler number of the normal bundle of an oriented compact embedded
surface in R4 is its self–intersection number, which is zero because H2(R4) = 0. Consequently
χ(K) = 0; in particular a quadrivalent polyhedral Lagrangian sphere cannot occur.

Therefore every quadrivalent polyhedral Lagrangian surface K ⊂ R4 admits a Lagrangian
smoothing.
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9 Algebraic relations among scaled quadri-linear determinant
tensors

Problem

Let n ≥ 5. Let A(1), . . . , A(n) ∈ R3×4 be Zariski-generic. For α, β, γ, δ ∈ [n], construct Q(αβγδ) ∈
R3×3×3×3 so that its (i, j, k, ℓ) entry for 1 ≤ i, j, k, ℓ ≤ 3 is given by

Q
(αβγδ)
ijkℓ = det[A(α)(i, :);A(β)(j, :);A(γ)(k, :);A(δ)(ℓ, :)] .

Here A(i, :) denotes the ith row of a matrix A, and semicolon denotes vertical concatenation.
We are interested in algebraic relations on the set of tensors {Q(αβγδ) : α, β, γ, δ ∈ [n]}.

More precisely, does there exist a polynomial map F : R81n4 → RN that satisfies the following
three properties?

• The map F does not depend on A(1), . . . A(n).

• The degrees of the coordinate functions of F do not depend on n.

• Let λ ∈ Rn×n×n×n satisfy λαβγδ ̸= 0 for precisely α, β, γ, δ ∈ [n] that are not identical.
Then F(λαβγδQ

(αβγδ) : α, β, γ, δ ∈ [n]) = 0 holds if and only if there exist u, v, w, x ∈ (R∗)n

such that λαβγδ = uαvβwγxδ for all α, β, γ, δ ∈ [n] that are not identical.

Solution

We give an explicit construction of such a map F (in fact, with uniform degree 5). In the proof
it is a little cleaner to work first over the algebraic closure C. At the end of the argument I
explain why, for real data, the factors which are obtained over C may in fact be chosen real. All
polynomials which occur have real (indeed integral) coefficients.

Step 0: packaging the tensors. Let

R := [n]× {1, 2, 3}, s = (α, i) ∈ R,

and write c(s) = α (camera index) and r(s) = i (row index). Given an array x = (x
(αβγδ)
ijkℓ ) ∈

C81n4 , define a single tensor X ∈ (C3n)⊗4 by

Xstuv := x
(c(s)c(t)c(u)c(v))
r(s)r(t)r(u)r(v) , s, t, u, v ∈ R. (80)

This identifies C81n4 with C(3n)4 .
For p ∈ {1, 2, 3, 4}, let Flatp(X ) be the mode-p flattening: it is the matrix obtained by

grouping the pth index as a row index and the other three indices as a column index. Thus

Flatp(X ) ∈ C3n×(3n)3 .

Step 1: the polynomial map. Define F by

F(x) :=
(
all 5× 5 minors of Flatp(X ) for p = 1, 2, 3, 4

)
, (81)

where X is obtained from x via (80). Each coordinate of F is a determinant of a 5×5 submatrix
of a flattening, hence is a polynomial of degree 5 in the entries of x. The definition uses only
the input tensor x (and n through the index ranges), and does not involve the matrices A(α).

Step 2: genericity hypotheses on the cameras. Stack all camera rows into a single matrix

M ∈ C3n×4, whose rows are as ∈ C1×4 (s ∈ R),

so that the 3× 4 block of rows indexed by {(α, 1), (α, 2), (α, 3)} equals A(α). After removing a
proper algebraic subset of (C3×4)n, we may assume:
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(G1) each A(α) has rank 3 (so its row space Uα ⊂ C1×4 is a hyperplane);

(G2) M has rank 4 (equivalently, im(M) ⊂ C3n is 4-dimensional);

(G3) for every ordered triple (β, γ, δ) ∈ [n]3 that is not constant,

span{u ∧ v ∧ w : u ∈ Uβ, v ∈ Uγ , w ∈ Uδ } =
∧3

C4.

