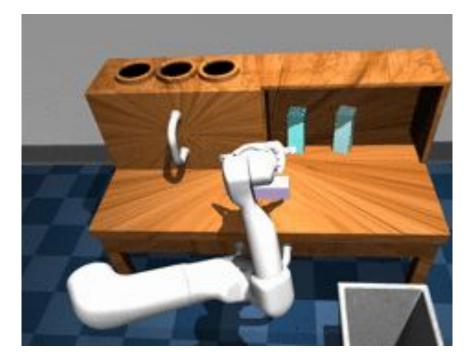
Self-Supervision and Play



Pierre Sermanet

In collaboration with

Corey Lynch, Debidatta Dwibedi, Soeren Pirk, Jonathan Tompson, Mohi Khansari, Yusuf Aytar, Yevgen Chebotar, Yunfei Bai, Jasmine Hsu, Eric Jang, Vikash Kumar, Ted Xiao, Stefan Schaal, Andrew Zisserman, Sergey Levine

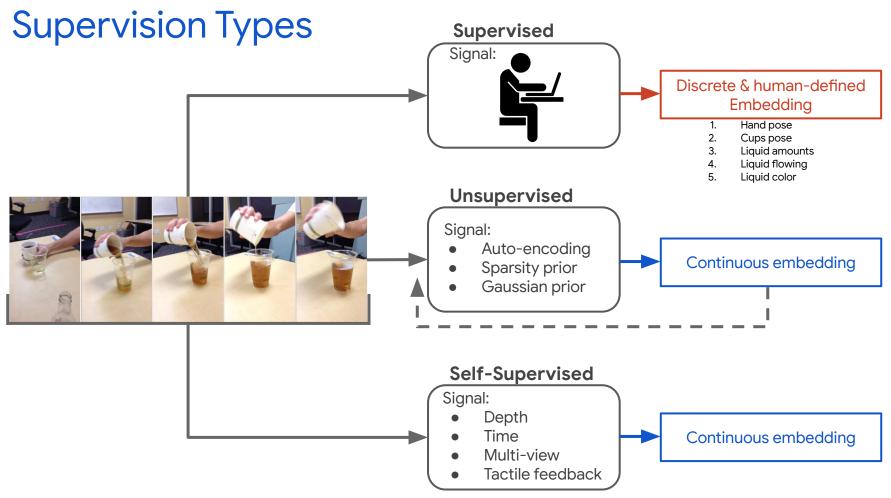
Robotics at Google http://g.co/robotics

- Real-world robotics cannot rely on labels and rewards
- Instead, mostly
 - Self-supervise on unlabeled data
 - Use play data
- We present ways to do this for vision and control

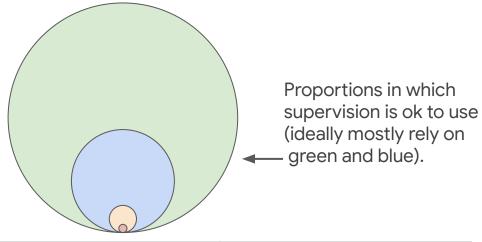
Our mission: Self-Supervised Robots

i.e.: Autonomously extract learning signals from the world from play and from others

because: "Give a robot a label and you feed it for a second; Teach a robot to label and you feed it for a lifetime."



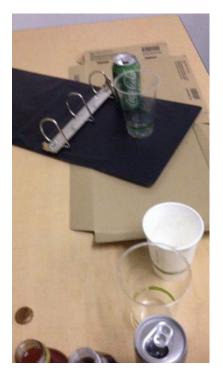
Supervision Costs



Type of Supervision	Description	Cost	
Playing (Intrinsic Motivation)	Alone or with others	Free	
Play data (Tele-op)		Very cheap	
Imitation	other agents "playing" for hours, not segmented, not labeled	Cheap (but not unlimited)	
Demonstrations	Staged, segmented and labeled	Expensive	
Labeled Frames	e.g. action and object classes / attributes	Very Expensive	

Why Self-Supervise?

- Be versatile and robust to **different hardware & environments**:
 - Robot-agnostic and self-calibrating
 - Agnostic to sim or real, train the same way
- Scaling up in the real world
- **Can't afford human supervision** given the high dimensionality of the problem
 - Labeling is **not easy to define** even for humans
- Rich representations can be discovered through self-supervision and lead to higher sample efficiency in RL



Why play?

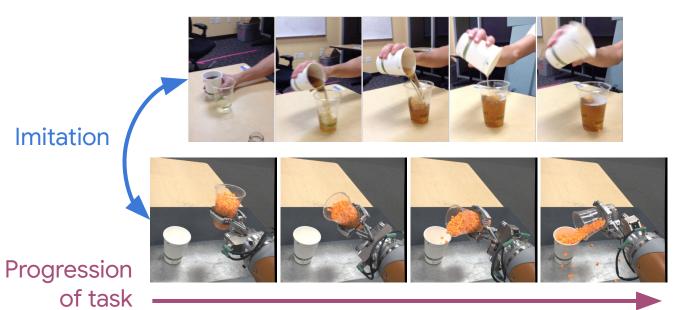
- Self-Supervision enables using play data
- Cheap
- General
- Rich

Self-Supervision and Play for Vision

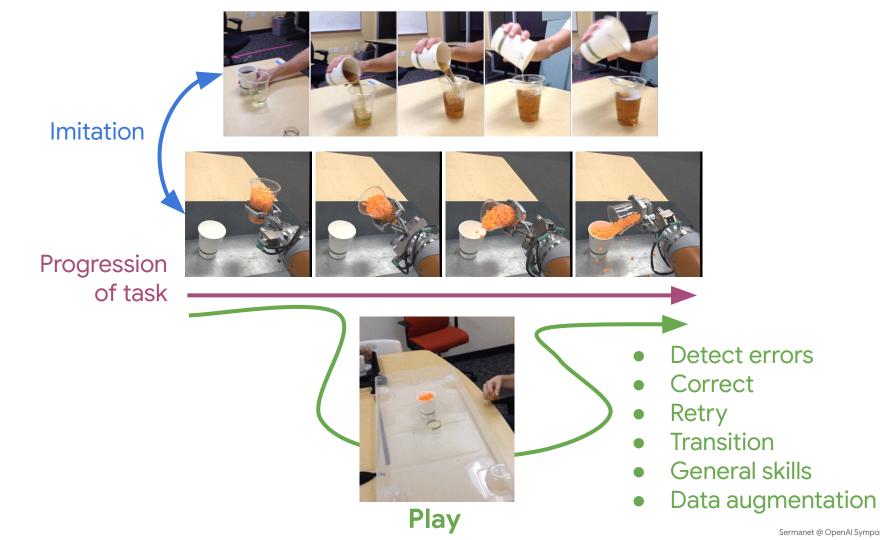
Self-Supervised Visual Representations

- Time-Contrastive Networks (TCN)
- Temporal Cycle-Consistency (TCC)
- Object-Contrastive Networks (OCN)

