

Learning Dexterity

OpenAI Robotics

Alex Paino, Arthur Petron, Ilge Akkaya, Jerry Tworek, Jonas Schneider, Josh Tobin, Lilian Weng, Maciek Chociej, Mateusz Litwin, Matthias Plappert, Nikolas Tezak, Peter Welinder, Qiming Yuan, Wojciech Zaremba

AUGUST, 2019

~ 1

Reinforcement Learning (RL)

GO (ALPHAGO ZERO)

DOTA 2 (OPENAI FIVE)

RL for Robotics (1)

Rajeswaran et al. (2017)

RL for Robotics (2)

Learning progress (hardware platform)

Kumar et al. (2016)

RL for Robotics (3)

Levine et al. (2018)

Can we train complex policies only in simulation but still run on the real robot?

Learning Dexterity

Dexterous In-Hand Manipulation

- A humanoid 5-fingered hand
- A human hand is a universal end-effector
- Long standing unachieved goal for classical robotics

Simulation

Task: reorient the object in-hand

SIMULATION ENVIRONMENT

Sim2Real

Transfer

Shadow Dexterous Hand

PhaseSpace tracking -

Right RGB camera

Top RGB camera

Left RGB camera

SIMULATION ENVIRONMENT

Sim2Real

Reinforcement Learning Domain Randomization

Domain Randomization

Domain Randomization

Sadeghi & Levine (2016)

Domain Randomization

Tobin et al. (2017)

Physics Randomization

Physics randomization

No randomizations

Peng et al. (2017)

Our Approach

A Distributed workers collect experience on randomized environments at large scale. B We train a control policy using reinforcement learning.
It chooses the next action based on fingertip positions and the object pose.

C We train a convolutional neural network to predict the object pose given three simulated camera images.

Transfer to the Real World

Appearance Randomizations

Vision Architecture

Object Position

Object Rotation

What the Model Sees

Physics Randomizations

object dimensions object and robot link masses surface friction coefficients robot joint damping coefficients actuator force gains joint limits gravity vector

noisy observations noisy actions

Fingertips positions Object pose

Policy Architecture

Distributed Training with PPO

Policy Parameters

policy inputs (noisy)

Value Function

- fingertip positions
 - object pose
- target orientation
- hand joints angles
- hand joints velocities
 - object velocity

value function inputs (noise-free)

Emergent Behaviors

FINGER PIVOTING

SLIDING

FINGER GAITING

Tip Pinch Grasp

Quadpod Grasp

5-Finger Precision Grasp

Palmar Pinch Grasp

Tripod Grasp

Power Grasp

Quantitative results

RANDOMIZATONS	OBJECT TRACKING	MEDIAN NUMBER OF SUCCESSES	
None	Motion tracking	0	
AII	Motion tracking	13	
AII	Vision	11.5	

Effect of Memory				
POLICY	VALUE FUNCTION	MEDIAN NUMBER OF SUCCESSES		
LSTM	LSTM	13		
Feedforward	LSTM	3.5		
Feedforward	Feedforward	3		

Training time

No Randomizations

Distribution of environments -----Memory

Meta-Learning

Thank You!

FOLLOW @OPENAI ON TWITTER

Blog Post

28 Aug 2018 [cs.LG] arXiv:1808.00177v2

Learning Dexterous In-Hand Manipulation

Figure 1: A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a goal configuration using vision for sensing.

Abstract

We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies which can perform vision-based object reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we randomize many of the physical properties of the system like friction coefficients and an object's appearance. Our policies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human demonstrations, but many behaviors found in human manipulation emerge naturally, including finger gaiting, multi-finger coordination, and the controlled use of gravity. Our results were obtained using the same distributed RL system that was used to train OpenAI Five [43]. We also include a video of our results: https://youtu. be/jwSbzNHGflM.

1 Introduction

While dexterous manipulation of objects is a fundamental everyday task for humans, it is still challenging for autonomous robots. Modern-day robots are typically designed for specific tasks in constrained settings and are largely unable to utilize complex end-effectors. In contrast, people are able to perform a wide range of dexterous manipulation tasks in a diverse set of environments, making the human hand a grounded source of inspiration for research into robotic manipulation.

The Shadow Dexterous Hand [58] is an example of a robotic hand designed for human-level dexterity; it has five fingers with a total of 24 degrees of freedom. The hand has been commercially available *Built by a team of researchers and engineers at OpenAI (in alphabetical order).

Marcin Andrychowicz Bowen Baker Maciek Chociej Rafał Józefowicz Bob McGrew Jakub Pachocki Arthur Petron Matthias Plappert Glenn Powell Alex Ray Jonas Schneider Szymon Sidor Josh Tobin Peter Welinder Lilian Weng Wojciech Zaremba

blog.openai.com/learning-dexterity

arxiv.org/abs/1808.00177

RANDOMIZATONS	OBJECT TRACKING		NUMBER OF SUCCESSE	
			MEDIAN	MAX
None	Motion tracking	LSTM	0	6
AII	Motion tracking	LSTM	13	50
AII	Vision	LSTM	11.5	46
AII	Motion tracking	FF	3.5	15

RANDOMIZATONS	OBJECT TRACKING		NUMBER OF SUCCESSE	
			MEDIAN	MAX
None	Motion tracking	LSTM	0	6
All	Motion tracking	LSTM	13	50
All	Vision	LSTM	11.5	46
AII	Motion tracking	FF	3.5	15

RANDOMIZATONS	OBJECT TRACKING		NUMBER OF SUCCESSE	
			MEDIAN	MAX
None	Motion tracking	LSTM	0	6
AII	Motion tracking	LSTM	13	50
AII	Vision	LSTM	11.5	46
AII	Motion tracking	FF	3.5	15

.

RANDOMIZATONS	OBJECT TRACKING		NUMBER OF SUCCESSE	
			MEDIAN	MAX
None	Motion tracking	LSTM	0	6
AII	Motion tracking	LSTM	13	50
AII	Vision	LSTM	11.5	46
AII	Motion tracking	FF	3.5	15

RANDOMIZATONS	OBJECT TRACKING		NUMBER OF SUCCESSE	
			MEDIAN	MAX
None	Motion tracking	LSTM	0	6
AII	Motion tracking	LSTM	13	50
AII	Vision	LSTM	11.5	46
AII	Motion tracking	FF	3.5	15