Let us spell out why this open set is non-empty. All three requirements are conditions given by
the non–vanishing of polynomial functions of the entries of the matrices. Thus it is enough to
know that none of these polynomials is identically equal to zero. For (G1) this is clear (one 3×3
minor of A(α) has to be non–zero), and for (G2) it suffices to note, for instance, that one may
take a first camera whose three rows are the standard row vectors e1, e2, e3 and a second camera
with rows e1, e2, e4 (along with arbitrary further blocks); the stacked matrix then has rank 4.

For the reader’s convenience I also record an explicit verification for (G3). Put V = C4 and
fix an ordered triple of indices which is not constant. The span which occurs in (G3) is the
image of the multilinear map Uβ ⊗ Uγ ⊗ Uδ −→

∧3 V , (u, v, w) 7→ u ∧ v ∧ w; after bases have
been chosen in the three hyperplanes, the condition that this image have dimension four is the
non–vanishing of some 4× 4 minor and hence is polynomial. This polynomial is not identically
zero. Indeed, if two of the hyperplanes are equal we may (after a change of coordinates) take
Uβ = Uγ = ⟨e1, e2, e3⟩ and Uδ = ⟨e1, e2, e4⟩; the wedges

e2 ∧ e3 ∧ e1, e2 ∧ e4 ∧ e1, e3 ∧ e4 ∧ e1, e2 ∧ e3 ∧ e4

(which are obtained from suitable choices of u, v, w) already form a basis of
∧3 V . If the

three hyperplanes are pairwise distinct we may take Uβ = ⟨e2, e3, e4⟩, Uγ = ⟨e1, e3, e4⟩ and
Uδ = ⟨e1, e2, e4⟩, from which the four basis wedges of

∧3 V are obtained just as easily (for
example e2 ∧ e3 ∧ e1, e2 ∧ e4 ∧ e1, e3 ∧ e4 ∧ e1, e2 ∧ e3 ∧ e4). Permuting the roles of the indices
gives the remaining cases. Consequently, for every fixed triple the failure of (G3) is a proper
algebraic subset of the parameter space.

The ambient space (C3×4)n is irreducible, and a finite intersection of non–empty Zariski open
subsets of an irreducible variety is non–empty. Thus there are cameras satisfying (G1)–(G3),
and in fact the set of such cameras is a Zariski open dense subset. All the defining polynomials
have real coefficients, so this open subset contains real points (equivalently its real points are
Euclidean dense). Hence a Zariski–generic real choice of A(1), . . . , A(n) satisfies (G1)–(G3).

Step 3: linear-algebra preliminaries. Let W := im(M) ⊂ C3n, so dimW = 4 by (G2).

Lemma 9.1 (Cofactor vector). For any t, u, v ∈ R there exists a (unique) vector ωtuv ∈ C4 such
that

det(x, at, au, av) = xω Ttuv ∀x ∈ C1×4.

Moreover, the column of Flat1(Y) indexed by (t, u, v), where Ystuv = det(as, at, au, av), equals
M ωtuv.

Proof. The map x 7→ det(x, at, au, av) is linear in x ∈ C1×4, hence is given by x 7→ xωT for a
unique ω ∈ C4. The second claim is immediate since

(
det(as, at, au, av)

)
s∈R =

(
asω

T
tuv

)
s∈R =

Mωtuv.

Lemma 9.2 (Diagonal stabilizer is scalar). Assume (G1)–(G2) and let D = diag(dαI3)
n
α=1 ∈

C3n×3n with each dα ∈ C. If DW ⊆W , then all dα are equal.

Proof. Since rank(M) = 4, the columns of M form a basis of W . The inclusion DW ⊆ W
therefore defines a (unique) linear endomorphism H ∈M4(C) by

DM =MH.
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(The matrix H need not be invertible if some of the dα vanish.) Restricting to the block of rows
belonging to camera α gives

dαA
(α) = A(α)H.

