
AUGUST, 2019

Learning Dexterity 
OpenAI Robotics

Alex Paino, Arthur Petron, Ilge Akkaya, Jerry Tworek, Jonas Schneider, 
Josh Tobin, Lilian Weng, Maciek Chociej, Mateusz Litwin, Matthias Plappert, 
Nikolas Tezak, Peter Welinder, Qiming Yuan, Wojciech Zaremba







GO (ALPHAGO ZERO) DOTA 2 (OPENAI FIVE)

Reinforcement Learning (RL)
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Can we train complex policies  
only in simulation 

but still run on the real robot?



Learning Dexterity



• A humanoid 5-fingered hand 

• A human hand is a universal        

end-effector 

• Long standing unachieved goal 

for classical robotics

Dexterous In-Hand Manipulation



Simulation

Task: reorient the object in-hand
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Shadow Dexterous Hand



PhaseSpace tracking
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Reinforcement Learning 
+ 

Domain Randomization



Domain Randomization



Sadeghi & Levine (2016)
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Domain Randomization



Physics Randomization

Physics randomization No randomizations

Peng et al. (2017)



Our Approach



We train a control policy using reinforcement learning. 
It chooses the next action based on fingertip positions 
and the object pose.
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We train a convolutional neural network to predict the 
object pose given three simulated camera images. 
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Distributed workers collect 
experience on randomized 
environments at large scale. 
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Object Pose

Fingertip
Locations

We combine the pose estimation network 
and the control policy to transfer to the real world.
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Appearance Randomizations
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What the Model Sees



object dimensions 

object and robot link masses 

surface friction coefficients 

robot joint damping coefficients 

actuator force gains 

joint limits 

gravity vector

Physics Randomizations

noisy observations 

noisy actions



Action Distribution Joint angles

LSTM

Fully-connected ReLU

Normalization

Noisy Observation Goal
Fingertips positions 

Object pose

Policy Architecture



Policy Parameters

Optimizers
8 GPUs

Rollout Workers
6,000 CPU Cores

Distributed Training with PPO



fingertip positions 

object pose 

target orientation 

hand joints angles 

hand joints velocities 

object velocity
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Emergent Behaviors



finger pivoting, finger gaiting, multi-finger coordination, the controlled use of gravity, and coordinated
application of translational and torsional forces to the object. It is important to note that we did not
incentivize this directly: we do not use any human demonstrations and do not encode any prior into
the reward function.

For precision grasps, our policy tends to use the little finger instead of the index or middle finger.
This may be because the little finger of the Shadow Dexterous Hand has an extra degree of freedom
compared to the index, middle and ring fingers, making it more dexterous. In humans the index and
middle finger are typically more dexterous. This means that our system can rediscover grasps found
in humans, but adapt them to better fit the limitations and abilities of its own body.

Figure 7: Different grasp types learned by our policy. From top left to bottom right: Tip Pinch grasp,
Palmar Pinch grasp, Tripod grasp, Quadpod grasp, 5-Finger Precision grasp, and a Power grasp.
Classified according to [18].

We observe another interesting parallel between humans and our policy in finger pivoting, which is a
strategy in which an object is held between two fingers and rotate around this axis. It was found that
young children have not yet fully developed their motor skills and therefore tend to rotate objects
using the proximal or middle phalanges of a finger [44]. Only later in their lives do they switch to
primarily using the distal phalanx, which is the dominant strategy found in adults. It is interesting
that our policy also typically relies on the distal phalanx for finger pivoting.

During experiments on the physical robot we noticed that the most common failure mode was
dropping the object while rotating the wrist pitch joint down. Moreover, the vertical joint was the
most common source of robot breakages, probably because it handles the biggest load. Given these
difficulties, we also trained a policy with the wrist pitch joint locked.6 We noticed that not only does
this policy transfer better to the physical robot but it also seems to handle the object much more
deliberately with many of the above grasps emerging frequently in this setting. Other failure modes
that we observed were dropping the object shortly after the start of a trial (which may be explained
by incorrectly identifying some aspect of the environment) and getting stuck because the edge of an
object got caught in a screw hole (which we do not model).

We encourage the reader to watch the accompanying video to get a better sense of the learned
behaviors.7

6We had trouble training in this environment from scratch, so we fine-tuned a policy trained in the original
environment instead.

7Real-time video of 50 successful consecutive rotations: https://youtu.be/DKe8FumoD4E
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RANDOMIZATONS OBJECT TRACKING
MEDIAN NUMBER  

OF SUCCESSES

None Motion tracking 0

All Motion tracking 13

All Vision 11.5

Quantitative results



POLICY VALUE FUNCTION
MEDIAN NUMBER  

OF SUCCESSES

LSTM LSTM 13

Feedforward LSTM 3.5

Feedforward Feedforward 3

Effect of Memory
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Distribution of environments 
+ 

Memory  
= 

Meta-Learning



Thank You!

FOLLOW @OPENAI ON TWITTER

Blog Post

blog.openai.com/learning-dexterity arxiv.org/abs/1808.00177

Paper

https://blog.openai.com/learning-dexterity/
https://arxiv.org/pdf/1808.00177.pdf


RANDOMIZATONS OBJECT TRACKING POLICY

NUMBER OF SUCCESSES

MEDIAN MAX

None Motion tracking LSTM 0 6

All Motion tracking LSTM 13 50

All Vision LSTM 11.5 46

All Motion tracking FF 3.5 15
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