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Main Message

● Real-world robotics cannot rely on labels and rewards

● Instead, mostly

○ Self-supervise on unlabeled data

○ Use play data

● We present ways to do this for vision and control
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Our mission:
Self-Supervised Robots

i.e.: Autonomously extract learning signals from the world
 from play and from others

because: “Give a robot   a label and you feed it for a second;
                    Teach a robot to label and you feed it for a lifetime.”
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Supervision Types Supervised

1. Hand pose
2. Cups pose
3. Liquid amounts
4. Liquid flowing
5. Liquid color

Discrete & human-defined
Embedding

Signal:

Self-Supervised    
  Signal:

● Depth
● Time
● Multi-view
● Tactile feedback

Continuous embedding

Unsupervised

   Signal:
● Auto-encoding
● Sparsity prior
● Gaussian prior

Continuous embedding
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Supervision Costs

Type of Supervision Description Cost

Playing (Intrinsic Motivation) Alone or with others Free

Play data (Tele-op) Very cheap

Imitation other agents “playing” for hours, not 
segmented, not labeled

Cheap
(but not unlimited)

Demonstrations Staged, segmented and labeled Expensive

Labeled Frames e.g. action and object classes / 
attributes

Very Expensive

Proportions in which 
supervision is ok to use 
(ideally mostly rely on
 green and blue).
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Why Self-Supervise?

● Be versatile and robust to different hardware & environments:

○ Robot-agnostic and self-calibrating

○ Agnostic to sim or real, train the same way

● Scaling up in the real world

● Can’t afford human supervision given the high dimensionality 

of the problem

○ Labeling is not easy to define even for humans

● Rich representations can be discovered through 

self-supervision and lead to higher sample efficiency in RL



Sermanet @ OpenAI Symposium 2019

Why play?

● Self-Supervision enables using play data
● Cheap
● General
● Rich
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label
free
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Self-Supervision and Play
for Vision
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Self-Supervised Visual Representations

● Time-Contrastive Networks (TCN)
● Temporal Cycle-Consistency (TCC)
● Object-Contrastive Networks (OCN)

disentangled / invariant
states and attributes

Imitation

Progression
of task
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Imitation

Progression
of task

Play

● Detect errors
● Correct
● Retry
● Transition
● General skills
● Data augmentation
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Time-Contrastive Networks (TCN)
[ Sermanet*, Lynch*, Chebotar*, Hsu, Jang, Schaal, Levine @ ICRA 2018 ] [ sermanet.github.io/imitate ]

https://sermanet.github.io/imitate/
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Single-view TCN
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Semantic Alignment with TCN

Observation                   multi-view TCN     
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Robotic Imitation:
Step 1. Self-Supervise on Play data

TCN

embedding
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Robotic Imitation:
Step 2. Follow abstract trajectory
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Actionable Representations
[ Dwibedi, Tompson, Lynch, Sermanet @ IROS 2018 ] [ sites.google.com/view/actionablerepresentations ]

https://sites.google.com/view/actionablerepresentations/
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Cheetah Environment

Agent observes another agent demonstrating an action  

View 1 View 2
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Qualitative Results: Cheetah

PPO on
true state

PPO on
learned visual

representations

Input to PPO Cumulative Reward
(Avg of 100 runs)

Random State 28.31

True State 390.16

Raw Pixels 146.14

mfTCN 360.50
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Temporal Cycle-Consistency (TCC)
[ Dwibedi, Aytar, Tompson, Sermanet, Zisserman @ CVPR 2019 ] [ temporal-cycle-consistency.github.io ]

https://temporal-cycle-consistency.github.io/
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Temporal Cycle-Consistency (TCC)
[ Dwibedi, Aytar, Tompson, Sermanet, Zisserman @ CVPR 2019 ] [ temporal-cycle-consistency.github.io ]

https://temporal-cycle-consistency.github.io/
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Temporal Cycle-Consistency

cycle consistency 
error

nearest
neighbors

cycle
consistent  

not cycle
consistent  

embedding space

...

...

video 1

video 2
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Action Phase Classification

Phase classification results when fine-tuning ImageNet 
pre-trained ResNet-50.
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Self-Supervised Alignment
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Object-Contrastive Networks (OCN)
[ Pirk, Khansari, Bai, Lynch, Sermanet @ under review ]

Self-teaching about any object
leads to high robustness, allowing deployment 
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Robotic Data Collection
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Play data for Objects
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Object-Contrastive Networks (OCN)
[ Pirk, Khansari, Bai, Lynch, Sermanet @ under review ]
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noisy 
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negative
anchor            
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OCN embedding

deep network

metric loss
attraction repulsion
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Recovering Continuous Attributes
Q

ue
ry

 Im
ag

es

(Same instance removed)
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Online Object Understanding

● Offline average error: 54%
● Online average error: 17% -> 3%
● Do not define states and attributes

Offline ResNet Online self-supervision OCN
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Online Adaptation
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Online Adaptation



Sermanet @ OpenAI Symposium 2019

Self-Supervision and Play
for Control
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Pose Imitation with TCN
[ Sermanet*, Lynch*, Chebotar*, Hsu, Jang, Schaal, Levine @ ICRA 2018 ] [ sermanet.github.io/imitate ]

https://sermanet.github.io/imitate/
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Play Data in Pose Space

Human Play Robot Scripting Human imitating Robot
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Pose Imitation with Play Data

Human Play Robot Script Robot Script
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● Self-Supervision + Play recipe

● No explicit task definition.

