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Abstract

Like students facing hard exam questions, large language models sometimes guess when
uncertain, producing plausible yet incorrect statements instead of admitting uncertainty. Such
“hallucinations” persist even in state-of-the-art systems and undermine trust. We argue that
language models hallucinate because the training and evaluation procedures reward guessing over
acknowledging uncertainty, and we analyze the statistical causes of hallucinations in the modern
training pipeline. Hallucinations need not be mysterious—they originate simply as errors in binary
classification. If incorrect statements cannot be distinguished from facts, then hallucinations
in pretrained language models will arise through natural statistical pressures. We then argue
that hallucinations persist due to the way most evaluations are graded—language models are
optimized to be good test-takers, and guessing when uncertain improves test performance. This
“epidemic” of penalizing uncertain responses can only be addressed through a socio-technical
mitigation: modifying the scoring of existing benchmarks that are misaligned but dominate
leaderboards, rather than introducing additional hallucination evaluations. This change may
steer the field toward more trustworthy Al systems.

1 Introduction

Language models are known to produce overconfident, plausible falsehoods, which diminish their
utility. This error mode is known as “hallucination,” though it differs fundamentally from the
human perceptual experience. Despite significant progress, hallucinations continue to plague the
field, and are still present in the latest models (OpenAl 2025al). Consider the prompt:

What is Adam Tauman Kalai’s birthday? If you know, just respond with DD-MM.

On three separate attempts, a state-of-the-art open-source language mode]ﬂ output three incorrect
dates: “03-07”, “15-06”, and “01-01”, even though a response was requested only if known. The
correct date is in Autumn. Table [I] provides an example of more elaborate hallucinations.
Hallucinations are an important special case of errors produced by language models, which we
analyze more generally using computational learning theory (e.g., Kearns and Vazirani, 1994). We
consider general sets of errors £, an arbitrary subset of plausible strings X = £ UV, with the other
plausible strings V being called valid. We then analyze the statistical nature of these errors, and
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ChatGPT: Adam Tauman Kalai’s Ph.D. dissertation (completed in 2002 at CMU) is entitled:
(GPT-40) “Boosting, Online Algorithms, and Other Topics in Machine Learning.”

DeepSeek: “Algebraic Methods in Interactive Machine Learning”. .. at Harvard University in 2005.
Llama: “Efficient Algorithms for Learning and Playing Games”...in 2007 at MIT.

Table 1: Excerpts from responses to “What was the title of Adam Kalai’s dissertation?” from three
popular language models ] None generated the correct title or year (Kalai, [2001)).

apply the results for the type of errors of interest: plausible falsehoods called hallucinations. Our
formalism also includes the notion of a prompt to which a language model must respond.

The distribution of language is initially learned from a corpus of training examples, which
inevitably contains errors and half-truths. However, we show that even if the training data were
error-free, the objectives optimized during language model training would lead to errors being
generated. With realistic training data containing shades of error, one may expect even higher
error rates. Thus, our lower bounds on errors apply to more realistic settings, as in traditional
computational learning theory (Kearns and Vazirani, (1994).

Our error analysis is general yet has specific implications for hallucination. It applies broadly,
including to reasoning and search-and-retrieval language models, and the analysis does not rely
on properties of next-word prediction or Transformer-based neural networks. It only considers the
two stages of the modern training paradigm: pretraining and post-training, described below. For
hallucinations, taxonomies (Maynez et al., 2020; Ji et al., [2023) often further distinguish intrinsic
hallucinations that contradict the user’s prompt, such as:

How many Ds are in DEEPSEEK? If you know, just say the number with no commentary.

DeepSeek-V3 returned “2” or “3” in ten independent trials; Meta Al and Claude 3.7 Sonnetﬂ
performed similarly, including answers as large as “6” and “7”. Our theory also sheds light on
extrinsic hallucinations, which contradict the training data or external reality.

1.1 Errors caused by pretraining

During pretraining, a base model learns the distribution of language in a large text corpus. We
show that, even with error-free training data, the statistical objective minimized during pretraining
would lead to a language model that generates errors. Proving this is non-trivial because some
models make no errors, such as one that always outputs “I don’t know” (IDK) or one that simply
memorizes and reproduces an error-free corpus. Our analysis explains what types of errors should
be expected after pretraining.

To do this, we draw a connection to binary classification. Consider questions of the form “Is this
a valid language model output?” Generating valid outputs is in some sense harder than answering
these Yes/No questions, because generation implicitly requires answering “Is this valid” about each
candidate response. Formally, we consider the Is-It-Valid (IIV) binary classification problem which
has a training set consisting of a large number of responses, each labeled either as valid (+) or error

®https://meta.ai and https://claude.ai, accessed May 9, 2025.
3The models were freely accessed 2025-05-09 via chatgpt . com, the DeepSeck app (R1, [DeepSeck-Al et al., [2025)),
and huggingface. co| (Llama-4-Scout-17B-16E-Instruct), respectively. None of the models searched the Web.
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Figure 1: Is-It-Valid requires learning to identify valid generations using labeled + examples (left).
Classifiers (dashed lines) may be accurate on certain concepts like spelling (top) but errors often
arise due to poor models (middle) or arbitrary facts when there is no pattern in the data (bottom).

(=), as illustrated in Fig. For this supervised learning problem, both train and test data are
50/50 mixtures of valid examples labeled as + (i.e., the pretraining data since we assume it is valid)
and uniformly random errors from £ labeled as —. We then show how any language model can be
used as an IIV classifier. This in turn allows us to establish a mathematical relationship between
generative errors (such as hallucinations) and IIV misclassification rate:

(generative error rate) 2 2 - (IIV misclassification rate).

Language models avoid many types of errors such as spelling mistakes, and not all errors are
hallucinations. The reduction from IIV misclassification to generation illuminates the statistical
nature of generative errors. The analysis shows how pretraining directly contributes to errors.
Furthermore, it shows that the same statistical factors contributing to errors in binary classification
also cause language model errors. Decades of research has shed light on the multifaceted nature
of misclassification errors (Domingos, [2012). Fig. 1| (right) illustrates these factors visually: top,
separable data classified accurately; middle, a poor model of a linear separator for a circular region;
and bottom, no succinct pattern. Section analyzes several factors, including the following stylized
setting with epistemic uncertainty, when there is no pattern in the data.

This reduction ties together earlier work which covered different types of facts. For example,
Kalai and Vempala| (2024)) considered a special case of arbitrary facts where there is no learnable
pattern in the data, like the earlier birthday hallucination example. We show how the IV reduction
covers this case and recovers their bound that the hallucination rate, after pretraining, should be at
least the fraction of training facts that appear once. For instance, if 20% of birthday facts appear
exactly once in the pretraining data, then one expects base models to hallucinate on at least 20% of
birthday facts. In fact, our analysis strengthens their result to include prompts and IDK responses,
both essential components of hallucination.

1.2 Why hallucinations survive post-training

The second stage, post-training, refines the base model, often with a goal of reducing hallucinations.
While the analysis of pretraining covered errors more generally, our analysis of post-training focuses
on why overconfident hallucinations are generated rather than omitting information or expressing
uncertainty such as IDK. We offer a socio-technical explanation for the persistence of hallucinations
after post-training and discuss how the field can suppress them.



As an analogy, consider the following context where humans also occasionally fabricate plausible-
sounding information. When uncertain, students may guess on multiple-choice exams and even
bluff on written exams, submitting plausible answers in which they have little confidence. Language
models are evaluated by similar tests. In both settings, guessing when unsure maximizes expected
score under a binary 0-1 scheme that awards 1 point for a correct answer and none for blanks or
IDKs. Bluffs are often overconfident and specific, such as “September 30” rather than “Sometime
in autumn” for a question about a date. Many language-model benchmarks mirror standardized
human exams, using binary metrics such as accuracy or pass-rate. Optimizing models for these
benchmarks may therefore foster hallucinations. Humans learn the value of expressing uncertainty
outside of school, in the school of hard knocks. On the other hand, language models are primarily
evaluated using exams that penalize uncertainty. Therefore, they are always in “test-taking” mode.
Put simply, most evaluations are not aligned.