disentangled / invariant states and attributes



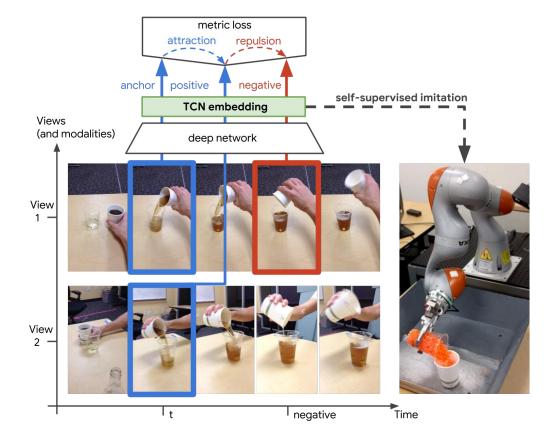
Sermanet @ OpenAl Symposium 2019



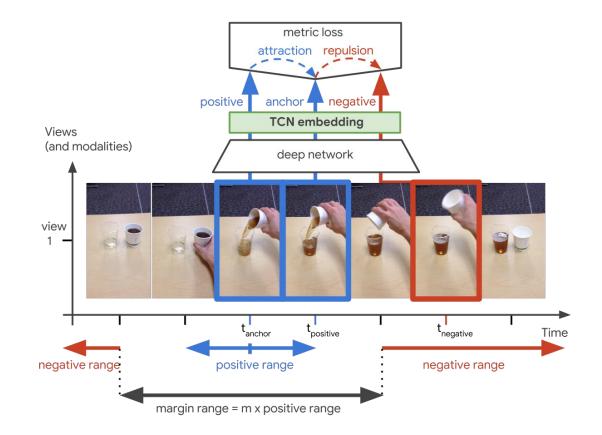
Sermanet @ OpenAl Symposium 2019

Time-Contrastive Networks (TCN)

[Sermanet*, Lynch*, Chebotar*, Hsu, Jang, Schaal, Levine @ ICRA 2018][sermanet.github.io/imitate]



Single-view TCN



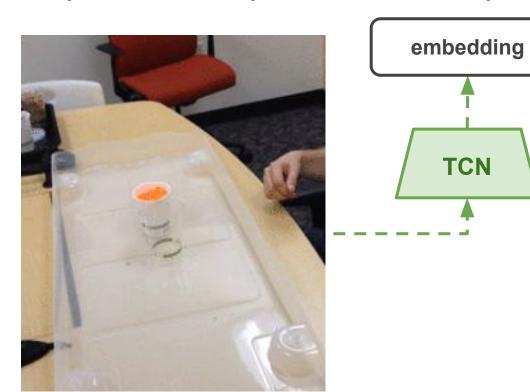
Semantic Alignment with TCN

Observation

multi-view TCN

Sermanet @ OpenAl Symposium 2019

Robotic Imitation: Step 1. Self-Supervise on Play data

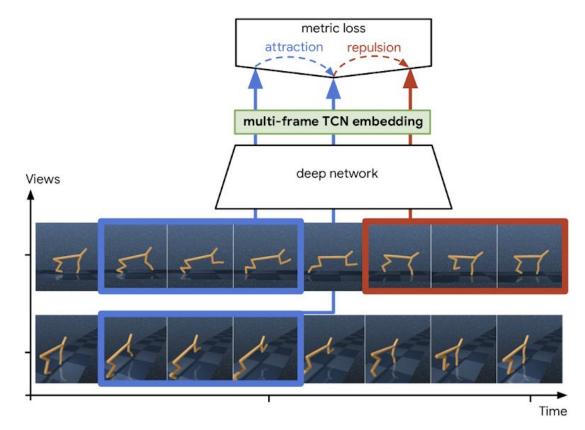


Robotic Imitation: Step 2. Follow abstract trajectory

3rd-person observation

Actionable Representations

[Dwibedi, Tompson, Lynch, Sermanet @ IROS 2018] [sites.google.com/view/actionablerepresentations]



Cheetah Environment

Agent observes another agent demonstrating an action

Qualitative Results: Cheetah

Input to PPO	Cumulative Reward (Avg of 100 runs)		
Random State	28.31		
True State	390.16		
Raw Pixels	146.14		
mfTCN	360.50		

PPO on true state

PPO on learned visual representations

Temporal Cycle-Consistency (TCC)

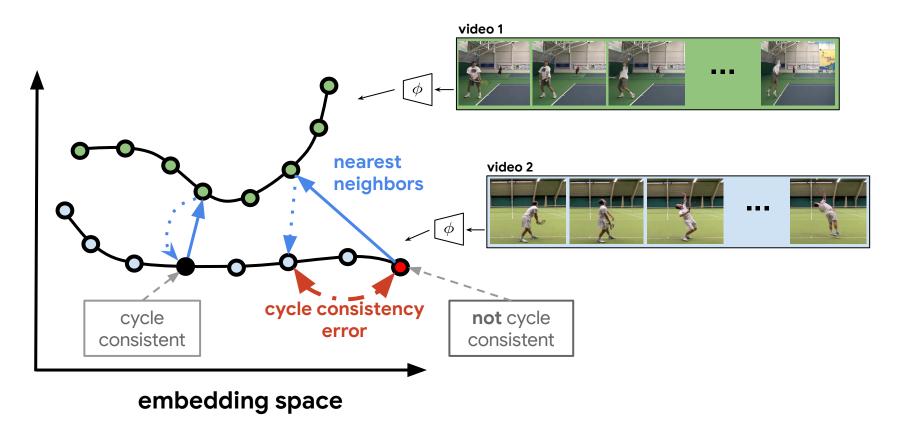
[Dwibedi, Aytar, Tompson, Sermanet, Zisserman @ CVPR 2019] [temporal-cycle-consistency.github.io]