Pose Imitation
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Learning from Play (LfP)
[ Lynch, Khansari, Xiao, Kumar, Tompson, Levine, Sermanet @ under review ] [ learning-from-play.github.io ]

● No tasks

● No rewards or RL

● Multiple tasks in zero-shot

● 85% on 18 tasks

● Self-Supervision + Play recipe

https://learning-from-play.github.io/
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Continuum of skills
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How can we cover the continuum?

Scripted collection + RL

Exploration

Scripting exploration

reward sensor
for door opening

Reward engineering
Distributed training

Reset
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Tasks are not discrete

“Grasp fast?” “Nudge slow?” “Nudge + grasp?”

Slide “full”? Slide “partial”? Boundaries between 
multiple tasks?
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How can we cover the continuum?

     Learning from
     Demonstration (LfD)

Kinesthetic 
[Kober and Peters, 2011] Tele-op, segmented expert demonstrations
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     Learning from Play (LfP)

How can we cover the continuum?

     Learning from
     Demonstration (LfD)

Scripted collection + RL
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Play data for training
collected from human tele-operation

(2.5x speedup)
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How do we learn control from play?

actions

current goal

goal-conditioned 
policy
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Play covers the continuum
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Goal relabeling

t=0

...

t=1 t=Nt=2 t=3

...
600 unique 
sequences, 
3.65 hours

60 
seconds
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Multimodality issue
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current entire sequencegoal

latent plan
distribution space

plan
proposal

plan
recognition

KL divergence
minimization

2. Learn latent plans
    using self-supervision

goalcurrent latent plan
(sampled)

action likelihood

action αᵗ
action

decoder

3. Decode plan
    to reconstruct actions

1. Given unlabeled play data
action αᵗ αᵗ⁺ᵐ αⁿ

Replay Buffer
unlabeled & unsegmented play videos & actions

Training Play-LMP



Sermanet @ OpenAI Symposium 2019

Play-LMP: Test time

1. Given a goal state

current
@ 1Hz

goal

?

3. Generate an action
     (@30Hz) goalcurrent

@ 30Hz

action

action
decoder

closed
loop
@ 30Hz

2. Generate a latent plan
     (@1Hz)

sampling

plan
proposal

plan distribution

latent plan
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18 tasks (for evaluation only)
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Quantitative Accuracy

We obtain a single task-agnostic policy
and evaluate it on 18 zero-shot tasks.

● Play-LMP: single policy trained on
cheap unlabelled data: 85% zero shot

● Baseline: 18 policies trained on
expensive labelled data: 65%

● When perturbing the start position, 
the success is:
○ baseline: 23%
○ Play-LMP: 79%
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Examples of success runs for Play-LMP

Goal Play-LMP policy

1x

(task: sliding)
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Examples of success runs for Play-LMP

Goal Play-LMP policy

1x

(task: sweep)
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Examples of success runs for Play-LMP

Goal Play-LMP policy

1x

(task: pull out of shelf)
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Examples of success runs for Play-LMP

Goal Play-LMP policy

1x

(task: rotate left)
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Some failure cases for Play-LMP

Goal Play-LMP policy

1x

(task: sliding)
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Some failure cases for Play-LMP

Goal Play-LMP policy

1x

(task: pull out of shelf)
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Retrying behavior emerging from Play-LMP

Goal Play-LMP policy

1x

(task: sliding)
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Retrying behavior emerging from Play-LMP

Goal Play-LMP policy

1x

(task: pull out of shelf)
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Retrying behavior emerging from Play-LMP

Goal Play-LMP policy

1x

(task: sweep right)
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Composing 2 skills: grasp + close drawer

Goals Play-LMP policy

1x

=+
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Composing 2 skills: put in shelf + close sliding

Goals Play-LMP policy

1x

=+
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Composing 2 skills: open sliding + push green

Goals Play-LMP policy

1x

=+
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Composing 2 skills: sweep + close drawer

Goals Play-LMP policy

1x

=+
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Composing 2 skills: drawer open + sweep

Goals Play-LMP policy

1x

=+
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8 skills in a row

Goal Play-LMP policy

1.5x
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Latent plan space (t-SNE)
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Scalable

Rich Learning from 
demonstrations 
(LfD)

Scripted 
collection
+ RL

Learning from 
play (LfP)

Richness & Scalability of Data 
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Recipe: Self-Supervision + Play
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Takeaways

● Self-Supervision + Play recipe:

○ Self-supervise on lots of unlabeled data

○ Use play data

● Delay definitions of tasks, states or attributes,

Let self-supervision organize continuous spaces:

○ Continuum of states and attributes

○ Continuum of skills
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Questions?
g.co/robotics

sermanet.github.io
sermanet@google.com
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