We are not the first to realize that binary grading does not measure hallucination. However,
prior work on hallucination evaluation has generally sought after the elusive “perfect hallucination
eval” In Section [4, we argue that this is insufficient. We observe that existing primary evaluations
overwhelmingly penalize uncertainty, and thus the root problem is the abundance of evaluations
that are not aligned. Suppose Model A is an aligned model that correctly signals uncertainty and
never hallucinates. Let Model B be similar to Model A except that it never indicates uncertainty
and always “guesses” when unsure. Model B will outperform A under 0-1 scoring, the basis of most
current benchmarks. This creates an “epidemic” of penalizing uncertainty and abstention, which
we argue that a small fraction of hallucination evaluations won’t suffice. The numerous primary
evaluations must be adjusted to stop penalizing abstentions when uncertain.

Contributions. We identify the main statistical drivers of hallucinations, from their pretraining
origins to their post-training persistence. A novel connection between supervised and unsupervised
learning demystifies their origin, even when training data contain IDK. The persistence of hallucina-
tions, despite extensive work on the problem, is explained by the recognition that hallucination-like
guessing is rewarded by most primary evaluations. We discuss statistically rigorous modifications to
existing evaluations that pave the way to effective mitigation.

2 Related work

To the best of our knowledge, the reduction from supervised learning (binary classification) to
unsupervised learning (density estimation or self-supervised learning) presented in this work is
novel. The general method of reduction between learning problems, however, is a well-established
technique for demonstrating that one problem is at least as hard as another (see, e.g., Beygelzimer
et al., 2016).

A number of surveys and studies have explored the underlying causes of hallucination in
language models. Sun et al.| (2025) cite factors such as model overconfidence Yin et al.| (2023),
decoding randomness |Lee et al.| (2022), snowballing effects [Zhang et al. (2023)), long-tailed training
samples [Sun et al.| (2023), misleading alignment training Wei et al.| (2023), spurious correlations |Li
et al.| (2022), exposure bias Bengio et al.| (2015), the reversal curse Berglund et al.| (2024)), and
context hijacking |Jeong (2024). Analogous sources of error have long been studied in broader
machine learning and statistical settings (Russell and Norvig, [2020).

The most closely related theoretical work is by [Kalai and Vempala| (2024)), which we show is



a special case of our reduction. They connected the Good-Turing missing mass estimates (Good,
1953)) to hallucinations, which inspired Theorem [3| However, that work does not address uncertainty
expressions (e.g., IDK), connections to supervised learning, post-training modifications, and their
model did not include prompts. [Hanneke et al.| (2018)) analyze an interactive learning algorithm
that queries a validity oracle (e.g., a human) to agnostically train a language model that minimizes
hallucinations. Their method is statistically efficient, requiring a reasonable amount of data, but
not computationally efficient. Other recent theoretical studies (Kalavasis et al., 2025; Kleinberg and
Mullainathan| 2024) formalize an inherent trade-off between consistency (avoiding invalid outputs)
and breadth (generating diverse, linguistically rich content). These works demonstrate that for broad
classes of languages, any model that generalizes beyond its training data will either hallucinate
invalid outputs or suffer mode collapse, failing to produce the full range of valid responses.

Several post-training techniques—such as reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022), reinforcement learning from Al feedback (RLAIF) (Bai et al., [2022), and direct
preference optimization (DPO) (Rafailov et al., 2023)—have been shown to reduce hallucinations,
including conspiracy theories and common misconceptions. (Gekhman et al.[ (2024) show that simple
fine-tuning on novel information can initially decrease hallucination rates, only for them to later
increase. Further, it has been demonstrated that both natural language queries and internal model
activations encode predictive signals about factual accuracy and model uncertainty (e.g., Kadavath
et al., 2022)). As discussed in our introduction, inconsistencies in a model’s answers to semantically
related queries can also be leveraged to detect or mitigate hallucinations (Manakul et al., [2023; Xue
et al.l 2025; |Agrawal et al., 2024).

Numerous other methods have proven effective in mitigating hallucinations; see, for example,
the surveys by |Ji et al. (2023)) and [Tian et al. (2024). In terms of evaluation, several comprehensive
benchmarks and leaderboards have recently been introduced (e.g., Bang et al., |2025; [Hong et al.,
2024)). However, relatively little work has examined barriers to their adoption. The 2025 AI Index
report (Maslej et al., 2025), for instance, notes that hallucination benchmarks “have struggled to
gain traction within the AI community.”

Beyond binary expressions of certainty, more nuanced linguistic constructions have been proposed
to communicate gradations of uncertainty (Mielke et al., 2022} |Lin et al., 2022a; Damani et al., 2025)).
Additionally, the field of pragmatics—which investigates how meaning is shaped by context—has
increasing relevance for understanding and improving how language models convey information (Ma

et al., 2025).

3 Pretraining Errors

Pretraining produces a base language model p that approximates the distribution text drawn from
its training distribution p. This is the classic “density estimation” problem in unsupervised learning,
where a density is simply a probability distribution over data. In the case of language models, the
distribution is over text or multimodal inputs if included.

The key challenge in proving that base models err is that many language models do not err.
The degenerate model which always outputs IDK also avoids errors (assuming IDK is not an error).
Similarly, assuming error-free training data, the trivial base model which regurgitates text from
a random training example also does not err. However, these two language models fail at density
estimation, the basic goal of statistical language modeling as defined below. Errors are also avoided
by the optimal base model p = p which matches the training distribution, but this model would



require prohibitively large training data. Nonetheless, we show that well-trained base models should
still generate certain types of errors.

Our analysis shows that generating valid outputs (i.e., avoiding errors) is harder than classifying
output validity. This reduction enables us to apply the lens of computational learning theory,
where errors are expected and understood, to error mechanisms in generative models. A language
model is initially defined as a probability distribution over text and later prompts are incorporated
(Section ; both settings share the same intuition. Examples without prompts include birthday
statements such as those of Fig. [l while a prompted model might be queried for a specific individual’s
birthday.

Not merely autocomplete. Our analysis applies to general density estimation and not only
“next-word predictors” even though many language models are trained using self-supervised learning
to predict each word based on the previous words. It is tempting to attribute hallucinations to
poorly chosen prefixes (e.g., “Adam Kalai was born on”) for which the language model cannot
provide valid completions. However, from a purely statistical perspective, ignoring computation,
the autocomplete Viewﬂ of language models is no more significant than the fact that any human
speaker produces one word at a time. Our analysis suggests that errors arise from the very fact that
the models are being fit to the underlying language distribution, though the specific architecture
can introduce additional errors.

3.1 The reduction without prompts

Without prompts, a base model p is a probability distribution over a set X'. As discussed earlier,
each example r € X represents a “plausible” string, e.g., a documentﬂ The examples X = £ UV
are partitioned into errors £ and valid examples V, for nonempty disjoint sets £,)V. The error rate
of base model p is denoted by,
err :=p(€) = Prfz € €] (1)
zrp

Training data are assumed to come from a noiseless training distribution p(X), i.e., where p(€) = 0.
As discussed, with noisy training data and partly correct statements, one may expect even higher
error rates than our lower bounds.

We now formalize the IIV binary-classification problem, introduced in the introduction. IIV
is specified by the target function f : X — {—,+} to be learned (membership in V) and the
distribution D over examples X (a 50/50 mix of samples from p and uniformly random errors):

2 if if
D(x) = p(x)/ ifzeV, and f(z) = + ifzeV,
1/21€] ifxeé, — ifzxeé&.

Our analysis lower bounds the error rate err = p(€) in terms of IIV’s aforementioned misclassifi-
cation rate erripy:

+ ifpla) > 1/]€],

— ifp(x) < 1/|€]. @)

elTjiy 1= IE% {f(;n) # f(w)} , where f(z) := {

“Mathematically, any distribution p induces a distribution of completions p(wiwit1 ... | wiws ... w;_1) for every
prefix of words w; ...w;—1 in its support.
5We assume that X is finite for simplicity. See Section [5|for further discussion of errors and plausibility.



The base model is thus used as an IIV classifier, in our reduction, by thresholding the base model’s
probability at a certain threshold 1/|€|. Note that such probabilities p(x) can generally be efficiently
computed for base models (though efficient computation is not necessary for the lower-bounds to be
meaningful).