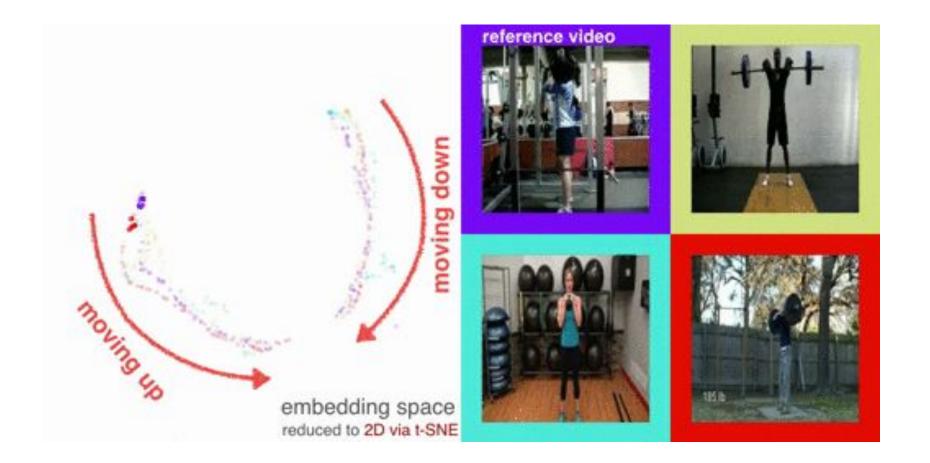
Temporal Cycle-Consistency (TCC)

[Dwibedi, Aytar, Tompson, Sermanet, Zisserman @ CVPR 2019] [temporal-cycle-consistency.github.io]

Sermanet @ OpenAl Symposium 2019

Temporal Cycle-Consistency

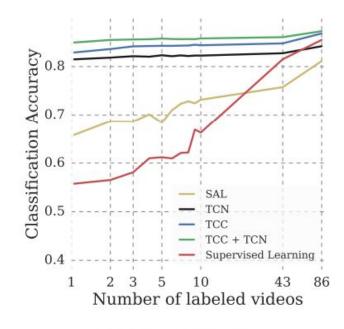




Action Phase Classification

Datasets	% of Labels $ ightarrow$	0.1	0.5	1.0
Penn Action	Supervised Learning	57.69	78.55	83.83
	SaL [18]	70.78	74.39	76.35
	TCN [25]	80.21	81.77	82.52
	TCC (ours)	76.41	79.85	81.68
	TCC + SaL (ours)	77.90	81.39	83.11
	TCC + TCN (ours)	81.59	83.50	84.11
Pouring	Supervised Learning	77.31	85.42	90.12
	SaL [18]	79.36	86.62	86.72
	TCN [25]	86.94	88.51	89.14
	TCC (ours)	84.73	88.83	91.45
	TCC + SaL (ours)	87.80	89.55	90.61
	TCC + TCN (ours)	90.97	90.17	90.33

Phase classification results when fine-tuning ImageNet pre-trained ResNet-50.



(a) Golf Swing

Self-Supervised Alignment

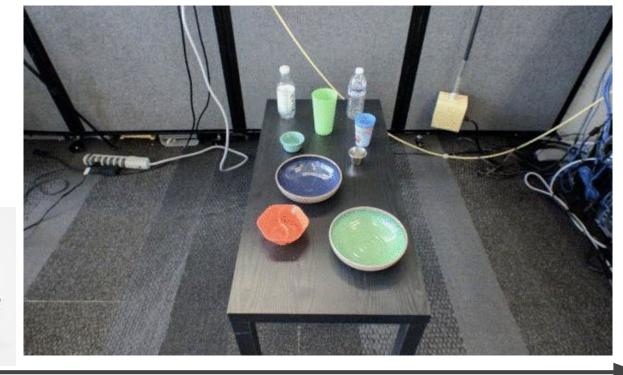
Sermanet @ OpenAl Symposium 2019

Object-Contrastive Networks (OCN)

[Pirk, Khansari, Bai, Lynch, Sermanet @ under review]

Self-teaching about any object leads to high robustness, allowing deployment

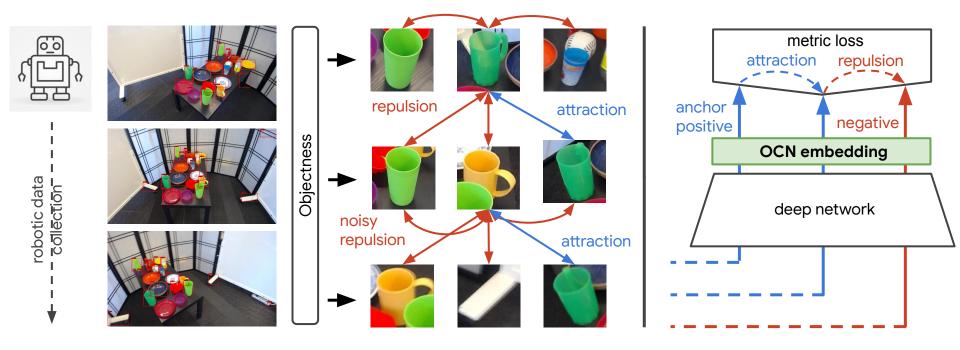
Robotic Data Collection



Play data for Objects

Object-Contrastive Networks (OCN)

[Pirk, Khansari, Bai, Lynch, Sermanet @ under review]



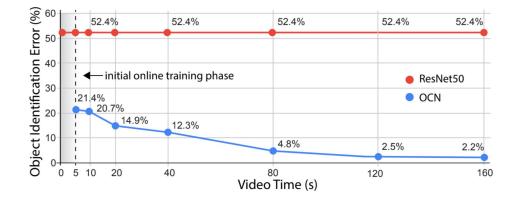
Recovering Continuous Attributes

(Same instance removed)

Sermanet @ OpenAl Symposium 2019

Online Object Understanding

- Offline average error: 54%
- Online average error: 17% -> 3%
- Do not define states and attributes



ResNet50 - 52.4% error

Training on the first 5 seconds ...

Sermanet @ OpenAl Symposium 2019

Online Adaptation

ResNet50 - 50.6% error

Training on the first 5 seconds ...