Thus every row of A(α), and hence every vector in the row space Uα, is a left eigenvector of H
with eigenvalue dα. Any two hyperplanes in C4 have non–zero intersection (in fact of dimension
at least two), so if y ∈ Uα ∩ Uα′ is non–zero we have yH = dαy = dα′y, which forces dα = dα′ .
Hence all dα are equal.

Step 4: the tensor slice and the “easy” direction. Given scalars λ ∈ Cn×n×n×n, consider
the tensor T ∈ (C3n)⊗4 defined by

Tstuv := λc(s)c(t)c(u)c(v) det(as, at, au, av). (82)

This T is exactly the packaging (80) of the family (λαβγδQ
(αβγδ))α,β,γ,δ.

Assume first that λαβγδ = uαvβwγxδ for all non-identical quadruples and some u, v, w, x ∈
(C∗)n. Fix a triple (β, γ, δ) that is not constant. For the mode-1 flattening, the column indexed
by (t, u, v) with c(t) = β, c(u) = γ, c(v) = δ equals(

Tstuv
)
s∈R = diag(uαI3)

n
α=1 ·

(
vβwγxδ · (Mωtuv)

)
∈ diag(uαI3)W,

by Lemma 9.1. If the suffix happens to be constant, say (β, β, β), the very same formula is still
valid. Indeed ωtuv is then the covector associated with at ∧ au ∧ av ∈

∧3 Uβ , so the entries of
Mωtuv in the block of rows belonging to camera β are all zero (the determinant vanishes on the
whole hyperplane Uβ); multiplying by vβwβxβ diag(uαI3) therefore reproduces the column of T
as well – for the row block α = β both sides are simply zero, independently of the value of λββββ .
Hence all columns of Flat1(T ), for arbitrary suffixes, lie in the fixed 4–plane diag(uαI3)W , so
rank(Flat1(T )) ≤ 4. The same argument applies to the other three flattenings. Therefore all
5× 5 minors in (81) vanish, i.e. F(T ) = 0.

Step 5: vanishing of minors forces one-mode factorization. Assume now that F(T ) = 0,
i.e. every 5× 5 minor of every Flatp(T ) vanishes. Equivalently,

rank
(
Flatp(T )

)
≤ 4 for p = 1, 2, 3, 4. (83)

We use the standing assumption on λ:

λαβγδ ̸= 0 iff (α, β, γ, δ) is not all identical. (84)

In particular, if a triple (β, γ, δ) is not constant, then λαβγδ ̸= 0 for all α, hence the diagonal
matrix

Dβγδ := diag(λαβγδI3)
n
α=1 (85)

is invertible.
Fix a triple (β, γ, δ) that is not constant. Consider the subcollection of columns of Flat1(T )

with fixed camera suffix (β, γ, δ) and varying row choices within those cameras. By Lemma 9.1
these columns are precisely

Dβγδ ·Mωtuv with c(t) = β, c(u) = γ, c(v) = δ.

Condition (G3) implies that the vectors ωtuv (with this suffix) span C4: by (G1) the three rows
in each camera form a basis of the corresponding hyperplane, and the cofactor construction is
precisely the standard isomorphism

∧3C4 ≃ (C4)∗ (we have identified a covector with a column
vector by means of the chosen coordinates). Hence these columns span DβγδW . Therefore:

span{columns of Flat1(T ) with suffix (β, γ, δ)} = DβγδW. (86)
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Now choose three distinct cameras b, c, d (possible since n ≥ 5) and let U1 denote the full
column space of Flat1(T ). By (86) applied to (b, c, d) we have DbcdW ⊆ U1, and since Dbcd is
invertible and dimW = 4, we get dim(DbcdW ) = 4. Combined with (83) for p = 1, this forces

U1 = DbcdW.

Applying (86) to any non-constant triple (β, γ, δ) yields DβγδW ⊆ U1 = DbcdW , equivalently

HβγδW =W, Hβγδ := D−1
bcdDβγδ.

But Hβγδ is diagonal of the form diag(hαI3)
n
α=1. By Lemma 9.2, Hβγδ must be a scalar multiple

of the identity, so there exists fβγδ ∈ C∗ such that

λαβγδ
λαbcd

= fβγδ ∀α.

