Doing for our robots
what nature did for us

Leslie Pack Kaelbling
MIT CSAIL



Research goal:

understand the computational mechanisms
necessary to make

a general-purpose intelligent robot
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Proxy: Make tea in a kitchen you’ve never been in before







Doing for our robots what nature did for us
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Designing the robot factory: a hard job!!

1. Reverse-engineer humans
* hard biology!

‘;}‘% é * limited applicability
\/ . .
2. Engineers write pi

C * hard engineering!

3. Recapitulate evolution
e slow!
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Use insights from neuroscience, physics, engineering
to bias learning in the factory to learn in the wild
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Build in general algorithms, learn models

Domain-dependent
e transition models
* inference rules
e search control

General representation and inference mechanisms:

e convolution in space and time * abstraction over objects
* kinematics e state abstraction/aggregation
e path planning * temporal abstraction

» forward/backward causal inference e state estimation, data association



BHPN: Belief-space Hierarchical Planning in the Now
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BHPN: Same code (almost), different start, goal, domain, robot
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All learning was done by
lpk and tlp, not the robot!
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An old robot can learn new tricks!

Learned rgwfg

e transition models
e inference rules
e search control

Build in general representation and inference mechanisms:

e convolution in space and time * abstraction over objects
* kinematics e state abstraction/aggregation
e path planning * temporal abstraction

» forward/backward causal inference e state estimation, data association



Varieties of learning

learning about the world

learning to reason observation transition
model model
attention
strategy
MCMC observations State belief action
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initialization
strategies
primitive
policies



Learning transition model for planning

learning about the world

learning to reason transition
model
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Dynamics modeling in large hybrid domains

Need factored, sparse, constraint-based

Pure forward search (MCTS, IW) unlikely to work model of action effects

* infinite branching factor
» dimensionality-reducing (or tight) constraints

Modern TAMP (task and motion planning) strategies
integrate structure and parameter search

e constrained optimization
(Toussaint)

* pre-image back-chaining
(Kaelbling and Lozano-Perez)

* sampling guided by task-level plans

(Garrett) .

rasp




How can a competent robot acquire a new ability?

e Learn new primitive skill
* Examples: Cutting, pushing, stirring, pouring, Most robot learning
throwing
* Closed-loop low-level policy intended to achieve some
objective, possibly parameterized

* Add that skill to existing skill set to accomplish new goals!

* For flexibility, use a general-purpose planner
* Learn description of skill's preconditions and effects
* Representation should generalize over objects, locations, etc.

Our focus



Factored, Sparse dynamics model: Learn efficiently to plan efficiently
when will skill achieve result?

Grasp

Result: Contains(Dest, Liquid)
. . Sheight
Skill: Pour(Gain) / /

1 Gain

Preimage:
e Contains(Source, Liquid)

Swidth

Holding(Source, Grasp)

» Shape(Source) = (Swidth, Sheight)
Shape(Dest) = (Dwidth, Dheight)
RelPose(Source, Dest) = (Rx, Ry)

Constraint(Sw, Sh, Dw, Dh, Rx, Ry, Grasp, Gain)

Dheight

Dwidth




Learning the operator constraint: labeled training data
supervised training

GRIPPER

constraint(f) = ¢g(6) > 0

Sw, Sh, Dw, Dh, Rx, Ry, Grasp, Gain

Y

Gaussian Process
Regression




(Gaussian process regression

Represent distribution over functions! constraint(d) = g() > 0
e X :observations (0;,9(6;))

* Timean ()

*  :stdev 1(0) £ 20(6)

= : high probability super level set
{6 P(g(8) >0)>0.954}

g(0) 0



Active learning: robot experience is expensivel

Try pouring in situations that will give us the most useful information
e sample to maximize acquisition function
¢(0) = 20(0) — |n(0)]
* high values when

* meanis closeto 0
(near a boundary)

 stdev is high
(uncertain about the value)

. = 6(0) *

Straddle algorithm, Bryan et al, NIPS 2016
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Try pouring in situations that will give us the most useful information
e sample to maximize acquisition function
¢(0) = 20(0) — |n(0)]
* high values when

* meanis closeto 0
(near a boundary)

 stdev is high
(uncertain about the value)

. —: ¢(0)
- \/\V/A‘DA \ //

Straddle algorithm, Bryan et al, NIPS 2016



Active learning: robot experience is expensivel

Try pouring in situations that will give us the most useful information
e sample to maximize acquisition function
¢(0) = 20(0) — |n(0)]
* high values when
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(near a boundary)
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Active learning is data efficient!