Online Adaptation

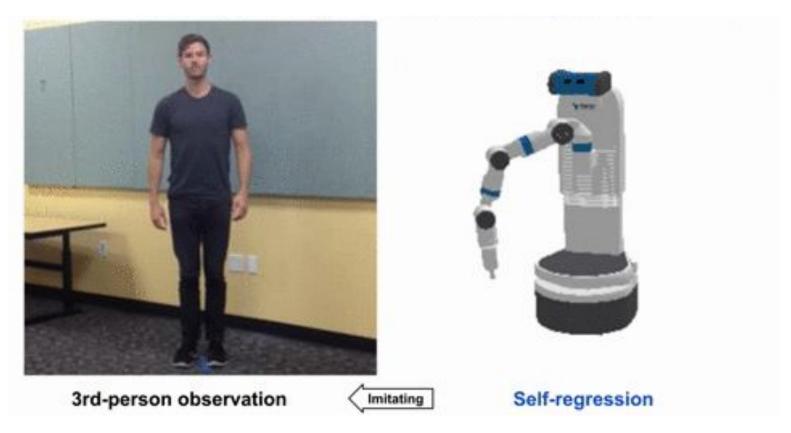
ResNet50 - 81.9% error

Trained on 160s - 40.3% error

Self-Supervision and Play for Control

Pose Imitation with TCN

[Sermanet*, Lynch*, Chebotar*, Hsu, Jang, Schaal, Levine @ ICRA 2018] [sermanet.github.io/imitate]

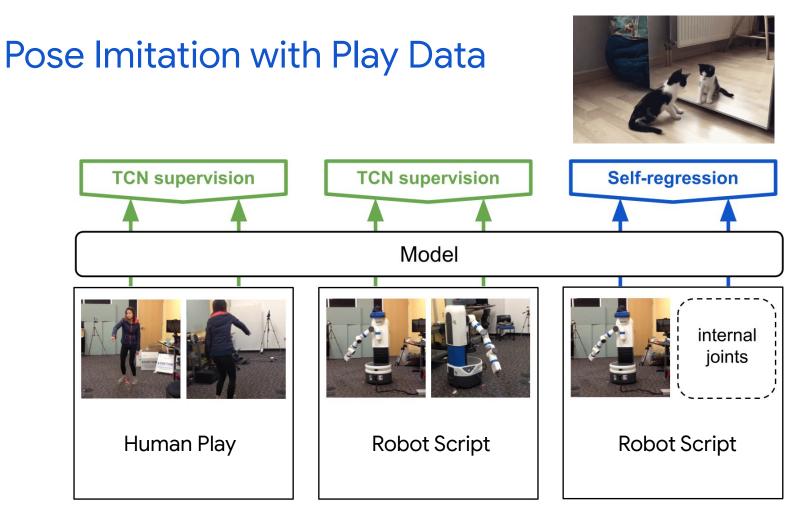


Play Data in Pose Space

Human Play

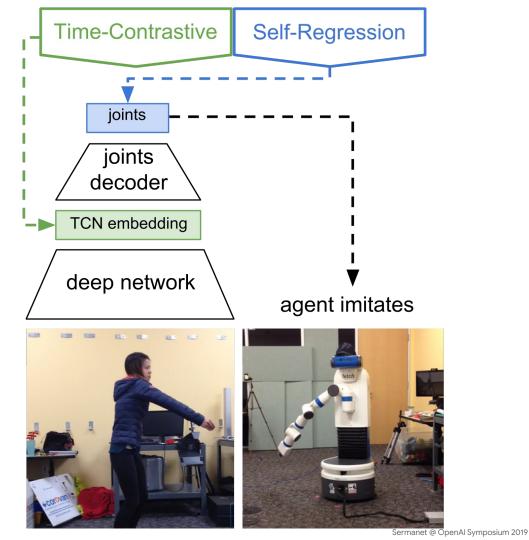
Robot Scripting

Human imitating Robot



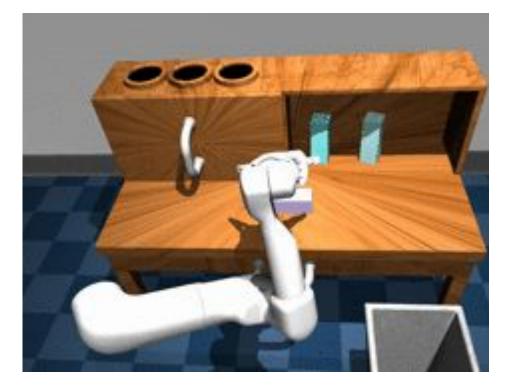
Pose Imitation

- Self-Supervision + Play recipe
- No explicit task definition.

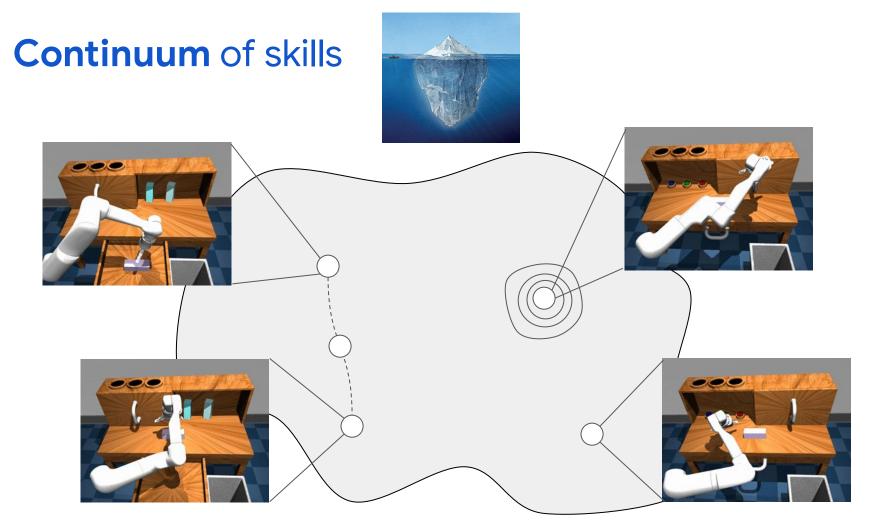


Learning from Play (LfP)