Setting uα := λαbcd gives the mode-1 factorization

λαβγδ = uα fβγδ whenever (β, γ, δ) is not constant. (87)

Repeating the same argument for the other flattenings (choosing, for the reference triples,
any three distinct cameras such as the b, c, d above with the roles of the modes permuted) gives
vectors v, w ∈ (C∗)n—one may take for instance vβ = λbβcd and wγ = λbcγd—and functions g, h
such that

λαβγδ = vβ gαγδ whenever (α, γ, δ) is not constant, (88)
λαβγδ = wγ hαβδ whenever (α, β, δ) is not constant. (89)

Step 6: gluing the one-mode factorizations. Let

E1 := {(β, γ, δ) ∈ [n]3 : (β, γ, δ) is not constant}.

From (87)–(88) we produce a function of two indices. Fix (γ, δ) ∈ [n]2. Choose indices α0, β0
such that (β0, γ, δ) ∈ E1 and (α0, γ, δ) is not constant (e.g. if γ = δ, take α0 ̸= γ and β0 ̸= γ;
otherwise any choice works). Define

rγδ :=
λα0β0γδ

uα0vβ0
. (90)

This is well-defined (independent of the choice): indeed, whenever both (87) and (88) apply we
have

λαβγδ
uαvβ

=
fβγδ
vβ

=
gαγδ
uα

,

so the quotient depends only on (γ, δ). In particular, for any fixed (γ, δ) and any β with
(β, γ, δ) ∈ E1 we may choose an index α′(different from γ = δ if these two are equal) for which
(α′, γ, δ) is not constant; applying the displayed equality to (α′, β) shows that fβγδ/vβ = rγδ.
Substituting this value in (87) gives, for every α (even if (α, γ, δ) should be constant),

λαβγδ = uαvβ rγδ for all (β, γ, δ) ∈ E1 and all α. (91)

Now use (89) to split rγδ multiplicatively. Fix δ ∈ [n] and choose α0, β0 with α0 ̸= δ and
β0 ̸= δ. Then (α0, β0, δ) is not constant, so (89) applies, and moreover (β0, γ, δ) ∈ E1 for every
γ (since β0 ̸= δ). Thus, for all γ,

uα0vβ0 rγδ = λα0β0γδ = wγ hα0β0δ.
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Hence rγδ/wγ is independent of γ; define xδ ∈ C∗ by

xδ :=
hα0β0δ

uα0vβ0
.

Then rγδ = wγxδ, and substituting into (91) yields

λαβγδ = uαvβwγxδ whenever (β, γ, δ) ∈ E1. (92)

It remains to treat the triples not in E1, i.e. (β, γ, δ) = (β, β, β). For α ̸= β, the quadruple
(α, β, β, β) is not all identical, so λαβββ ̸= 0 by (84). Fix such α ̸= β and choose η ∈ [n] with
η ̸= β. Then (89) (with δ = β and (α, β, β) not constant) gives

λαβγβ = wγ hαββ ∀ γ. (93)

Taking γ = η and using (92) for the quadruple (α, β, η, β) (which has (β, η, β) ∈ E1 since η ̸= β)
yields

wη hαββ = λαβηβ = uαvβwηxβ,

so hαββ = uαvβxβ . Plugging γ = β into (93) gives

λαβββ = wβ hαββ = uαvβwβxβ.

Thus the factorization holds for all quadruples that are not all identical:

λαβγδ = uαvβwγxδ for every (α, β, γ, δ) not all identical.

Step 7: returning to real scalars. It remains only to justify the passage from the complex
argument to the real statement formulated in the problem. We shall use the following elementary
observation. Suppose that all the numbers λαβγδ are real and satisfy (84), and suppose that for
some complex vectors u, v, w, x ∈ (C∗)n the equality

λαβγδ = uαvβwγxδ (94)

holds for every non–identical quadruple. Then the four vectors may be chosen with real (non–
zero) entries.

