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Artificially Intelligent Robots





Damage Recovery



Classic Approach to Damage Recovery

• Large suite of self-diagnosis sensors 

• IF diagnosis is successful, choose pre-programmed 
response from large library 

• Problems: expensive, error-prone, manual, doesn’t scale 
(impractical to have plan for each case)



Modern, Learning-Based Approaches

Kohl & Stone 2004Yosinski et al. 2013 Bongard et al. 2006

• Simple robots (low-dimensional state & action spaces) 

• Require lots of real-world trials



Animals

• Have intuitions about different ways to move 

• Conduct a few, intelligent tests 

• Pick a behavior that works despite injury



Robots that Adapt Like Animals

• Have intuitions about different ways to move 

• Conduct a few, intelligent tests 

• Pick a behavior that works despite injury

intuitions about 
different ways to move few, intelligent tests pick one that works 

despite injury



intuitions about 
different ways to move

• Traditional machine learning methods produce little 
diversity

Salimans, Ho, Chen, Sidor, Sutskever 2017



intuitions about 
different ways to move

• Traditional machine learning methods produce little 
diversity

Cheney, MacCurdy, Clune, Lipson 2013



intuitions about 
different ways to move

• Traditional machine learning methods produce little 
diversity 

• Need an algorithm good at producing 
• a diverse set of high-performing agents (policies) 
• “Quality Diversity algorithms”



Promoting Diversity

• Old idea in optimization 
• but usually diversity in parameter space 

• might not produce new behaviors 
• deception remains 

• Much better in behavior space 
• e.g. Lehman & Stanley 2011 
• imagine a robot in a city



Challenge: Diversity & Performance

• Quality diversity algorithms 
• Novelty Search + Local Competition (Lehman & Stanley) 
• MAP-Elites (Mouret & Clune)



MAP-Elites

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat
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Mouret & Clune 2015, arXiv



MAP-Elites

H
ei

gh
t

Weight

random 
organism: evaluate

H: 4 
W: 7

Mouret & Clune 2015, arXiv

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat

Fitness
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MAP-Elites
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• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat



MAP-Elites
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Mouret & Clune 2015, arXiv

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat



MAP-Elites
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Mouret & Clune 2015, arXiv

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat



MAP-Elites
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Mouret & Clune 2015, arXiv

• Multi-dimensional Archive of Phenotypic Elites 
• Choose dimensions of interest in behavior space 
• Discretize 
• Mutate, locate, replace if better, repeat



• Dimensions 
• number of voxels 
• % bone (dark blue)

Feature 1 Feature 2
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High-Dimensional 

Search Space

Soft Robots Problem
Mouret & Clune 2015, arXiv



MAP-ElitesClassic + Diversity

Soft Robots Problem
Mouret & Clune 2015, arXiv

Classic Optimization
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Different Runs: Soft Robot Problem

MAP-ElitesClassic Optimization Classic + Diversity



Goal Switching is Critical

retina problem color = reward



Innovation Engines

Nguyen, Yosinski, Clune (2016)



MAP-Elites Lineages of a Few Final Solutions

Circles are iteration 0, color = reward





intuitions about 
different ways to move

• Behavioral characterization
• % of time each leg touches the ground (6-dimensional)

• Producing the map is expensive
• 40 million evaluations per map (!)
• But can be done once per robot pre-deployment

• Map has ~13,000 diverse, high-performing gaits
Initial Map
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intuitions about 
different ways to move



Corner Case: Feet never touch the ground



intuitions about 
different ways to move

Initial Map
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On the simulated,  
undamaged robot



intuitions about 
different ways to move few, intelligent tests

Initial Map
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Which behaviors should we test? 



intuitions about 
different ways to move few, intelligent tests

Initial Map
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Could try top N: 

But they are likely very similar.



Bayesian Optimization: 

Tries different types solutions 

intuitions about 
different ways to move few, intelligent tests

Initial Map
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Bayesian Optimization

Initial Map
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Posterior Map

Prior:  
MAP-Elites Map 

Posterior:  
Map updated after 

real-world tests

Stop when:  
A real-world 

behavior is >90% of 
best untested point



One-dimensional Example
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“Intelligent Trial & Error”

intuitions about 
different ways to move few, intelligent tests pick one that works 

despite injury

MAP-Elites Map 
Bayesian 

Optimization 
w Map as Prior 

Found >90% of 
Best Possible 









Different Damage Conditions & Behavioral Descriptions
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Different Environments



Deep Learning + IT&E

• Can swap in deep 
neural networks 
• deep reinforcement 

learning







Other Applications of Quality Diversity Algorithms



Go-Explore 
A new approach for hard-exploration problems



Grand Challenge in Deep RL 
Effective Exploration

• Hard-exploration problems

• Sparse-reward problems

• rare feedback

• Montezuma’s Revenge


• Deceptive problems

• wrong feedback (wrt global optimum)



Go-Explore 
Separates learning a solution into two phases

current work: 

exploits deterministic training, no neural networks

produces neural network

robust to stochasticity

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive

Phase 1: Explore Until Solved Phase 2: Robustify

(if necessary)



Go-Explore: Phase 1

• Phase 1: explore until solved

A. choose a state from archive

B. Go back to it

C. Explore from it

D. add newly found states to archive

• if better, replace old way of reaching state

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive

An enhanced version of MAP-Elites



• Average score: 660,000

• Best Go-Explore policy

• scores ~18 million

• solved 1,141 levels


• Beats human world record

• 1,219,200

Montezuma’s Revenge Results

Note: exploits deterministic training 
(unlike Burda et al. 2018)



• no prior scores > 0

• without:

• fully deterministic test 

environment

• or human demonstration


• average score: 59,000

• max: 107,000

• significantly advances 

state of the art

Pitfall Results



robustify in 
stochastic simulator

Robotics

• Solve hard problems in simulation

• “Robot, find survivors”

solve in deterministic 
simulator transfer to reality learn in reality 

(optional)

e.g. intelligent trial & error 

Cully, Tarapore, Mouret, & Clune
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Automatically generating training data  
and training environments

• Paired Open-Ended Trailblazer (POET)

• Generates Challenges and Solutions

Rui WangRui Wang



POET

easy

θ1

medium

θ2
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very 
hard
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direct optimization fails
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Conclusions: Intelligent Trial & Error
• State of the Art Robot Damage Recovery 

• adaptation, more broadly 

• Adapts in < 2 minutes 

• Combines  
• expensive creativity of optimization (e.g. deep RL), in simulation 

• with data efficiency of Bayesian optimization, in the real world 

• Shows benefits of learning diverse, high-performing sets of policies: 
“Quality Diversity Algorithms”

intuitions about  
different ways to move 

MAP-Elites

few, intelligent tests 
Bayesian 

Optimization

pick one that works 
despite injury 

found > X% of best
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