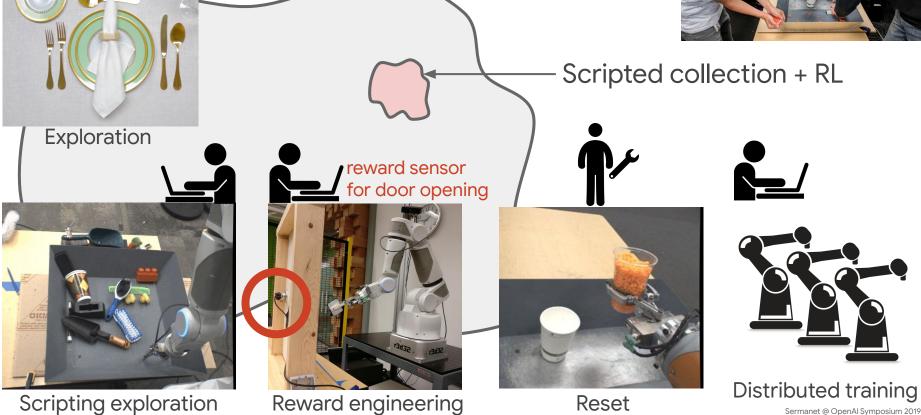
[Lynch, Khansari, Xiao, Kumar, Tompson, Levine, Sermanet @ under review] [learning-from-play.github.io]



- No tasks
- No rewards or RL
- Multiple tasks in zero-shot
- 85% on 18 tasks
- Self-Supervision + Play recipe



How can we cover the continuum?



Tasks are not discrete

"Grasp fast?"

"Nudge slow?"

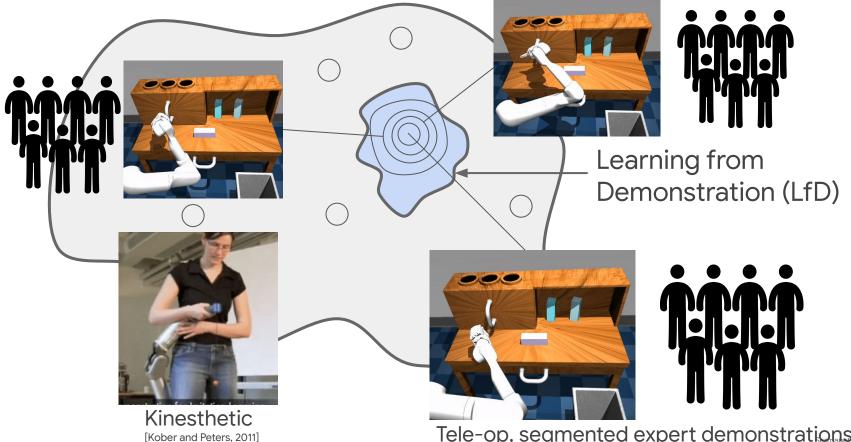
"Nudge + grasp?"

Slide "full"?

Slide "partial"?

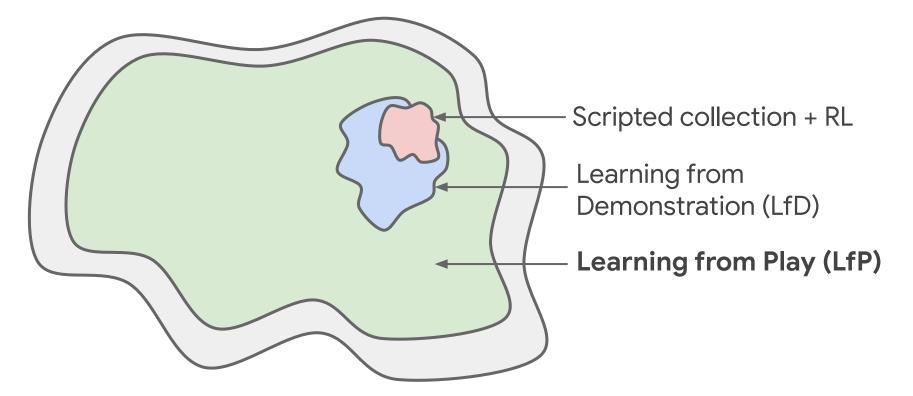
Boundaries between multiple tasks?

How can we cover the continuum?



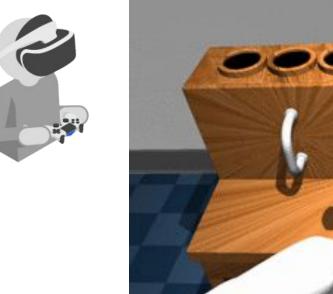
Tele-op, segmented expert demonstrations @ OpenAI Symposium 2019

How can we cover the continuum?



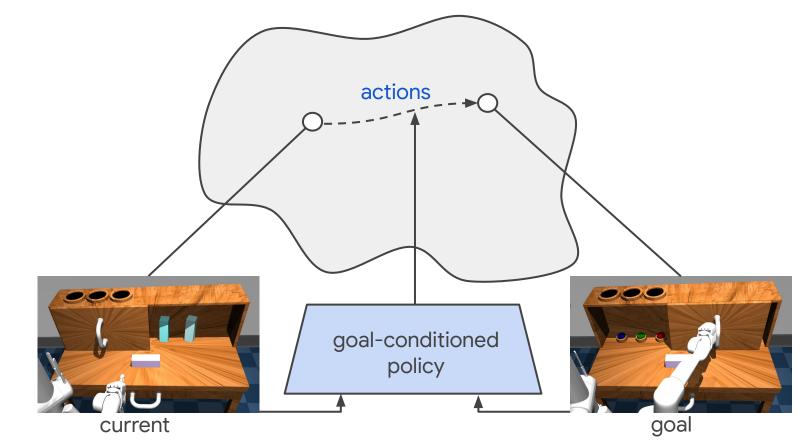
Play data for training

collected from human tele-operation

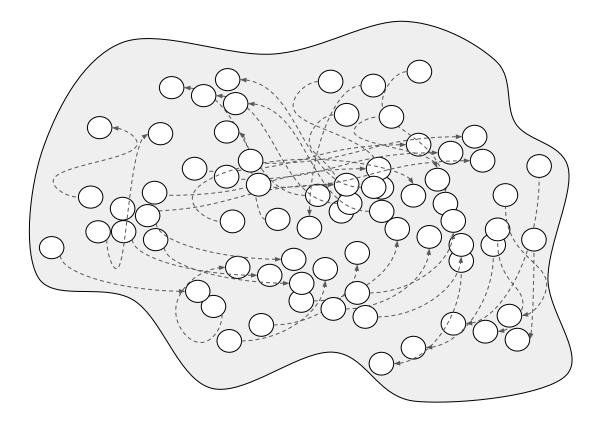


(2.5x speedup)