For completeness I give the short proof. Choose three distinct indices p, q, r ∈ [n] (this is
the only place where fewer than five indices would in fact have sufficed). From (94) we get, for
example,

uα
up

=
λαpqr
λppqr

∈ R∗ (α ∈ [n]),

and in the same way vβ/vp = λpβqr/λppqr, wγ/wp = λpqγr/λpqpr and xδ/xp = λpqrδ/λpqrp
are real and non–zero. (Every displayed denominator is legitimate because the corresponding
quadruple is not all identical.) Thus all entries of (say) u have the same complex phase up to
a sign, and the same is true for v, w, x. Write up = |up|eiθ, vp = |vp|eiϕ, wp = |wp|eiψ and
xp = |xp|eiχ. Since, for example, the product corresponding to the non–identical quadruple
(p, p, q, r), upvpwqxr = λppqr, is a non–zero real number, the sum θ + ϕ + ψ + χ is congruent
to 0 modulo π (the possible signs of the real ratios such as wq/wp and xr/xp only add integer
multiples of π).

Define ũα = e−iθuα, ṽβ = e−iϕvβ , w̃γ = e−iψwγ and x̃δ = e−iχxδ. These numbers are all real
and non–zero, and for every non–identical quadruple their product equals e−i(θ+ϕ+ψ+χ) λαβγδ.
If this common factor is −1 rather than +1, we simply change the sign of one of the four real
vectors. In either case (94) holds with real factors.
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Conclusion. The map F defined by (81) is independent of the cameras, each coordinate has
degree 5 (independent of n), and for Zariski-generic A(1), . . . , A(n) it satisfies the desired char-
acterization. More explicitly, for every real array λ obeying (84),

F
(
(λαβγδQ

(αβγδ))α,β,γ,δ
)
= 0 ⇐⇒ ∃u, v, w, x ∈ (R∗)n such that λαβγδ = uαvβwγxδ

for all non–identical quadruples. Conversely, any such real factorization (and a fortiori any
complex one) makes all the minors in (81) vanish, as was shown in Step 4. This is precisely the
polynomial map required in the statement of the problem. □
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10 Kernelized CP–ALS subproblem with missing data: matrix-
free PCG with Kronecker preconditioning

Problem

Given a d-way tensor T ∈ Rn1×n2×···×nd such that the data is unaligned (meaning the tensor
T has missing entries), we consider the problem of computing a CP decomposition of rank
r where some modes are infinite-dimensional and constrained to be in a Reproducing Kernel
Hilbert Space (RKHS). We want to solve this using an alternating optimization approach, and
our question is focused on the mode-k subproblem for an infinite-dimensional mode. For the
subproblem, then CP factor matrices A1, . . . , Ak−1, Ak+1, . . . , Ad are fixed, and we are solving
for Ak.

Our notation is as follows. Let N =
∏
i ni denote the product of all sizes. Let n ≡ nk be the

size of mode k, let M =
∏
i̸=k ni be the product of all dimensions except k, and assume n≪M .

Since the data are unaligned, this means only a subset of T ’s entries are observed, and we let
q ≪ N denote the number of observed entries. We let T ∈ Rn×M denote the mode-k unfolding
of the tensor T with all missing entries set to zero. The vec operations creates a vector from a
matrix by stacking its columns, and we let S ∈ RN×q denote the selection matrix (a subset of
the N×N identity matrix) such that ST vec(T ) selects the q known entries of the tensor T from
the vectorization of its mode-k unfolding. We let Z = Ad⊙· · ·⊙Ak+1⊙Ak−1⊙· · ·⊙A1 ∈ RM×r

be the Khatri-Rao product of the factor matrices corresponding to all modes except mode k.
We let B = TZ denote the MTTKRP of the tensor T and Khatri-Rao product Z.

We assume Ak = KW where K ∈ Rn×n denotes the psd RKHS kernel matrix for mode k.
The matrix W of size n× r is the unknown for which we must solve. The system to be solved is[

(Z ⊗K)TSST (Z ⊗K) + λ(Ir ⊗K)
]
vec(W ) = (Ir ⊗K) vec(B). (95)

Here, Ir denotes the r × r identity matrix. This is a system of size nr × nr Using a standard
linear solver costs O(n3r3), and explicitly forming the matrix is an additional expense.