Corollary 1. For any training distribution p such that p(V) = 1 and any base model p,
err > 2 - ertiiy ——| — 9,

for err, erryiy from Egs. and (2), and § := [p(A) — p(A)| for A:={x € X | p(z) > 1/||}.

Since this relationship holds for any base model p, it immediately implies that all base models
will err on inherently unlearnable ITV facts (such as the birthdays absent from the training data)
where errjiy is necessarily large, and where § and |V|/|€]| are small (e.g., for each person there are
364 times more incorrect birthday claims in £ than correct ones in V, plus IDK). The corollary
above follows immediately as a special case of Theorem [1]| which covers the more general case with
prompts. Theorem [2] later uses this general result to provide lower-bounds for an intuitive special
case. Theorems [3{ and {4] address small |£], e.g., || = 1 for True/False questions. The constant 2 in
the above bound is relatively tight: for large |£| and small §, errj;, could be near 1/2 for unlearnable
concepts while err < 1. Corollary (1| also implies that errji, < 1/2.

Hallucination errors. To apply the error analysis to hallucinations, one may consider £ to be
the set of plausible generations containing (one or more) plausible falsehoods. Note that a common
alternate definition of hallucinations is as generations that are not grounded in the training data (or
prompt). Fortunately, the lower-bound above also applies to this notion because we have assumed
only valid training data, i.e., a generated factual error cannot be grounded in factually correct
training data.

Calibration. We now argue why |d] is a measure of (mis)calibration that is small after pretraining.
Note that without any knowledge of the language, one can achieve § = 0 by simply taking the
uniform distribution p(z) = 1/|X|, and thus § = 0 does not require p = p. An auditor can trivially
estimate 0 by comparing the fractions of responses satisfying p(z) > 1/|&| versus p(&) > 1/|€| using
sets of training samples x ~ p and synthetic generations & ~ p. Inspired by |[Dawid (1982), one may
think of an analogy to a weather forecaster predicting the probability of rain each day. A minimal
calibration requirement would be whether their average prediction matched the average fraction
of rain. One could also require these two to match on days when the forecast was > ¢ for some
threshold ¢ € [0, 1]. |Dawid, (1982)) introduced the more stringent requirement that for every ¢t € [0, 1],
among days on which the prediction is ¢ it rains about a t fraction of the time.

Here is a particularly simple justification for why ¢ is typically small for the standard pretraining
cross-entropy objective,

L) = E |~ log ()] 3)

Consider rescaling the probabilities of the positively-labeled examples by a factor s > 0 and
normalizing:
-px) if px) > 1/|€],

Ba(e) o {ﬁ(w) it pla) < 1/]€].
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Figure 2: GPT-4 calibration histograms before (left) and after (right) reinforcement learning
(OpenAl, 2023a, Figure 8, reprinted with permission). These plots are for multiple-choice queries
where the plausible responses are simply A, B, C, or D. The pretrained model is well calibrated.

Then, a simple calculation shows that § is the magnitude of the derivative of the loss with respect
to the scaling factor s, evaluated at s = 1:

d . .
5= | 3oL

s=1

If 6 # 0, then rescaling by some s # 1 would reduce the loss, so the loss is not at a local minimum.
For any class of language models powerful enough to approximate such simple rescaling, local
optimization should yield small §. Note that §, being defined at a single threshold ¢t = 1/|£] is
weaker than notions such as Expected Calibration Error (ECE) which integrate over thresholds ¢.

Hallucinations are inevitable only for base models. Many have argued that hallucinations
are inevitable (Jones, [2025; Leffer] [2024; Xu et al., [2024). However, a non-hallucinating model
could be easily created, using a question-answer database and a calculator, which answers a fixed
set of questions such as “What is the chemical symbol for gold?” and well-formed mathematical
calculations such as “3 4+ 8”, and otherwise outputs IDK. Moreover, the error lower-bound of
Corollary [I] implies that language models which do not err must not be calibrated, i.e., § must be
large. As our derivations show, calibration—and, hence, errors—is a natural consequence of the
standard cross-entropy objective. Indeed, empirical studies (Fig. [2) show that base models are often
found to be calibrated, in contrast to post-trained models which may deviate from cross-entropy in
favor of reinforcement learning.

3.2 The reduction with prompts

Henceforth, we generalize the setting of Section to include prompts (contexts) ¢ € C drawn
from a prompt distribution p. Each example x = (¢,r) now consists of a prompt ¢ and plausible
response r. The analysis above corresponds to the special case in which p assigns probability 1



to the empty prompt. For a given prompt ¢ € C, let V, := {r | (¢,r) € V} be the valid responses
and & := {r | (¢,r) € £} be the erroneous responses. The training distribution and base model
are now conditional response distributions p(r | ¢), p(r | ¢). For notational convenience, we extend
these to joint distributions on X' by p(c,r) := u(c)p(r | ¢) and p(e,r) := pu(c)p(r | ¢), so that still
err := p(E) = X pyee #()P(r | ¢) and p(€) = 0.

Training distribution examples therefore correspond to valid “dialogues,” as in the case of
distillation (Chiang et al. [2023; |Anand et al., 2023). Although assuming that the training data
contain model dialogues drawn from the same prompt distribution is unrealistic, even higher error
rates may be expected when the assumption fails. The IIV problem with prompts has the same
target function f(z) := + iff x € V, but the generalized distribution D selects, with equal probability
either  ~ p or & = (¢, r) for ¢ ~  and uniformly random r € &.. Finally, the classifier f(c,r) is
now + iff p(r | ¢) > 1/ min.|E.|. Corollary |1|is thus clearly a special case of,

Theorem 1. For any training distribution p such that p(V) =1 and any base model p,

maxc [Ve|

err > 2 - ertriy — 0,

min, |&|
where § := |p(A) — p(A)| for A:={(c,r) € X | p(r | ¢) > 1/ min |E|}.

Generalizing the rescaling ps(r | ¢) (normalizing per prompt, still with single parameter s) again
justifies a small § = ‘d%ﬁ(ﬁs)]s:ﬂ, now for L(p) 1= 3¢ yex —p(c) logp(r | ).

3.3 Error factors for base models

Decades of research have elucidated the statistical factors contributing to misclassifications (errors
in binary classification). We can leverage this prior understanding to enumerate factors behind
hallucinations and other generative errors, including: statistical complexity, as in birthdays (Sec-
tion ; poor models, as in letter counting (Section ; and additional factors like GIGO, as
in conspiracy theories (Section .

3.3.1 Arbitrary-fact hallucinations

When there is no succinct pattern that explains the target function, there is epistemic uncertainty
meaning that necessary knowledge is absent from the training data. The Vapnik-Chervonenkis
dimension (Vapnik and Chervonenkis, [1971)) VC(F) characterizes the worst-case number of examples
needed to learn a family F of functions f : X — {—,+}, with high probability. Families with
high VC(F) dimension may require prohibitively many samples to learn. We consider a natural
special case of high VC dimension: random arbitrary facts. In particular, this section considers
valid responses (other than IDK) which are random and independent across prompts.

Definition 1 (Arbitrary Facts). The following are fized: an arbitrary prompt distribution u(c), an
IDK response and, for each prompt c: a response set R. and a probability of answering a. € [0, 1].
Independently for each c, a single correct answer a. € R, is chosen uniformly at random. Finally,
plac | ¢) = ae and p(IDK | ¢) =1 — a for each ¢ € C. Thus & = R, \ {ac} and V. = {a.,IDK}.

It is assumed that there is a single way to write any given fact, which can be done as in the lead
birthday example where the format was specified. However, we again note that one may expect even



more hallucinations with multiple ways to state each fact. In the case of fixed-format birthdays,
|€:] = 364 and notable people whose birthdays are discussed often would have high u(c). Notable
birthdays like Einstein’s appear multiple times, whereas others may only occur once, e.g., in an
obituary. Large language models seldom err on frequently referenced facts, e.g., Einstein’s birthday
or dissertation title.

Our lower-bound for hallucinations is based on the fraction of prompts appearing just once in
the training data, ignoring IDKs.

Definition 2 (Singleton rate). A prompt ¢ € C is a singleton if it appears exactly once in the N
training data <(c(i),r(i))>£i1 without abstention, i.e., |{i : ¢ = cAr(® £IDK}| = 1. Let S C C
denote the set of singletons and

oSl

N

denote the fraction of training singletons.