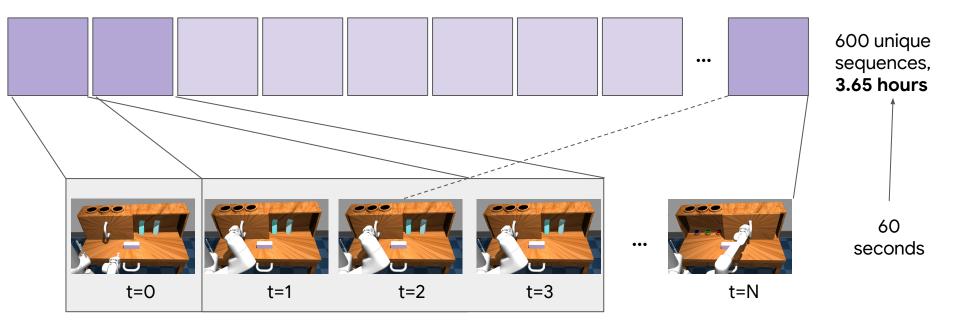
How do we learn control from play?



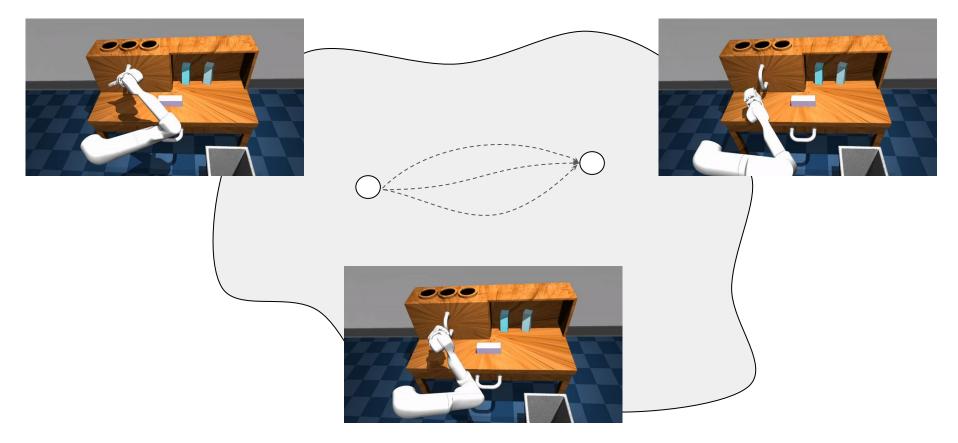
Play covers the continuum

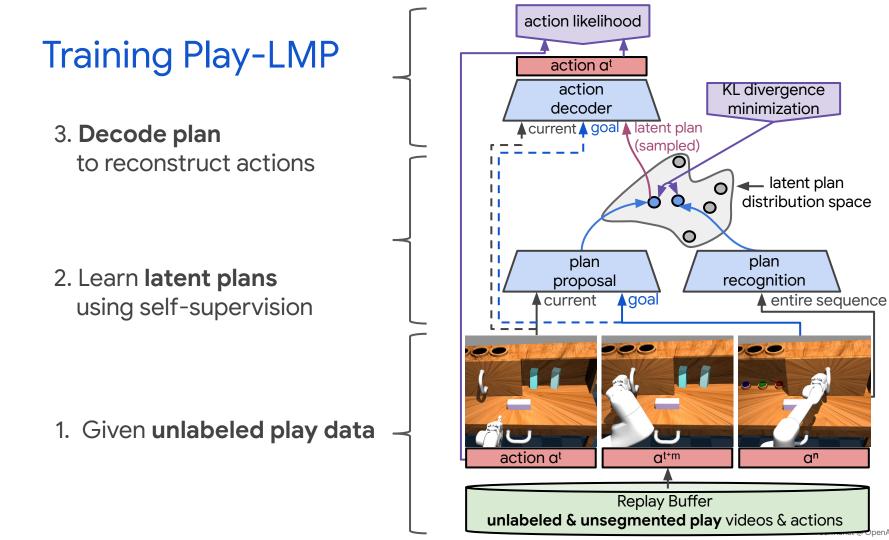


Goal relabeling



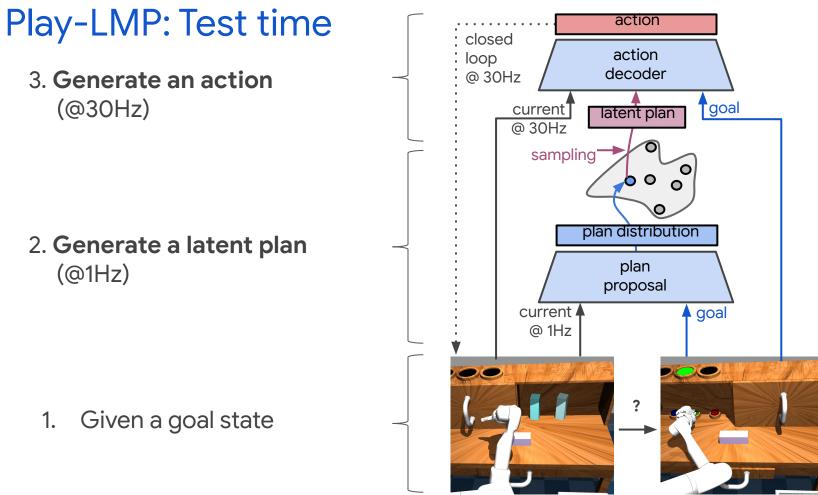
Multimodality issue





OpenAl Symposium 2019

an



Sermanet @ OpenAl Symposium 2019

18 tasks (for evaluation only)