Explain how an iterative preconditioned conjugate gradient linear solver can be used to solve
this problem more efficiently. Explain the method and choice of preconditioner. Explain in detail
how the matrix-vector products are computed and why this works. Provide complexity analysis.
We assume n, r < q ≪ N . Avoid any computation of order N .

Solution (matrix-free PCG with Kronecker preconditioning)

We show how to solve (95) efficiently using a matrix-free preconditioned conjugate gradient
(PCG) method. The central idea is (i) to express all masked contractions using only the observed
indices, and (ii) to choose a preconditioner that is spectrally close to the true operator and admits
a fast inverse via Kronecker eigenstructure.

Observed-index notation (eliminating S and avoiding Z). Let the set of observed entries
in the mode-k unfolding be

Ω = {(iℓ, jℓ)}qℓ=1, iℓ ∈ {1, . . . , n}, jℓ ∈ {1, . . . ,M}.

(Here jℓ encodes the multi-index over modes ̸= k.) For each observation ℓ, define the corre-
sponding row of the Khatri–Rao product by

zTℓ := eTjℓZ ∈ R1×r, ℓ = 1, . . . , q,

and collect these rows into the matrix ZΩ ∈ Rq×r. Crucially, ZΩ can be formed without ever
constructing Z ∈ RM×r: for s = 1, . . . , r,

(zℓ)s =
∏
m̸=k

Am(i
(ℓ)
m , s),
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where (i
(ℓ)
m )m̸=k is the multi-index corresponding to jℓ. Thus ZΩ is only q × r.

Also define the row-selection matrix RΩ ∈ Rq×n by

(RΩ)ℓ,iℓ = 1, (RΩ)ℓ,i = 0 for i ̸= iℓ.

Then for any U ∈ Rn×r, (RΩU)ℓ,: = Uiℓ,:.

Matrix-free operator application. It is convenient to work with matrices rather than the
vectorized unknown. For any X ∈ Rn×r, define x = vec(X). The Kronecker identity

(Z ⊗K) vec(X) = vec(KXZT ) (96)

implies that the masked product SST (Z ⊗K) vec(X) extracts exactly the q scalars

sℓ(X) := eTiℓKX zℓ = (KX)iℓ,: · zℓ, ℓ = 1, . . . , q.

Equivalently, with 1r the r-vector of ones,

s(X) =
(
RΩKX ⊙ ZΩ

)
1r ∈ Rq. (97)

A direct expansion shows

(Z ⊗K)TSST (Z ⊗K) vec(X)

=

q∑
ℓ=1

sℓ(X) (zℓ ⊗Keiℓ) = vec

(
K

q∑
ℓ=1

eiℓsℓ(X)zTℓ

)
= vec

(
KRTΩ Diag(s(X))ZΩ

)
. (98)

Therefore the full coefficient operator in (95) can be applied without forming any N - or M -
dimensional objects:

A vec(X) = vec
(
KRTΩ Diag(s(X))ZΩ + λKX

)
, where s(X) is given by (97). (99)

Right-hand side without forming B = TZ. Let t ∈ Rq collect the observed tensor values
in the unfolding: tℓ := Tiℓ,jℓ . Then the sparse MTTKRP satisfies

B = TZ = RTΩ Diag(t)ZΩ ∈ Rn×r, (100)

and the right-hand side becomes

b = (Ir ⊗K) vec(B) = vec(KB). (101)

Again, no M × r matrix Z is formed, and no computation scales with N .

PCG formulation. Assume K is positive definite, or replace it by K+εI with a small nugget
ε > 0 (standard in kernel methods). Then the operator in (95) is symmetric positive definite
(SPD), and CG applies. PCG iterates on the linear system

Aw = b, w = vec(W ),

using only: (i) matrix-free applications of A via (99), and (ii) applications of a preconditioner
inverse P−1 described next.
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A Kronecker preconditioner from mean masking. Let ρ := q/N be the observation
density. If the observed set is approximately uniform, a common and effective approximation is

SST ≈ ρI.