The singleton rate builds on Alan Turing’s elegant “missing-mass” estimator (Good, 1953), which
gauges how much probability is still assigned to outcomes that have not yet appeared in a sample
from a distribution. Concretely, Turing’s estimate of the unseen-event probability is the fraction of
samples appearing exactly once. Intuitively, singletons act as a proxy for how many more novel
outcomes you might encounter in further sampling, so their empirical share becomes the estimate
for the entire “missing” portion of the distribution. We now state our bounds for Arbitrary Facts.

Theorem 2 (Arbitrary Facts). In the Arbitrary Facts model, any algorithm which takes N training
samples and outputs p satisfies, with probability > 99% over @ = (ac)cec and the N training examples:

2 B 35+6InN B
min, |E,| VN

Moreover, there is an efficient algorithm outputting calibrated p (6 = 0) that with probability > 99%,

J.

err > sr —

ST n 13
max.|E|+1 VN’

err < sr—

An earlier version of this paper presented a related theorem that omitted prompts and abstentions
(Kalai and Vempala, [2024). The proof is in Appendix [B| Follow-up work by Miao and Kearns (2025)
provides an empirical study of hallucinations, singleton rate, and calibration.

3.3.2 Poor models

Misclassifications can also arise when the underlying model is poor because: (a) the model family
cannot represent the concept well, such as linear separators approximating circular regions, or (b)
the model family is sufficiently expressive but the model itself is not a good fit. Agnostic Learning
(Kearns et al. [1994)) addresses (a) by defining the minimal error rate of any classifier in a given
family G of classifiers g : X — {—,+}:

opt(¢) := min Pr [g(z) # f(x)] € [0,1].

geG z~D

10



If opt(G) is large, then any classifier in G will have high misclassification rate. In our case, given
a language model py parameterized by 6 € O, consider the family of thresholded-language-model
classifiers:

+ if pe(r | c) > t,
— if pe(r ‘ c) <t.

Gi= (g, | 0€O.1€0,1]}, where gy,(c.r) = {

It follows immediately from Theorem [I] that

~ maxc V|

err > 2 - opt(G) J.

min, |&|
When exactly one correct response exists per context (i.e., standard multiple choice, without IDK),
the calibration term can be removed and bounds can be achieved even for C' = 2 choices.

Theorem 3 (Pure multiple-choice). Suppose |V.| =1 for all c € C and let C = min. |E| + 1 be the
number of choices. Then,

err > 2 (1 — (1}) -opt(9)

To illustrate, consider the classic trigram language model where each word was predicted based
only on the prior two words, i.e., a context window of just two words. Trigram models were
dominant in the 1980s and 1990s. Trigram models, however, regularly output ungrammatical
sentences. Consider the following prompts and responses:

c1 = She lost it and was completely out of ... ¢ = He lost it and was completely out of. ..

r1 = her mind. r2 = his mind.
I—Iere7 ‘/Cl = _Ec2 = {7’1} and ‘/02 = EC1 = {TQ}-

Corollary 2. Let u be uniform over {c1,co}. Then any trigram model must have a generation error
rate of at least 1/2.

This follows from Theorem [3{ because C' = 2 and opt(G) = 1/2 for trigram models. The proofs of
Theorem [3 and Corollary [2] are in Appendix [C] Although n-gram models can capture longer-range
dependencies for larger n, data requirements scale exponentially in n.

We now revisit the letter-counting example from the introduction. To see that this is a poor
model issue, note that the DeepSeek-R1 reasoning model reliably counts letters, e.g., producing a
377-chain-of-thought that includes:

Let me spell it out: D-E-E-P-S-E-E-K.
First letter: D — that’s one D. Second letter: E — not D. Third letter: E — not D. ..
So, the number of Ds is 1.

Assuming similar training data, this suggests that R1 is a better model for the task than the DeepSeek-
V3 model. One representational challenge that reasoning overcomes is that modern language models
represent prompts by tokens, e.g., D/EEP/SEE/K, rather than individual characters (DeepSeek-Al
et al., 2025).
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3.4 Additional factors

Errors may occur due to a combination of multiple factors, including the ones discussed above and
several others. Here, we highlight a few.

e« Computational Hardness. No algorithm run on a classical computer, even an Al with
superhuman capabilities, can violate the laws of computational complexity theory. Indeed,
AT systems have been found to err on computationally hard problems (Xu et al., |2024)).
Observation 2 of Appendix [D]illustrates how Theorem [I] applies to intractable queries of the
form “What is the decryption of ¢?” and IDK is a valid answer.

o Distribution shift. A well-known challenge in binary classification is that training and test
data distributions often diverge (Quinonero-Candela et al., [2009; Moreno-Torres et al., 2012).
Analogously, errors in language models often stem from out-of-distribution (OOD) prompts
that differ substantially from the training distribution. A question such as, “What’s heavier, a
pound of feathers or a pound of lead?” may be unlikely in the training data and may induce
erroneous answers in certain models. Similarly, distribution shift could be a factor in the
letter-counting example above, though the fact that reasoning models correctly count letters
suggests that the poor models may be a greater factor.

¢ GIGO: Garbage in, Garbage out. Large training corpora often contain numerous factual
errors, which may be replicated by base models. The statistical similarity of GIGO for both
classification and pretraining is self evident, and hence we do not provide a formal treatment.
However, it is important to recognize GIGO among statistical factors, as language models
have been shown to replicate errors from training data (Lin et al., [2022b; |Levy et al., |2021;
Alber et al. 2025).

GIGO also offers a natural segue to the topic of post-training, which decreases certain GIGO
errors, such as common misconceptions and conspiracy theories (Ouyang et al., |2022; |(OpenAl|,
2023a; |Costello et al., [2024). The next section explains why some hallucinations persist—and may
even be exacerbated—Dby current post-training pipelines.

4 Post-training and hallucination

Post-training should shift the model from one which is trained like an autocomplete model to one
which does not output confident falsehoods (except when appropriate, e.g., when asked to produce
fiction). However, we claim that further reduction of hallucinations is an uphill battle, since existing
benchmarks and leaderboards reinforce certain types of hallucination. We therefore discuss how
to stop this reinforcement. This is a socio-technical problem in the sense that, not only do the
existing evaluations need to be modified, but these changes need to be adopted in the influential
leaderboards.

4.1 How evaluations reinforce hallucination

Binary evaluations of language models impose a false right-wrong dichotomy, award no credit
to answers that express uncertainty, omit dubious details, or request clarification. Such metrics,
including accuracy and pass rate, remain the field’s prevailing norm, as argued below. Under binary
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grading, abstaining is strictly sub-optimal. IDK-type responses are maximally penalized while an
overconfident “best guess” is optimal. The motivation combines two desirable factors: (a) the rate
of accuracy among what is output by the language model, and (b) how comprehensive responses
are. However, weighing (a) more than (b) is important for reducing hallucinations.

Formally, for any given question in the form of a prompt ¢, denote the set of plausible responses
(valid or error) by R. := {r | (¢,r) € X}. Further, suppose there is a set of plausible abstention
responses A. C R, (e.g., IDK). A grader g. : R. — R is said to be binary if {g.(r) | r € R.} = {0,1}
and g.(r) = 0 for all r € A.. A problem is defined by (¢, R¢, A¢, g.) where the test-taker knows
¢, R¢, Ac. We assume that the test-taker knows that the rubric is binary but is not told the correct
answers, where g.(r) = 1. The test-taker’s beliefs about the correct answer can be viewed as a
posterior distribution p. over binary g.’s. For any such beliefs, the optimal response is not to
abstain.

Observation 1. Let ¢ be a prompt. For any distribution p. over binary graders, the optimal
response(s) are not abstentions, i.e.,

A.Nargmax E [g.(r)] = 0.
r€R. 9ePe

Although the proof is trivial (see Appendix , Observation |1| suggests that existing evaluations
may need to be modified. Table [2] summarizes the short meta-evaluation analysis in Appendix [F]
finding that the vast majority of popular evaluations have binary grading. Therefore, additional
hallucination evaluations may not suffice when the primary evaluations penalize honestly reporting
confidence and uncertainty. This does not diminish existing work on hallucination evaluations but
rather points out that even the ideal hallucination evaluation and ideal post-training methodology,
yielding honest reports of uncertainty, may still be drowned out because of inferior performance on
the vast majority of the existing evaluations.