close drawer close sliding

open drawer

grasp flat

grasp lift

grasp upright

knock

pull out shelf

push blue

push green

push red

put in shelf

sweep right

rotate left

rotate right

sliding

sweep

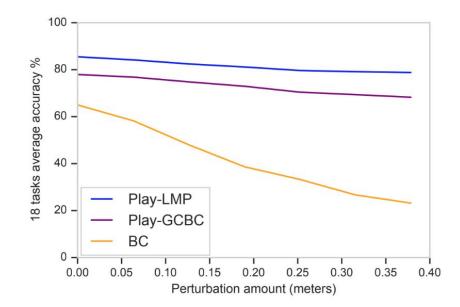
sweep left

Quantitative Accuracy

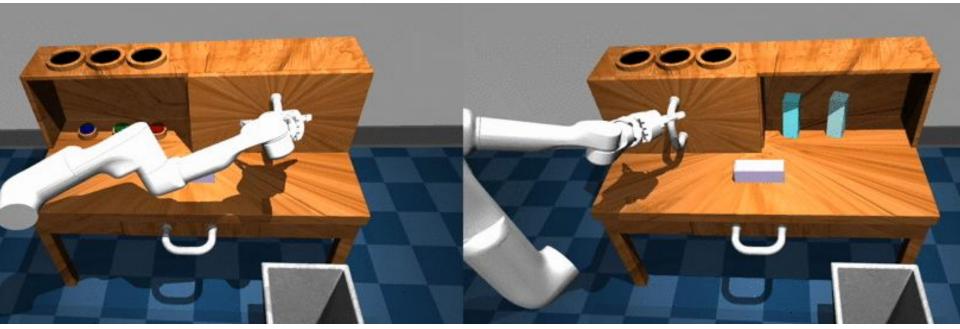
We obtain a **single task-agnostic policy** and evaluate it on 18 zero-shot tasks.

• Play-LMP: **single policy** trained on **cheap unlabelled** data: **85% zero shot**

- Baseline: **18 policies** trained on **expensive labelled** data: **65%**
- When perturbing the start position, the success is:
 - baseline: 23%
 - Play-LMP: 79%

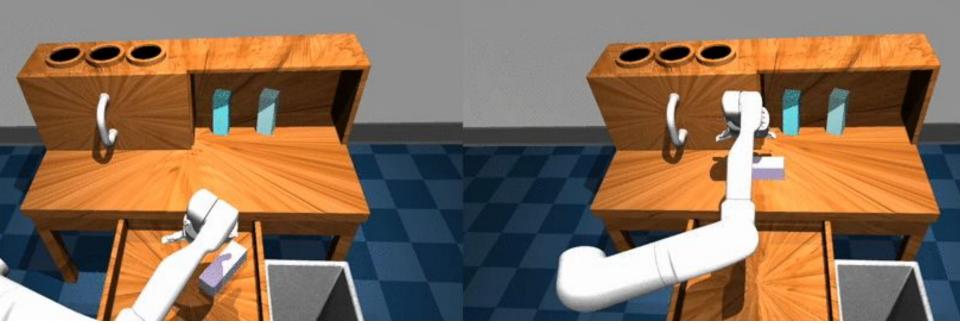


1x



Goal (task: sliding)

Play-LMP policy



Goal (task: sweep)

Play-LMP policy

1x

Goal (task: pull out of shelf)

Play-LMP policy

1x

Goal (task: rotate left)

Play-LMP policy

Some failure cases for Play-LMP

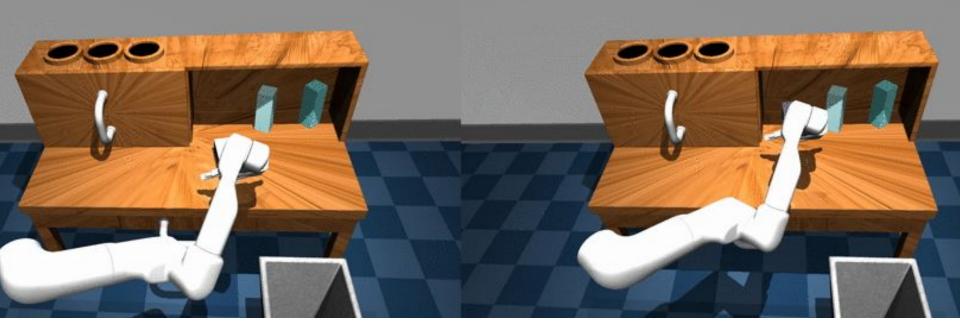
Goal (task: sliding)

Play-LMP policy

Sermanet @ OpenAl Symposium 2019

1x

Some failure cases for Play-LMP



Goal (task: pull out of shelf)

Play-LMP policy

Retrying behavior emerging from Play-LMP

1x

Goal (task: sliding)

Play-LMP policy

Retrying behavior emerging from Play-LMP

1x



Goal (task: pull out of shelf)

Play-LMP policy

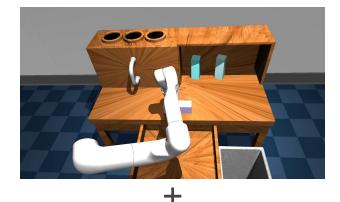
Retrying behavior emerging from Play-LMP

1x

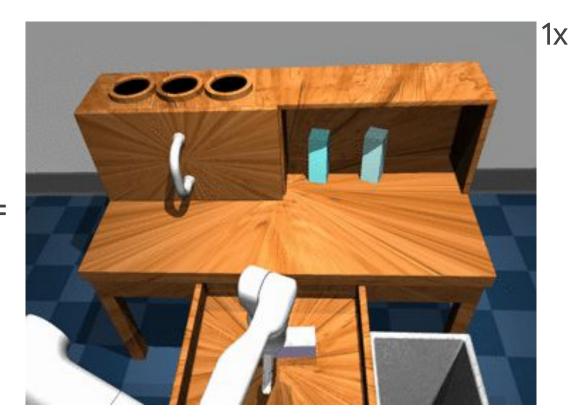
Goal (task: sweep right)

Play-LMP policy

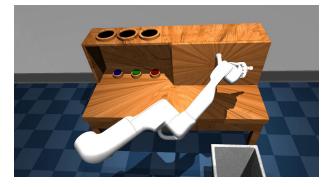
Composing 2 skills: grasp + close drawer