Percent successful pouring actions as a function of the number of training examples

e = :randomly chosen
 —:neural network classifier
 —:neural network regression
e = :GP active learning
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Sampling for planning: quality and diversity

Given values for some parameters, sample values of the others so that:
 action is likely to be successful
p(0)

° i i - alr'g max ——
start with most likely to succeed: arg & o (0)

e continue with rejection sampling in
{6 | P(g(6) >0)>0.954}

* make more efficient by careful weighted selection of
samples near previously successful ones

 action differs from previous attempts

(\ D(S) = log det(Z° +I)

1 Gain

N S

Grasp

Sheight

| Swidth

Dwidth

Dheight




Plan to serve coffee, with cream and
sugar stirred in!

Note substantial variability in object layout
and resulting plans

Pre-existing operators
* dispense coffee
* pick up, place object
* move robot
* stir
* dump spoon

Learned operators
* push
* pour
* SCOOp




Preliminary results on real robot
Substantial variability in

* starting arrangement

e goal

Given pick/place operators

Learned pour and push




Learning a sparse, factored dynamics rule

1. Learn a sensori-motor policy that can change a property of an object

2. Learn detailed relation on properties of all these objects that predicts
when the policy will have its intended effect

@GP active learning, PDDLStream planning
(Wang, Garrett, Lozano-Perez, K; IROS 18)

3. Determine which other objects may affect or be affected by this policy
 Old approach (Pasula, Zettlemoyer, K; JAIR 07)
 Preliminary new approach (Xia, Wang, K; ICLR 19)



Sparse relational transition model: structure learning

St St+1
P1 Pk D1 Pk
01 r 01
objects
—
On On

properties



Deictic rule

e motor primitive: Push(Obj, params)

* deictic references: select other objects: - = Above(Obj), ...

* neural network: predicts distribution on new property values for objects

based on old property values
* fixed length input and output
* mechanism for handling sets

St
P1 Pk params
NN
d S,
— /
NN

pa@ms/m—

St+1

Pk

I




Deictic references name related objects

Include objects named in action: Push(Obj)

Refer to additional objects via deictic references:
* examples: above, below, near, nearest
e return an object or a set

* can be applied to an object that has already
been "recruited”

Push(O1)
02 = Above(01)
03 = Above(02)
e 04 = Below(0O1)




Deictic references name related objects

Include objects named in action: Push(Obj)

Refer to additional objects via deictic references:
* examples: above, below, near, nearest
e return an object or a set

* can be applied to an object that has already
been "recruited”

Push(O1)
02 = Above(01)
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e 04 = Below(0O1)




Rule learning: training datais (s, a, s')

Outer loop over set of rules
» Greedily add best next deictic reference to generate new rule

Inner loop
 EM-method for deciding which rule(s) account for which training examples
* Predict mean and variance for each property
* Gradient descent on NN that predicts next values, minimize conditional log likelihood
St St+1
b1 Pk P1 Pk

params 01

+

i
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Preliminary results: pushing objects on crowded table

Compare likelihood on held-out data
* Learned rule-based model
* Neural network trained on vector of attributes of all objects
* Pushed object always first
» Other objects sorted by distance from first
e Graph neural network, fully pairwise connected




Sparse rules learn with less data (3 objects in all scenes)
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Sparse rules unaffected by clutter

Log data likelihood
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So much more to do!

e Learn perceptual models for state estimation
* Find integrated way of combining learned policies and online reasoning
* Find integrated way of combining end-to-end with local learning signals

* Integrate human interaction systematically as part of the environment



To move upward in the pyramid of intelligent robotics
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Thanks to lots of people!

Tomas Lozano-Perez
Caelan Garrett, Zi Wang, Victoria Xia
Summer robot hackers:

* Alex LaGrassa, Skye Thompson, Nishad Gothoskar, Jingxi Xu, Kevin Chen
Kelsey Allen, Tom Silver



Thanks. And out-takes to watch during questions