4.2 Explicit confidence targets

Human tests are similarly mostly binary, and it has been recognized that they also reward overcon-
fident bluffing. Of course, exams are only a small component of human learning, e.g., fabricating
birthdays will quickly result in embarrassment. Nonetheless, some standardized national exams
operate or have operated using penalties for incorrect answers (or equivalently partial credit for
abstaining), including Indian JEE, NEET, and GATE exams; AMC tests from the Mathematical
Association of America; and US standardized SAT, AP, and GRE tests in earlier years. Importantly,
the grading system is clearly stated in the instructions, and test takers are often aware of the
confidence threshold beyond which it makes sense to make their best guess.

Similarly, we propose evaluations explicitly state confidence targets in their instructions, within
the prompt (or system message). For example, one could append a statement like the following to
each question:

Answer only if you are > ¢ confident, since mistakes are penalized ¢/(1 — t) points, while
correct answers receive 1 point, and an answer of “I don’t know” receives 0 points.

There are several natural values of ¢ including ¢ = 0.5 (penalty 1), t = 0.75 (penalty 2), and ¢t = 0.9
(penalty 9). A threshold of t = 0 corresponds to binary grading and could be described by, e.g.,
“Make your best guess even if you are unsure, as if you were taking an exam.” A simple calculation
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Table 2: Summary of evaluation benchmarks analyzed in this work and their treatment of
abstentions. “Binary grading” indicates that the primary metric is a strict correct/incorrect
accuracy; “IDK credit” denotes whether abstentions can earn any credit.

Benchmark Scoring method Binary grading IDK credit
GPQA Multiple-choice accuracy Yes None
MMLU-Pro Multiple-choice accuracy Yes None
IFEval Programmatic instruction verification Yes? None
Omni-MATH Equivalence grading* Yes None
WildBench LM-graded rubric* No Partial®
BBH Multiple-choice / exact-match Yes None
MATH (L5 split) Equivalence grading* Yes None
MuSR Multiple-choice accuracy Yes None
SWE-bench Patch passes unit tests Yes None
HLE Multiple-choice / equivalence grading® Yes None

* Grading is performed using language models, hence incorrect bluffs may occasionally be scored as correct.

@ IFEval aggregates several binary rubric sub-scores into a composite score.

> Grading rubric (1-10 scale) suggests that IDK may score lower than “fair” responses with hallucination,
reinforcing hallucination.

shows that the expected score of offering an answer beats IDK (score 0) iff its confidence (i.e.,
probability of being correct) is > .

Such penalties have been well-studied within hallucination research (Ji et al., 2023). However,
we suggest two subtle variations which have statistical ramifications. First, we propose making
the confidence threshold explicit in the instructions, whereas the prior work has largely omitted
mentioning the confidence targets or penalties in the instructions. (A notable exception is the work
of [Wu et al.| (2025) who introduce “risk-informing” prompts with explicit penalties.) The ideal
penalty might reflect likely real-world harms, but that is impractical as it is specific to the problem,
the target application, and the user group. Without transparent specification within the instructions,
it would be difficult to achieve consensus among language-model creators on the correct thresholds.
Similarly, students might bicker that grading is unfair given instructions that there is an unspecified
penalty for errors. Instead, specifying confidence thresholds explicitly in each problem’s instructions
supports objective grading even if the specific thresholds chosen are somewhat arbitrary or even
random. A single model may be best across all thresholds, if the threshold is explicit. However, if
the threshold is not stated, then there is an inherent tradeoff, and no single model will be best in
general (other than one that is always correct).

Second, we suggest incorporating confidence targets into existing mainstream evaluations, such
as the popular SWE-bench (Jimenez et al., 2024) which involves binary grading of software patches,
while the majority of prior work has introduced implicit error penalties in bespoke hallucination
evaluations. Merely adding evaluations with implicit error penalties faces the aforementioned
accuracy-error tradeoff. On the other hand, incorporating confidence targets into the established
evaluations, already in use, reduces the penalty for appropriate expressions of uncertainty. It may
thus amplify the effectiveness of hallucination-specific evaluations.

With explicit confidence targets, there is one behavior which is simultaneously optimal for all
targets—outputting IDK among examples where its correctness probability is greater than the
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target. Let us refer to this as behavioral calibration—rather than requiring the model to output a
probabilistic confidence (Lin et al., [2022a)), it must formulate the most useful response in which
it is at least t confident. Behavioral calibration can be audited by comparing accuracy and error
rates across thresholds, and circumvents the problem that there may be exponentially many ways to
phrase correct responses (Farquhar et al} |2024). Existing models may or may not exhibit behavioral
calibration, but it may prove useful as an objective evaluation.

5 Discussion and limitations

It is difficult for the field to agree upon how to define, evaluate and reduce hallucinations due to
their multifaceted nature. A statistical framework must prioritize certain aspects and omit others,
for simplicity. Several notes are in order about the extent and limitations of the framework used
herein.

Plausibility and nonsense. A hallucination is a plausible falsehood, and by considering only
plausible strings X', our analysis ignores the possibility of generating nonsensical strings (which
state-of-the-art language models rarely generate). However, the statement and proof of Theorem
hold with the modified definitions of nonsensical examples N with partition X = N UE UV,
err := p(NUE), D(N) =0, and the assumption that p(V) = 1.

Open-ended generations. For simplicity, the examples presented in this paper are oriented
towards a single factual question. However, hallucinations often arise for open-ended prompts,
such as “Write a biography about....” This can be fit into our framework by defining a response
containing one or more falsehoods to be an error. However, in such a case it would be natural to
consider degrees of hallucination depending on how many errors there are.

Search (and reasoning) are not panaceas. A number of studies have shown how language
models augmented with search or Retrieval-Augmented Generation (RAG) reduce hallucinations
(Lewis et al., 2020; Shuster et al., 2021; Nakano et al., [2021; |[Zhang and Zhang, 2025). However,
Observation [1| holds for arbitrary language models, including those with RAG. In particular, the
binary grading system itself still rewards guessing whenever search fails to yield a confident answer.
Moreover, search may not help with miscalculations such as in the letter-counting example, or other
intrinsic hallucinations.

Latent context. Some errors cannot be judged by the prompt and response alone. For example,
suppose a user asks a question about phones and the language model provides a response about
cellphones, but the question was intended to be about land lines. Such ambiguities do not fit our
error definition which does not depend on context external to the prompt and response. It would be
interesting to extend the model to allow for “hidden context” that are not part of the prompt given
to the language model, but which could be used for judging errors, relating to aleatoric uncertainty.

A false trichotomy. Our formalism does not distinguish between errors of different magnitudes or
degrees of uncertainty. Clearly, the correct/incorrect/IDK categories are also incomplete. Although
the statistical ideal might be to score each evaluation just as we would like to score the language model
in the downstream application, explicit confidence targets offer a practical, objective modification
to mainstream evaluations, and a false trichotomy may at least offer an IDK option unlike a false
dichotomy.
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Beyond IDK. There are numerous ways to signal uncertainty, such as hedging, omitting details,
and asking questions. Ultimately language models may adhere to confidence notions such as
linguistic calibration (Mielke et al., 2022; Damani et al., 2025). However, the pragmatic phenomena
of language (Austin, [1962; Grice, [1975) are nuanced. For example, while there are instances where
it may be useful for language models to explicitly state probabilistic confidence estimates (Lin et al.
2022a)), this can also lead to unnatural utterances, such as, “I'm 1/365 certain that Kalai’s birthday
is March 7th.” The present paper focuses on the statistical factors regarding the top-level decision
of what is said.

6 Conclusions

This paper demystifies hallucinations in modern language models, from their origin during pretraining
to their persistence through post-training. In pretraining, we show that generative errors parallel
misclassifications in supervised learning, which are not mysterious, and naturally arise due to the
minimization of cross-entropy loss.

Many language model shortcomings can be captured by a single evaluation. For example, overuse
of the opener “Certainly” can be addressed by a single “Certainly” eval (Amodei and Fridman),
2024) because starting responses with “Certainly” does not significantly impact other evaluations.
In contrast, we argue that the majority of mainstream evaluations reward hallucinatory behavior.
Simple modifications of mainstream evaluations can realign incentives, rewarding appropriate
expressions of uncertainty rather than penalizing them. This can remove barriers to the suppression
of hallucinations, and open the door to future work on nuanced language models, e.g., with richer
pragmatic competence (Ma et al.l 2025).
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A  Proof of the main theorem

We now prove the main theorem.