Under this replacement,

(Z ⊗K)T (ρI)(Z ⊗K) = ρ (ZTZ)⊗ (KTK) = ρΓ⊗K2, Γ := ZTZ ∈ Rr×r.

This motivates the SPD preconditioner

P := ρΓ⊗K2 + λ Ir ⊗K. (102)

The matrix Γ is cheap to form without Z by the standard CP identity

Γ = ZTZ = (ATdAd) ∗ · · · ∗ (ATk+1Ak+1) ∗ (ATk−1Ak−1) ∗ · · · ∗ (AT1A1), (103)

where ∗ denotes the Hadamard product. This requires only the r×r Gram matrices of the other
modes.

Fast application of P−1 via eigendecompositions. Compute once the eigendecompositions

K = U Diag(σ1, . . . , σn)U
T , Γ = V Diag(γ1, . . . , γr)V

T ,

with U ∈ Rn×n, V ∈ Rr×r orthogonal and σi, γa ≥ 0. Then (102) becomes

P = (V ⊗ U) Diag
(
ρ γa σ

2
i + λσi

)
i=1,...,n; a=1,...,r

(V ⊗ U)T .

Hence for any residual r = vec(R) with R ∈ Rn×r,

R̂ := UTRV, Ŷi,a :=
R̂i,a

ρ γa σ2i + λσi
, P−1r = vec

(
UŶ V T

)
. (104)

Importantly, K2 is never formed explicitly; only the eigenvalues σ2i are used. If some σi = 0,
either add a nugget K ← K + εI or restrict to range(K); in either case, P remains SPD.

Matrix-free matvec algorithm (what PCG actually computes). Given x = vec(X)
with X ∈ Rn×r, compute y = Ax as:

1. U ← KX.

2. For ℓ = 1, . . . , q, compute sℓ ← Uiℓ,: · zℓ (rowwise dot product).

3. Accumulate G ∈ Rn×r by scatter-add:

Giℓ,: += sℓ z
T
ℓ (ℓ = 1, . . . , q), equivalently G = RTΩ Diag(s)ZΩ.

4. Return y = vec(KG+ λU).

The right-hand side is computed once using (100)–(101): form H = RTΩ Diag(t)ZΩ by the same
scatter pattern as in step 3 (with s replaced by t), then set b = vec(KH).

Why PCG converges quickly. Let em denote the PCG error after m iterations. Since A
and P are SPD, standard PCG theory yields

∥em∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)m
, κ := κ

(
P−1/2AP−1/2

)
.

When the mask is approximately uniform random, SST is spectrally close to ρI and thus A
is close (in a spectral sense) to the Kronecker-structured approximation (102), which typically
clusters the eigenvalues of P−1A and yields small iteration counts.
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Complexity (avoiding any O(N) work). All costs below are expressed in terms of (n, r, q)
(and small mode sizes for forming Gram matrices), and no object of size N or M is ever formed.

Precomputation.

• Build ZΩ ∈ Rq×r from observed multi-indices: O(qr(d − 1)) multiplications (or O(qr) if
factor rows are accessed efficiently).

• Form Γ = ZTZ via (103): O
(∑

m̸=k nmr
2
)

to form each ATmAm plus O((d − 1)r2)
Hadamard products.

• Eigendecompositions: O(n3 + r3).

• Right-hand side b = vec(KH) with H = RTΩ Diag(t)ZΩ: O(qr + n2r).

Per PCG iteration.

• Two dense kernel multiplies (KX and KG): O(n2r) each, i.e. O(n2r) up to constants.

• Two observation-driven contractions (compute sℓ and scatter-add G): O(qr).

• Apply P−1 via (104) (two basis changes and diagonal scaling): O(n2r + nr2).

• Vector inner products and saxpys on Rnr: O(nr) (lower order).

Thus one PCG iteration costs
O
(
qr + n2r + nr2

)
,

and Tcg iterations cost
O
(
Tcg (qr + n2r + nr2)

)
.

This is substantially smaller than the O((nr)3) cost of a dense solve, and the method never
performs any computation of order N .
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