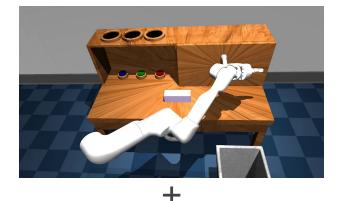
Goals

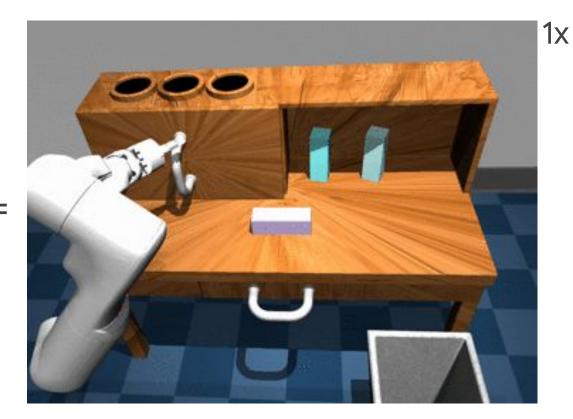


Composing 2 skills: put in shelf + close sliding



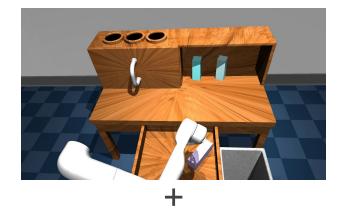
Composing 2 skills: open sliding + push green

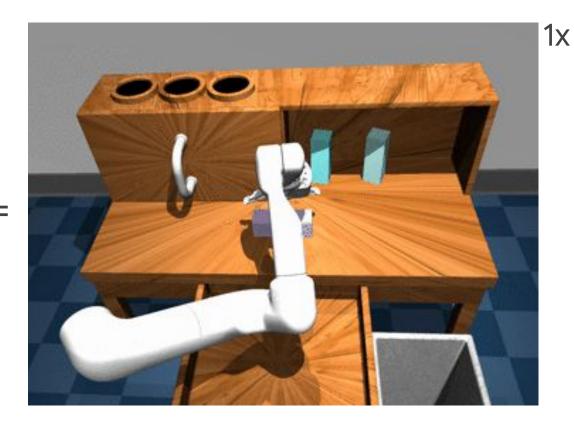




Play-LMP policy

Composing 2 skills: sweep + close drawer

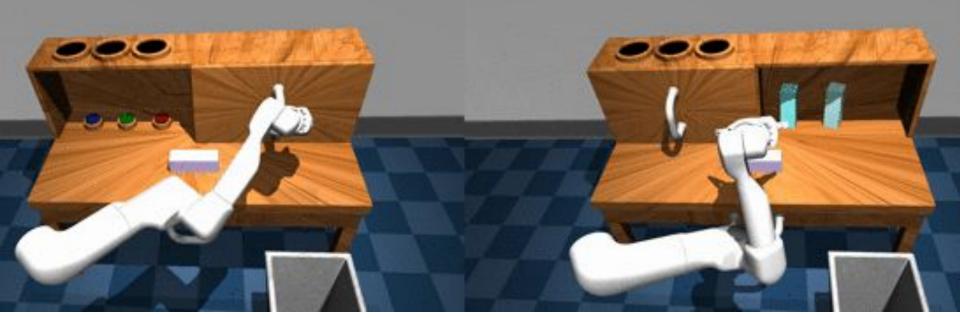




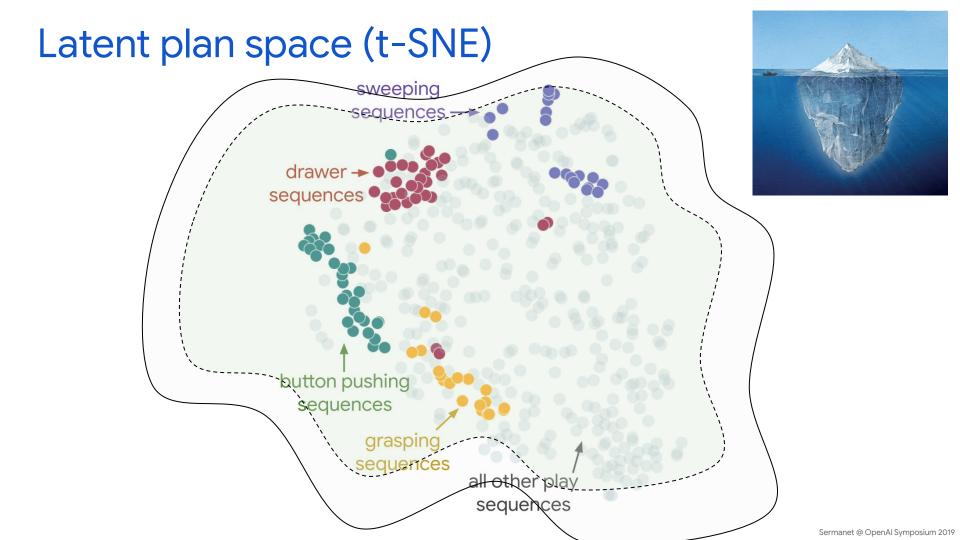
Composing 2 skills: drawer open + sweep

Play-LMP policy

8 skills in a row



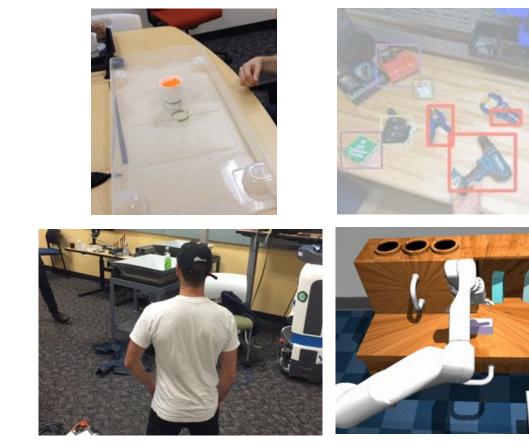
Play-LMP policy



Richness & Scalability of Data

Rich Learning from demonstrations (LfD)

Recipe: Self-Supervision + Play



- **Self-Supervision + Play** recipe:
 - Self-supervise on lots of unlabeled data
 - Use play data
- **Delay definitions** of tasks, states or attributes,

Let self-supervision organize continuous spaces:

- Continuum of states and attributes
- Continuum of skills

Debidatta Dwibedi Corey Lynch

Jonathan Tompson Mohi Khansari

Yevgen Chebotar

Yunfei Bai

Jasmine Hsu

Eric Jang

Vikash Kumar

Soeren Pirk

Ted Xiao

Stefan Schaal

Andrew Zisserman Sergey Levine

Pierre Sermanet

Questions?

g.co/robotics sermanet.github.io sermanet@google.com