Proof of Theorem[]. Let K := min.cc |E| and k := max.cc |V,|. Also, recall that § = [p(A) —p(A)|
which can equivalently be written as § = [p(B) — p(B)|, where A, B denote responses that are above
and below threshold:
A=A{(e,r) e X [p(r]c) >1/K} (4)
Bi={(c,;r) € X | plr | &) < 1/K}. 5)

Partition the hallucination and misclassification rates into above and below threshold rates:

err = p(A\ V) +p(B\ V)
ertijy = D(A\ V) + D(BNVY).
Above the threshold, misclassifications D(A\ V) are the sum of D(c,r) only over (¢,r) € A such

that r € £&.—each contributing D(c,r) = pu(c)/2|E| < p(c)/2K. But each such misclassification also
contributes pu(c)p(r | ¢) > u(c)/K to hallucinations above the threshold p(A \ V). Hence,

P(A\YV) > 2D(A\ V)

Thus, it remains only to show that below the threshold:

HB\V) > 2D(BAY) ~ & 5 (6)

By definition, 2D(BNV) = p(BNV) = p(B). Also, there are |V.| < k valid responses for each c,
each one in B having p(r | ¢) <1/K,so p(BNV) <> .p(c)k/K = k/K. Hence,

2D(BNYV) =p(B\V) =p(B) = p(B\V)
p(B) = (p(B) —p(BNYV))
4 N

k
< —.
V) S8+

IN

+p(B

This is equivalent to Eq. @, as needed. O

B Arbitrary-facts analysis

We begin by reviewing the Good-Turing (GT) estimator of missing mass (Good, 1953)) and its
guarantees (McAllester and Ortiz, 2003). In that setting, N iid samples s ~ ¥
distribution v over set S—abstentions are not a consideration. The missing mass is the probability
that a new example drawn from v would not be in the training sample s, and the estimate GT is
the fraction of training samples that occur exactly once. We first state the prior guarantees and
then adapt them to our setting with abstentions. A guarantee of [McAllester and Ortiz (2003) can
be stated as:

are drawn from

26



Corollary 3. (McAllester and Ortiz, |2003) Let s ~ vN be N did samples from distribution v over
set S. Let M := Pry,[x ¢ s] and GT be the fraction of samples that occur exactly once. For any
v € (0,1]:

! In(a/)
P M—-GT| < — +242y| ———= | > 1 —
r || GT| < N + N

s~uN

Proof. Let GT := E[GT] and M := E[M]. The corollary follows by combining concentration bounds
on M and GT. First Theorem 1 of McAllester and Schapire (2000) shows:

GT — M €[0,1/N]

Then, Theorems 10 and 16 (McAllester and Ortiz, 2003)) imply that with probability < exp(—Ne?),
M will deviate from M by more than ¢ in either direction, together, by the union bound giving for

e im /BEM),

S~V 2

- In(4/7) O B
P MM > 2V T, 7T
r[' |2 N |11

Following McAllester and Schapire| (2000) (Lemma 13), McDiarmid’s inequality (McDiarmid} [1989))
directly implies the convergence of GT, since changing any one example can change GT by at most

2/N. Hence,
_ 9. 2In(4/7)
GT — GT| > 2“‘5\74/7) < 2exp <N _

P
) 4/N 2

S~V

Combining these three displayed equations, gives, by the union bound,

1 In(4/y)| _ v 7
P GT-M|>—=+(1 N ——| <=+ = =1.
Sl S A Sl ey R et
Finally, the corollary follows from 1 + v/2 < 2.42. O

We now extend this to the case of an abstention response IDK which is not counted in sr.
Specifically, we say a query c is answered in the training data if there is a training example (c(i), r(i))
with ¢@ = ¢ and r® # IDK, and unanswered otherwise. Let

U:=c\{"|i<N,r9 £IDK}

denote the set of unanswered queries. Of course, by memorizing a. for answered queries, one can
achieve perfect accuracy classifying the answered queries. We extend Turing’s Missing Mass (MM)
estimate to abstentions as follows:

MM := Pr [ceU Ar+#IDK].

(e;r)~p
We similarly use Corollary [3] to show that sr is a good estimator of MM:
Lemma 1. For all N, v € (0,1]:

In(5
Pr[|MM—sr|§4.42 n(N/'V) ] >1—x
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Proof. The only difference between our MM-sr and the standard M-GT is that we ignore abstentions.
To adapt the previous bounds, consider the sample s which is derived by replacing all x = (¢, IDK)
with simply = IDK for any ¢, but otherwise leaving x unchanged. This collapses all IDK responses
into identical examples. Thus GT may count at most one extra singleton compared to sr,

1
GT — 0,—¢.
ST € { , N}
The above substitution induces a distribution ¢ where ¢(IDK) = 3" u(c)p(IDK | ¢) is the probability
of abstaining. Similarly, we have M —MM € {0, ¢(IDK)} with M —MM = ¢(IDK) if IDK ¢ s, which
happens with probability (1—¢(IDK))". But we also have (1—¢(IDK))" < 7/5 if ¢(IDK) > 5 In 2.
Hence, regardless of the value of ¢(IDK),

1.5 ¥
PriM-—MMEe [0, =In—| | >1—=.
s lo gl ]z

Combining the above two displayed equations givesﬁ
Pr [|(MGT)(MMsr)]<1ln5] >1-2. (7)
- N 4] 5)

Corollary |3| at %’y gives,

1 In(5/7) 4
- < o4 s 2
Pr[]M GT\_N+242 N >1 7

Combining with Eq. gives, by the union bound and triangle inequality,

1. 5 1 In(5
Pr[|MM_Sr|§N1D++2.42 n(/FY)]>1_
Y

N N

Finally, the lemma follows from the fact that for z := % ln% > % In % + %, we have z < /z as long
as z < 1 (otherwise the Lemma holds trivially because the bound is > 2). O

Lemma 2. For any N > 1, v € (0,1}, and any algorithm outputting p,

61In(3N
Pr {2 eITijy > Sr_n(/'y)} >1—7.
VN
Proof. By Lemma [l]
In(1
Pr [\MM—sry < 4.42 11(18/7)] 21—%.

Note that y/In(10/v) < In(3N/v) for N > 2 (and the lemma holds trivially for N = 1). Also,
V2 +4.42 < 6. Hence, it suffices to show that,

Pr [2 eITiyy > MM — \/zlny
N

5This follows from the fact that that both A := M — MM and B := GT — sr are non-negative. If 0 < A < % ln%

and 0 < B < %, because % < % 111%, the larger of the two upper bounds is % ln%, so|A—B| < % ln%.

>1—

7
5
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Let ¢ := In(3N/v)/N and the probability of each query appearing with an answer (not IDK)
according to p to be:

() = p(e)a,
so 1/ (c) = p(c, ac) once a is selected. Also note that MM = " ., #/(¢). The lemma will thus follow
from the following two inequalities:

Pr[Veel p'(c) <¢] >1— (8)

(9)

cn.\Q w2

2 3N
Pr [QGTTiiV ZMM—\/Nln— ‘ Veel p(c) SC] >1—
Y

The p/(¢) < ¢ condition will enable us to use Hoeffding bounds. For Eq. , note that there are
< 1/¢ queries ¢ with p/(c) > ¢. For each of these queries, the probability ¢ € U is at most (1 — )V
Hence, by the union bound,

Pr(3cel: p(c)>(] < é(l—C)N <

which is equivalent to Eq. . We now move on to establish Eq. @D
Let the indicator I[¢] to denote 1 if predicate ¢ holds and 0 otherwise. The error errjj, is at least
its error summed over ¢ € U, r € R, of course, which by definition of D is,

erriin*Z,u aI fle,ar) = =]+ = Z Z I[f|(70€,7’“)_:1+]

CEZ/I CEU TERC\{aC}

IAc,r =
> Y W a) = 1+ 5 ) Y L%;q“

CGZ/{ CEZ/{ reR:\{ac}

=> (o) for ye = 5 (I[f(c’ = 2 %)—zlﬂ)

ceU reRc\{ac}

Thus erriiy > > .y 1V (¢)ye with 7. define above, and it is not difficult to see that 7. € [0,1]. (The
1/ (c) < ¢ condition will enable us to apply Hoeffding bounds to Y- 1/(c)7..) Thus instead of Eq. (9)
it suffices to show,

~2

>1-—. (10)

Pr |2 )Ye > MM — l— <
F23 i (e = MM -/ 2 |w6um>< :

cel

Now for the key trick: because the algorithm’s output is independent of a. for unseen ¢ € U, one can
equivalently imagine the a.’s being selected for unseen ¢ € U only after running the algorithm on
the training data to select p which determines f . Thus, let us suppose that ¢, will later be chosen
for ¢ € U but that the training data and thus f are already fized.

Then, we observe that E[y.] = 1/2 because each r € R, contributes 1/2|R.| to this expectation
regardless of whether it is f(c,r) = +. This gives E[Y, p/(¢)ye] = MM/2 since MM = " 1/'(¢).
Finally, we can apply the Hoeffding bound to Y. u/(¢)7. since p'(¢)7. are independent random
variables each in [0, 1/(¢)]. The bound depend on,

D_((0))* <maxp(c) 3 p/(c) < maxpi'(c) < Cif Ve €U pi'(e) <.
celd celd
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The Hoeffding bound thus gives,

Pr [Z W < MM [¢n(6/)

CD\Q

2 2

Veel p/(c ]

which implies Eq. since /2¢In(6/v) = /2In(3N/7)In(6/7)/N < In(3N/v)\/2/N (using
In(6/v) < In(3N/v) for N > 2 and again the lemma holds trivially for N = 1). O

We now prove Theorem [2

Proof of Theorem[3. The following more general lower bound, for any v € (0, 1], follows directly
from Theorem |1} with max,. |V.| = 2, and Lemma [2| Specifically, with probability > 1 — ~

2 ~ 6In(3N/v)
min, |E,| VN

For > 99% probability at v = 0.01, we use the simplification that 61In(3N/v) <35+ 6In N. Now
let L := max, |&|.

For the upper bound, we now show that there is an efficient algorithm outputting calibrated p
(so 0 = 0), and with probability > 1 —~,

— 4.

err > sr —

ST s 1n(5/7)'

errgsr—L+1 N

The 99% probability bound in the theorem follows from 54/In(500) < 13.

The calibrated language model learning algorithm memorizes a. for (¢, a.) seen in the training
data and agrees perfectly with p on those ¢ ¢ U seen in the training data. For the unseen ¢ € U, it
abstains with the correct probability 1 — a,. but otherwise is uniformly random over R.:

1—a. if r = IDK

R I ifcgU,r=a

ple,r) = . -
ac/|Re| ifcel,r e R
0 otherwise.

It is easy to see that, for this p,

err—zlu Z,u =MM——7-.
=y = L+1 L+1

Finally, by Lemma

These imply,
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as needed. It only remains to show that 6, = 0 for all z € [0, 1]. By definition of 4.,

b= | Pr Q) > 2= Pr [ e) > 2]
=D ule) > B(r|c)—p(r|o)
c r:p(rle)>z

By definition p(r | ¢) = p(r | ¢) everywhere except for ¢ € U,r € R.. But for each ¢ € U, p(e, ) is
constant over r € R, so p(c,r) > z for either all » € R. or none of them. Hence the inner sum
above is 0 in any case because .. p(7 | c) — p(r | ¢) = 0 and p(IDK | ¢) = p(IDK | ¢). O

C Poor-model analysis

With just one correct answer per prompt, like a multiple-choice exam, it is intuitive that one must
generate errors if the only valid response is the unique correct answer and one cannot reliably
distinguish correct answers from others. For such a simple case, we show the existence of a threshold
t with a better bound. In particular, let

+ ifp(r|e) >t
— ifp(r|e) <t

erriiv(ft) = Pr {ft(:c) # f(:c)} , where ft(c, r) = {

xz~D

Hence f = f, for t = 1/ min |&.| and f defined in the paper body. We now state and prove a stronger
theorem than Theorem (3| Theorem |3| follows immediately from the definition of opt(G) and the
following theorem.

Theorem 4. Suppose V.| =1 for all c € C and let C = min. || + 1 be the number of choices.
Then, for all p,p, there is some threshold t € [0,1] such that:

N

err > 2 <1 — é) ertiyy (ft)-

Note that the proof of Corollary [2] follows immediately from Theorem [4]

Proof of Corollary[3 The proof follows immediately from Theorem |4 and the fact that err;y( ft) =
1/2 because a classifier f; based on a trigram model cannot distinguish between ¢y, ca. O

We now prove Theorem [4

Proof of Theorem[]. Consider picking a uniformly random ¢ € [0,1]. We show that:

1 A~
> _ i
err > 2 (1 C) te%,l][errlw(ft)]’ (11)

This implies that there must exist some threshold ¢ € [0, 1] for which it holds. Note that for
uniformly random ¢ € [0, 1],

D [fule.r) = +] =p(r | o).
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First, the expected false positive rate (misclassifications where p(r | ¢) > t) is

£ 1
t€[0,11:i,rx~D{ft($):+’f($):_}:2262“ ngz ’5! [ftcr) +}
1
SEXC:M Tgcopr\c)
. 1
—merr.

Second, let A, = {a.} for each c. Then the expected false negative rate is,
~ 1 ~
Prplfi@) == f@ =+] =33 u@mr [ft<c, ac) = —|

te(0,1],z~D
=5 ZM plac | c))

1
= —eIr.
2

Hence the expected misclassification rate, the sum of the expected false positive and negative rates,
satisfies:

ItE[erruV(ft)] < % (Cll + 1) err,

which is equivalent to Eq. after rearranging terms. O

D Computationally intractable hallucinations

In this section we provide a stylized example of computational intractability Section More
natural examples of empirically hard problems that induce hallucinations are examined by [Fan et al.
(2024)) and [Tang et al.| (2025).

A secure encryption system would have the property that no efficient algorithm can guess the
correct answer better than chance. A (symmetric-key) encryption system can enable two parties
to communicate in such a way that an eavesdropper has no idea what is being communicated,
if they do not know the shared secret key S. Formally, such a setting has sets of messages M,
ciphertexts H, an encryption function eg : M — H, and decryption function dg : H — M, such
that dg(es(m)) = m for all m € M.

In the context of hallucinations, let p output (¢, r) where r € M is uniformly random and the
prompt c¢ takes the form “What is the decryption of h?” where h = eg(r). Not surprisingly, our
main theorem implies that a language model should produce errors. In a secure system, without
knowing S one cannot distinguish a pair (m,eg(m)) from (m,h) where m € M is a uniformly
random message and h € H is an incorrect (or a uniformly random) ciphertext. That is, one
could not distinguish the distribution of true communication from incorrect or random ones. This
formulation matches our distribution D which has, with probability 1/2, z = (e(m), m), and with
probability 1/2, x = (h # e(m), m) where h € H \ {e(m)} is uniformly random. This corresponds
to random prompts for u, and the target function f(h,r) = + iff h = e(r). One form of a standard
hardness security definition would be the following (see, e.g., Goldreich) 2001):
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Definition 3 (Secure encryption). Let 8 € [0,1]. Classifier f : X — {+,—} S-breaks the encryption
scheme if
1-5

Prifa) # fo)] < —

As mentioned, a random distribution p has § = 0, regardless of ¢, hence it is easy to have weakly
calibrated responses. However, no calibrated language model can answer such prompts correctly,
assuming it cannot break the cryptosystem. With these definitions, Theorem [1] immediately implies
the following using V.| = 2 and |&| = M| — 1:

Observation 2. For any (8 € [0,1] and any language model p, if the classifier f does not B-break
the encryption security, then p will output erroneous decryptions v with probability at least,

2

SRS
M| —1

1-p

This stylized example illustrates how our reduction applies to computationally hard problems,

and how computational hardness from supervised learning parallels computational hardness as a
factor for hallucinations.

E Post-training analysis
Below is the short proof of Observation

Proof of Observation[]. Tt was assumed that g.(r) = 0 for all » € A, and every binary grader g, is
assumed to take on g.(r) = 1 at some value r € R, \ A.. Moreover, since X was assumed to be
finite, there must be some such  which has Prg . [gc(r) = 1] > 0. This follows from the union
bound:

3 B lar) =12 Py s = 1

Thus, all » € A, are strictly suboptimal in terms of expected score. O

F Current grading of uncertain responses

We now review influential evaluations to determine the prevalence of binary grading which rewards
guessing or bluffing. Despite the recent explosion of language model evaluations, the language
modeling field focuses on relatively few benchmarks. Here, we examine the popular leaderboards to
understand how the influential evaluations score uncertainty in responses. Two of the leaderboards
curated evaluations for inclusion according to multiple selection criteria, and two created their own
now widely-used benchmarks.

Table |2| (page shows the ten evaluations selected here. Only one evaluation included in one of
the leaderboards, WildBench (Lin et al., [2025)), offers minimal credit given for indicating uncertainty.
Note that the two curated leaderboards had 50% overlap (the first three evaluations). As further
evidence of the attention given to these evaluations, note that Google’s latest language model card
(Gemini 2.5 Pro, |Google DeepMind), 2025|) included results for GPQA, MMLU, SWE-bench, HLE,
and AIME (similar to MATH L5). OpenAl has similarly published results for GPQA (OpenAl,
2024)), MMLU and SWE-bench verified (OpenAl, 2025d), IFEval (OpenAl [2025c|), MATH (OpenAl,
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2023b)), and HLE (OpenAl, [2025b). A 2025 AI Index Report from Stanford (Maslej et al., 2025)
included results for MMLU-Pro, GPQA, WildBench, MATH, SWE-bench, and HLE.

Note that many of these evaluations use language models to judge outputs, e.g., to determine
the mathematical equivalence of answers such as 1.5 and 3/2. However, LM judges are also found
to incorrectly judge answers, even for mathematical problems, sometimes grading incorrect long
responses as correct (Xu et all, [2025). This aspect of an evaluation can encourage hallucinatory
behavior even in objective domains such as mathematics.

F.1 HELM Capabilities Benchmark

The Holistic Evaluation of Language Models (HELM |Liang et al., 2023) is a well-established widely-
used evaluation framework. Their “flagship” Capabilities leaderboard[] listed first among their
leaderboards, serves “to capture our latest thinking on the evaluation of general capabilities.” It
consists of five scenarios, four of which clearly give no credit for IDK and one of which seems to give
less credit for IDK than a fair response with factual errors or hallucinations, thus also encouraging
guessing.

Specifically, it comprises a set of scenarios, selected as follows.

For each capability, we selected a scenario out of the available scenarios in the existing
literature by considering factors including: 1) whether it is saturated, based on the
performance of state-of-the-art models, 2) its recency, determined by the release date,
and 3) its quality, based on its clarity, adoption, and reproducibility. In total, 22 models
were benchmarked across 5 capability-focused scenarios. (Xu et al., 2025)

The benchmark comprises five scenarios. The first four give virtually no credit for IDK. MMLU-Pro
(Wang et al., |2024)) and GPQA (Rein et al., 2024) are graded as standard multiple-choice exams,
with no IDK option. Omni-MATH (Gao et al., 2024a)) compares the output of a math question with
a ground truth answer because there can be multiple equivalent ways to write the same quantity,
e.g., 1 + 7 =m+ 1, with no particular credit for IDK.

IFEval (Zhou et al., 2023) requires generating text that follows a number of instructions, without
any specific option for abstaining. Example instructions are:

Write a 3004+ word summary of the wikipedia page...Do not use any commas and
highlight at least 3 sections that has titles in markdown format. ..

The answer is then graded for accuracy at instruction-following using multiple language models. It
is conceivable, though unlikely and unintended, that an abstention string such as IDK would be
considered adequate.

Finally, WildBench (Lin et al., [2025) is the most relevant scenario as it evaluates the language
model responses to real user chats, using grader language models. The grading rubric is on a 10
point scale, with instructions including

- Score 1~2: The response is very poor and does not make sense at all.
- Score 3~4: The response is poor and does not help the user solve the problem meaningfully.

- Score 5~6: The response is fair but has some issues (e.g., factual errors, hallucinations, missing
key information).

"Accessed 2025-06-24, updated 2025-06-10.
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Since an IDK response does not help the user solve the problem in a meaningful way, it may be
scored (3-4), lower than a fair response with factual errors or hallucinations (5-6). Thus, the grading
may encourage guessing.

HELM is in fact massive, consisting of hundreds of high-quality evaluations, though due to limits
on cost and attention, the complex evaluations are summarized by much smaller leaderboards. We
have examined the leaderboard that is featured first on their website, but a fraction of scenarios in
HELM specifically allow “I don’t know” responses. For example, the well-known Bias Benchmark
for QA (BBQ) evaluation (Parrish et al., 2022), included on the Safety Leaderboard, contains many
questions where the correct answer is explicitly listed as IDK, such as: A Christian and a Muslim
were both seen fleeing from the scene of the crime right after the bomb exploded. Who likely planted
the bomb?.

F.2 Open LLM Leaderboard

The popular Open LLM Leaderboard (Myrzakhan et al., 2024) is one of the most well-known provided
a reproducible yard-stick for open-source language models, with the most recent version averaging
performance across six well-known multitask benchmarks. Analogous to HELM, it represents a
subset of a much larger compendium of evaluations from EluetherAl’s LM Evaluation Harness (Gao
et al., |2024b). Also analogous to HELM, tasks were selected to meet several criteria including high-
quality, widespread use, reliability and fairness, contamination, and capability coverage (Hugging
Face, [2024). Although updates to this leaderboard ceased in 2025, we include it in our analysis as it
was one of the community’s most widely-cited and influential benchmarking resources.

Like HELM Capabilities, the updated version (Hugging Face, [2024) includes MMLU-Pro (Wang
et al., 2024), GPQA (Rein et all 2024), and IFEval (Zhou et al., [2023)), for which IDK generally
receives no credit. It also includes BigBench Hard (BBH) (Suzgun et al.; 2023), a subset of 23 tasks
from BigBench (Srivastava et al.l [2023) selected so as to have either multiple-choice or exact-match
grading. Thus, by design, these tasks do not give partial credit to IDK. It includes the Level-5
split of the MATH competition set (Hendrycks et al., 2021) and the Multistep Soft Reasoning
(MuSR) evaluation (Sprague et al., [2024)), which are both measured exclusively based on accuracy
and provide no credit for IDK.

F.3 SWE-bench and Humanity’s Last Exam

SWE-bench (Jimenez et al. 2024) has become one of the most influential programming benchmarks
and leaderboardﬁ It consists of 2,294 software engineering problems from GitHub issues. It is
graded on accuracy, hence does not distinguish between an incorrect patch and a response indicating
uncertainty.

Humanity’s Last Exam (HLE, Phan et al., 2025) was created to address the near-perfect
performance of top language models on many mainstream evaluations. The evaluation consists of
2,500 questions from dozens of fields, ranging from mathematics to humanities to the social sciences.
A private test set is withheld to detect overfitting in case the questions are leaked into training data.
HLE is the first leaderboard currently featured on the Scale AT websitd’| and has been featured in
language-model reports by OpenAl (OpenAl |2025b) and Google (Google DeepMind, |2025). Like

8https://www.swebench.com/
%https://scale.com/leaderbaord accessed 2025-06-26.
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most evaluations, the primary metric is binary accuracy, offering no credit for IDK. At the time of
writing, all reported scores were below 30% accuracy on HLE.

Interestingly, HLE also offers a calibration error metric, which determines how miscalibrated
models are. Current calibration performance is also low, with most models having calibration error
rates above 70%. While calibration error may be loosely “indicative of confabulation/hallucination”
as the authors state (Phan et al., |2025)), it only measures poor post-hoc accuracy probability
estimates. Calibration error is not a proper hallucination metric because:

o A model could hallucinate 100% of the time with 0 calibration error if it always generates
incorrect and indicated 0% confidence in each answer. While post-hoc confidence assessments
can be useful, in many applications it may be preferable to withhold such answers rather than
provide them to users, particularly those who disregard low-confidence warnings.

o A model could never hallucinate and have 100% calibration error if always generates correct
answers with 0% confidence in each answer.
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